
Chapter 2Fourier transforms1. Basi de�nitionsIn this setion we introdue some basi de�nitions of Fourier transforms.Instead of formulating three di�erent results for the ases we onsider here,one ould obtain muh greater generality by onsidering funtions de�nedon some Abelian group. There would be some di�erenes depending onwhether the group is ompat or not but otherwise one ould have a uni�edtreatment. We will, however, not take this approah here.Note also that there are several alternatives for where the fator 2� willappear, the hoie of having it in the exponent is only one. We denoteT= R=Z, that is a funtion f de�ned on Tan be thought of as a funtionde�ned on R with the property that f(t + 1) = f(t) for all t 2 R. Thespaes Lp(T; C ), 1 � p � 1, an therefore be indenti�ed with the spaesLp([0; 1℄; C ), but C(T;C) is not the same spae as C([0; 1℄; C ).De�nition 2.1. If f 2 L1(T; C ), (or f 2 L1([0; 1℄; C )) then its Fouriertransform is the sequene f̂ de�ned byf̂(k) = Z 10 e�i2�ktf(t) dt; k 2Z:(2.1)If F 2 L1(R; C ), then its Fourier transform is the funtion F̂ de�ned byF̂ (!) = ZRe�i2�!tF (t) dt; ! 2 R:(2.2)If � 2 `1(Z; C ), then its Fourier transform is the funtion �̂ de�ned by�̂(!) =Xk2Ze�2�i!k�k ; ! 2 R:(2.3) 5



6 2. Fourier transforms 20.10.2006The most basi properties of the Fourier transform are given by theso-alled Riemann-Lebesgue lemma.Theorem 2.2.(a) If f 2 L1(T; C ), then f̂ 2 0(Z; C ).(b) If F 2 L1(R; C ), then F̂ 2 C0(R; C ).() If � 2 `1(Z; C ), then �̂ 2 C(T; C ).On a general level, it is quite easy to desribe how to invert the Fouriertransform, the details of exatly what assumptions are needed an be muhmore ompliated.Theorem 2.3.(a) If f 2 L1(T; C ) and f̂ 2 `1(Z; C ) then f(x) = Pk2Zei2�kxf̂(k), fora.e. x 2 [0; 1℄.(b) If F 2 L1(R; C ) and F̂ 2 L1(R; C ) then F (x) = RRei2�x!F̂ (!) d!, fora.e. x 2 R.() If � 2 `1(Z; C ) and �̂ 2 L1(T; C ) then �k = R 10 ei2�k!�̂(!) d!, for allk 2Z.These inversion formulas hold in muh greater generality, but then moreare has to be spent on formulating in exatly what sense the Fourier trans-form and the inversion formula hold.An important part of Fourier analysis is the extension to square inte-grable funtions. Here we should of ourse observe that L2(T; C ) � L1(T; C )(that is, L2([0; 1℄; C ) � L1([0; 1℄; C )), `1(Z; C ) � `2(Z; C ), L1(R; C ) 6� L2(R; C )and L2(R; C ) 6� L1(R; C ), but L1(R; C )TL2(R; C ) is dense in L2(R; C ).Theorem 2.4.(a) The Fourier transform is an isometri isomorphism from L2(T; C )to `2(Z; C ), that is kfkL2(T) = kf̂k`2(Z) for every f 2 L2(T; C ). Inpartiular, if f and g 2 L2(T; C ), thenZ 10 f(x)g(x)dx =Xk2z f̂(k)ĝ(k):(2.4)(b) The Fourier transform an be extended to an isometri isomorphismon L2(R; C ), that is kFkL2(R) = kF̂kL2(R) for every F 2 L2(R; C ). In G. Gripenberg 20.10.2006



