Chapter 6

The orthonormal
discrete wavelet
transform or
calculating with
wavelets

1. Introduction

In this chapter we study how on can use orthonormal wavelets in numeri-
cal computations. It is immediately clear that there are great advantages
in having wavelets with compact support, so we will usually make this as-
sumption.

2. Decomposition and reconstruction algorithms

Let ({Viu}mez, ) be an orthonormal multiresolution for L*R;C). Now
Vo = W1 @ Wehyo & ... Wi & Vi, and the question that we shall study
here is how one in practice finds this decomposition. Fortunately it turns
out to be quite easy.

Proposition 6.1. Let ({Vi}mez, ) be a multiresolution for L*(R; C) and
let Py denote the orthogonal projection onto U. If f € V,, is given in the
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form

(6.1) J= 3 cnlk)p(2™ o —k),

keZ
where ¢, € (*(Z;C), then

PVm-l-lf = Z Cm+1(k)99(2_m_1 i _k)v

kEZ

where
Cma1(k) = a(j — 2k)en (),
JEL
and
PWm+1f = Z dm-|—1(k)¢(2_m_1 . —k)7

kEZ

where

A1 (k) = ) (=1 a(l = j + 2k)em(j).
J€L
Conversely, if
(62)  F=Y (B2 0 —k) 4 Y dsa (K)E27" 0 k),
kel keZ
where ¢py1 and dp, 41 € (2(Z; C), then (6.1) holds with
em(k) =2 (alk = 2/)enia(f) + (~D*a(l =k +2))dns1(5).
J€L
Proof. Suppose that f is given in the form (6.1). By definition we have
(6.3) Py f =) 2" (027 e —k)) (2777 0 k).
k€L

From (6.1) we get

27 (fp(27" e k) = Y em(5)27 /H&@(Qmw—j)w(?m‘lw —k)dz

JEL

=3 enlh) /}R P2 = de = Y en(j) /}R ()27 — (7 — 28)) da,

JEL JEL

and therefore the desired claim follows from the definition of o in (4.8).

The second claim follows in exactly the same manner when we use (4.19).

If (6.2) holds, then f € V,,, and (6.1) holds with ¢,,,(k) = 277 (f, ¢(27™ o —k)).
If we insert the expression from (6.2) and change the variable of integration,
then we get the desired conclusion. O

© G. Gripenberg 20.10.2006



2. Decomposition and reconstruction algorithms 55

Note that coefficients ¢,,(k) above are not the inner products with the
elements in the orthonormal basis, in fact we have

em(k)=2"% <f,2—%¢(2—m . —k)> . kmez,
and hence for example

> 2% e (k)P = 1Py, fll72m)-

keZ

We can consider the calculations above from a slightly different point of
view, that is we look at the sequences only and do not care about whether
they arise as coefficients in an expansion with respect to some basis.

Definition 6.2. Let a € (*(Z). Then
(Tae)(k) = 3 alj = 2k)e(j).
J€L
and
(Sac)(k) =2 a(k - 2j)e(j)-
J€L

Thus we see that the operator T, consists of a convolution with the
sequence a(—k) followed by a downsampling or decimation, i.e., one throws
out all the odd coeflicients. Similarly, 5, is an upsampling, i.e., one inserts
zeroes in every second position in the sequence, followed be a convolution
with « and multiplication by 2.

Now we have the following result:

Proposition 6.3. Let a € (*(Z) be such that & € L°°(T). Then the opera-
tors T, and S, are bounded operators on (*(Z), TF = %Sa and

The proof is left as an exercise.

When we look at the reconstruction of the sequences we note that it is
of course a special case to have the same sequences a and 3 determining
both in the analysis and the synthesis. However, in this case we have the
following result.

Theorem 6.4. Let a and 3 € (*(Z) be such that & and 3 € L>(T). Then
ST, + SﬁTg =1
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if and only if the matrixz the matriz

(mm a(w+ b

- - 1s unitary for almost every w € R.
Bw) Mw+a) ol v

Proof. By proposition 6.3 we know that the Fourier transform of the se-
quence (5,1, + Sp1g)c is

i(w) (al@)e(w) + alw + e(w + 1))
+ Bw) (Awlitw) + Blw+ Daw+ 1)

If this expression is to be (almost everywhere) equal to é(w) for all ¢ then
one must have

dw)d(w) + Bw)flw) 21,
and
a(w)d(w+ )+ Hw)blw + 3) =0,
and this is easily seen to be equivalent to

(d(g) e}(m%)) (cjv(g) d(g+%)

Blw) Blu+l)) \Blw) Blw+

This is exactly the claim. O

3. Wavelet packets

From the results above we see that the decomposition of a function into the
spaces W01 B Wigo B ... B Wik & Vigr can be achieved by calculating
the sequences

Toe, TgToe, ... TsTie. . . TsT e, TEe

Furthermore, we see that if f € V,,, and the sequence ¢, is defined by (6.1),
then we have
k
m+j j— m+k k
1 1Z2my = D 2" HINTBTE el ) + 2" | Tkl .
=1

Now there is no reason to consider only these combinations of T, and
Tz, we can split the spaces W; as well, using the same filters a and £,
(or in principle some other ones as well). This is the idea behind wavelet
packets. Now one clearly does not necessarily have to split all sequences the
same number of times, but on needs some criterion for deciding when to do

© G. Gripenberg 20.10.2006



3. Wavelet packets 57

and when not to do it. For this we need some kind of cost function. One
possibility is to take a cost function of “entropy” type, i.e., take

== > _le(j)*log(le(7)I?)-

JEL

But one has to remember to use normalized sequences. If one wants to find
the splitting that minimizes K, given that one can do at most & splittings,
one possibility is to proceed as follows:

(1)

(2)
(3)

(4)

Form a set S consisting of the 2¥ sequences T, T, ... T, cwhere v
is either av or 3, (together with information about how these sequences
have been formed).

Let K*(s ) = IC(Q;S) for each s € 5.

If K*(T, T ¢)and K~ (TgT .. T, ¢) have been caculated, then
KT, .. T c) min{K*(T,T,, ... Ty c) + KX(TpT,, ... T, c),
IC((Q%T% ... T e)} and if IC(Q%T% ... T, ¢) gives the minimimum,
then all sequences of the form T, ...T, T, ...T, c where n; = «

or fand 1 < p <k —j are remove from 5 and T, ...T,, cis added
to §.

Step (3) is repeated until £*(¢) has been calculated.
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