Chapter 2

Fourier transforms

1. Basic definitions

In this section we introduce some basic definitions of Fourier transforms.
Instead of formulating three different results for the cases we consider here,
one could obtain much greater generality by considering functions defined
on some Abelian group. There would be some differences depending on
whether the group is compact or not but otherwise one could have a unified
treatment. We will, however, not take this approach here.

Note also that there are several alternatives for where the factor 27 will
appear, the choice of having it in the exponent is only one. We denote
T = R/Z, that is a function f defined on T can be thought of as a function
defined on R with the property that f(t + 1) = f(¢) for all t € R. The
spaces LP(T;C), 1 < p < oo, can therefore be indentified with the spaces
LP([0,1];C), but C(T; ) is not the same space as C([0,1];C).

Definition 2.1. If f € LYT;C), (or f € LY[0,1];C)) then its Fourier
transform is the sequence f defined by

(2.1) flk) = /01 T2k f(1ydt, k€ Z.
If F € LY(R;C), then its Fourier transform is the function F defined by
(2.2) Fw)= /]Re_iz”‘”tF(t) dt, weR.
If ¢ € (1(Z; C), then its Fourier transform is the function & defined by
(2.3) Pw) =) e kg weR

keZ
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The most basic properties of the Fourier transform are given by the
so-called Riemann-Lebesgue lemma.

Theorem 2.2.

(a) If f € L'(T;C), then f € co(Z;C).
(b) If F € L'(R;C), then F € Co(R;C).
(¢) If ¢ € ((Z:;C), then ¢ € C(T;C).
On a general level, it is quite easy to describe how to invert the Fourier

transform, the details of exactly what assumptions are needed can be much
more complicated.

Theorem 2.3.

(a) If f € L'(T;C) and f € (1(Z;C) then f(z) = > ke ei2mke f(1) | for

a.e. x € [0,1].

(b) IfF e LYR;C) and F € L'(R;C) then F(z) = e el27 () dw, for
a.e. z € R,

(¢) If ¢ € (1Z;C) and be LY(T;C) then ¢p = 01 ei%k‘”qg(w) dw, for all
k€ Z.

These inversion formulas hold in much greater generality, but then more
care has to be spent on formulating in exactly what sense the Fourier trans-
form and the inversion formula hold.

An important part of Fourier analysis is the extension to square inte-
grable functions. Here we should of course observe that L?(T;C) C L*(T;C)
(that is, L%([0,1]; C) c L([0,1];C)), ((Z; C) C (*(Z; C), LY(R; C) ¢ L*(R;C)
and L*(R;C) ¢ LY(R;C), but LY(R;C)( L*(R; C) is dense in L*(R;C).

Theorem 2.4.
(a) The Fourier transform is an isometric isomorphism from L*(T;C)

to (*(Z;C), that is || fll 21y = ||f||g2(Z) for every f € L*(T;C). In
particular, if f and g € L*(T;C), then

(2.4) / foyg@)de = 3 F(k)50R).

(b) The Fourier transform can be extended to an isometric isomorphism
on L*(R; C), that is || F|| 2y = ||F||z2(w) for every F € L*(R;C). In
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particular, if F' and G € L*(R;C), then

(2.5) /RF(x)@dx = /Rﬁ(w)@dw.

(¢c) The Fourier transform can be extended to an isometric isomorphism
from (}(Z;C) to L*(T;C), that is ||¢l|r2w) = ||0llz2(o,1]) Jor every
¢ € (3(Z;C). In particular, if ¢ and v € (*(Z; C), then

(2:6) > o= | ()30 do

keZ

Once one has defined the Fourier transform for both integrable and
square integrable functions it is obvious that the Fourier transform is also
well-defined on L'(R;C) + L*(R;C).

Next we give another result on the inversion of Fourier transforms. There
are many different versions of the inversion formula that one could consider
here, but we concentrate on the results that we will need and use.

Theorem 2.5.

(a) Assume that x¢ € [0,1] and f € LY(T;C) are such that

(2.7) 7][('.) - j:(xo) € Lioe(R; C).
Then
(238) fleo) = Jim 302 ),

ssume that g € R an € ; + ; are such that
b) A h R and F € L}(R;C) + L*(R;C h th

F(e)—F
(2.9) %ﬂg(%) € Lioo(R; C).
0
Then
T . ~
(2.10) F(zg) = im 270 [(w) dw.
—=co Jg

T—4+
Proof. (a) Let ¢ be a function defined to be
f(e) = (o)

e—i27ro _ e—i27m’0 .

(2.11) g=

It follows from our assumption that g € L*(T;C). A straightforward calcu-
lation shows that

(2.12) F) = flxo)bo, + g5 + 1) — ™m0 4(j),
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and this means that if £ < 0 and m > 0, then

> 200 f(j) = fmg) + €720 Y (270U g 4 1) — e270dg ()

1=k 1=k
_ f(fo) + einxomg(m + 1) _ einxo(k—l)g(k)‘

Now we get the desired conclusion because it follows from theorem 2.2 and
from the fact that ¢ € L*(T;C) that g(j) — 0 as |j] — oo.

(b) Let G = F(z0)e ™ =%8) 50 that ¢ = F(z0)e™™(* =) as well (any
sufficiently nice function would do here). Since G is integrable, the lemma
holds with F' replaced by G by theorem 2.3 and since G is differentiable
we conclude that by taking F' — G instead of F, we may, without loss of
generality, assume that F(z¢) = 0.

Applying (2.5) with G = e_i2”$0'X[S7T] we get
(2.13)

T
12mrow 1 _ 1 12m(z—z0)S 12w (z—w0)T
/S e Flw)dw = /RF(x)iiQﬂ(w—wo) (e e ) da.

Now we observe that it follows from our assumptions that

(2.14) /]R Fla)—

—| d
i2m(z — ) v
and therefore the desired conclusion follows from theorem 2.2.(b). O

We need a result on the Fourier transform of rapidly decaying infinitely
differentiable functions as well.

Definition 2.6.

C¥R)=S8R)={f:R—C| feC™R), t"f()e L™R)
for all k,n >0 }
Thus C°(R) consists of all infinitely differentiable functions whose deriva-
tives converge to zero faster than every function of the form [t|~" as || — oc.

Since C°(R) is a subspace of L'(R), the Fourier transform is weel defined.
Furthermore, one has:

Theorem 2.7. The Fourier transform “7 is a bijection: C}°(R) — C7°(R).

In the square integrable (summable) case there is a direct connection
with differentiability of the transform:

Theorem 2.8. Let M € N.
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(a) Let F € L*(R;C). Then |o|MF(e) € L*(R;C) if and only if F\9) is
locally absolutely continuous for j = 0,..., M —1 and FU) ¢ L*(R;C)
forj=0,..., M.

(b) Let ¢ € (2(Z:C). Then |o|Mp(e) € (2(R;C) if and only if o) is
absolutely continuous for j = 0,..., M — 1 and ¢\9) € L*(T;C) for
Jj=0,..., M (or equivalently just oM) ¢ L¥(T;C)).
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