1. Basi de�nitions 7partiular, if F and G 2 L2(R; C ), thenZRF (x)G(x)dx = ZRF̂ (!)Ĝ(!) d!:(2.5)() The Fourier transform an be extended to an isometri isomorphismfrom `2(Z; C ) to L2(T; C ), that is k�kL2(R) = k�̂kL2([0;1℄) for every� 2 `2(Z; C ). In partiular, if � and  2 `2(Z; C ), thenXk2Z�kk = Z 10 �̂(!)̂(!) d!:(2.6)One one has de�ned the Fourier transform for both integrable andsquare integrable funtions it is obvious that the Fourier transform is alsowell-de�ned on L1(R; C ) + L2(R; C ).Next we give another result on the inversion of Fourier transforms. Thereare many di�erent versions of the inversion formula that one ould onsiderhere, but we onentrate on the results that we will need and use.Theorem 2.5.(a) Assume that x0 2 [0; 1℄ and f 2 L1(T; C ) are suh thatf(�)� f(x0)� � x0 2 L1lo(R; C ):(2.7) Then f(x0) = limk!�1m!1 mXj=k ei2�x0j f̂(j):(2.8)(b) Assume that x0 2 R and F 2 L1(R; C ) + L2(R; C ) are suh thatF (�)� F (x0)� � x0 2 L1lo(R; C ):(2.9) Then F (x0) = limS!�1T!+1 Z TS ei2�x0!F̂ (!) d!:(2.10)Proof. (a) Let g be a funtion de�ned to beg = f(�)� f(x0)e�i2�� � e�i2�x0 :(2.11)It follows from our assumption that g 2 L1(T; C ). A straightforward alu-lation shows thatf̂(j) = f(x0)Æ0;j + ĝ(j + 1)� e�i2�x0 ĝ(j);(2.12)  G. Gripenberg 20.10.2006



8 2. Fourier transforms 20.10.2006and this means that if k < 0 and m > 0, thenmXj=k ei2�x0j f̂(j) = f(x0) + e�i2�x0 mXj=k�ei2�x0(j+1)ĝ(j + 1)� ei2�x0j ĝ(j)�= f(x0) + ei2�x0mĝ(m+ 1)� ei2�x0(k�1)ĝ(k):Now we get the desired onlusion beause it follows from theorem 2.2 andfrom the fat that g 2 L1(T; C ) that ĝ(j)! 0 as jjj ! 1.(b) Let G = F (x0)e��(�2�x20) so that Ĝ = F (x0)e��(�2�x20) as well (anysuÆiently nie funtion would do here). Sine Ĝ is integrable, the lemmaholds with F replaed by G by theorem 2.3 and sine G is di�erentiablewe onlude that by taking F � G instead of F , we may, without loss ofgenerality, assume that F (x0) = 0.Applying (2.5) with Ĝ = e�i2�x0��[S;T ℄ we getZ TS ei2�x0!F̂ (!) d! = ZRF (x) 1i2�(x� x0)�ei2�(x�x0)S � ei2�(x�x0)T�dx:(2.13)Now we observe that it follows from our assumptions thatZR����F (x) 1i2�(x� x0)���� dx <1(2.14)and therefore the desired onlusion follows from theorem 2.2.(b).We need a result on the Fourier transform of rapidly deaying in�nitelydi�erentiable funtions as well.De�nition 2.6.C1# (R) = S(R) = � f : R 7! C �� f 2 C1(R); tkf (n)(t) 2 L1(R)for all k; n � 0	:Thus C1# (R) onsists of all in�nitely di�erentiable funtions whose deriva-tives onverge to zero faster than every funtion of the form jtj�n as jtj ! 1.Sine C1# (R) is a subspae of L1(R), the Fourier transform is weel de�ned.Furthermore, one has:Theorem 2.7. The Fourier transform \ "̂ is a bijetion: C1# (R) 7! C1# (R).In the square integrable (summable) ase there is a diret onnetionwith di�erentiability of the transform:Theorem 2.8. Let M 2 N. G. Gripenberg 20.10.2006



1. Basi de�nitions 9(a) Let F 2 L2(R; C ). Then j�jMF (�) 2 L2(R; C ) if and only if F̂ (j) isloally absolutely ontinuous for j = 0; : : : ;M�1 and F̂ (j) 2 L2(R; C )for j = 0; : : : ;M .(b) Let � 2 `2(Z; C ). Then j�jM�(�) 2 `2(R; C ) if and only if �̂(j) isabsolutely ontinuous for j = 0; : : : ;M � 1 and �̂(j) 2 L2(T; C ) forj = 0; : : : ;M (or equivalently just �̂(M) 2 L2(T; C )).
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