
Chapter 6The orthonormaldis
rete wavelettransform or
al
ulating withwavelets1. Introdu
tionIn this 
hapter we study how on 
an use orthonormal wavelets in numeri-
al 
omputations. It is immediately 
lear that there are great advantagesin having wavelets with 
ompa
t support, so we will usually make this as-sumption.2. De
omposition and re
onstru
tion algorithmsLet (fVmgm2Z; ') be an orthonormal multiresolution for L2(R; C ). NowVm = Wm+1 �Wm+2 � : : :�Wk � Vk, and the question that we shall studyhere is how one in pra
ti
e �nds this de
omposition. Fortunately it turnsout to be quite easy.Proposition 6.1. Let (fVmgm2Z; ') be a multiresolution for L2(R; C ) andlet PU denote the orthogonal proje
tion onto U . If f 2 Vm is given in the53



54 6. The orthonormal dis
rete wavelet transform 20.10.2006form f =Xk2Z
m(k)'(2�m � �k);(6.1)where 
m 2 `2(Z; C ), thenPVm+1f =Xk2Z
m+1(k)'(2�m�1 � �k);where 
m+1(k) =Xj2Z�(j � 2k)
m(j);and PWm+1f =Xk2Zdm+1(k) (2�m�1 � �k);where dm+1(k) =Xj2Z(�1)j�(1� j + 2k)
m(j):Conversely, iff =Xk2Z
m+1(k)'(2�m�1 � �k) +Xk2Zdm+1(k) (2�m�1 � �k);(6.2)where 
m+1 and dm+1 2 `2(Z; C ), then (6.1) holds with
m(k) = 2Xj2Z��(k � 2j)
m+1(j) + (�1)k�(1� k + 2j)dm+1(j)�:Proof. Suppose that f is given in the form (6.1). By de�nition we havePVm+1f =Xk2Z2m+1 
f; '(2�m�1 � �k)�'(2�m�1 � �k):(6.3)From (6.1) we get2�m�1 
f; '(2�m�1 � �k)� =Xj2Z
m(j)2�m�1 ZR'(2mx�j)'(2�m�1x� k) dx=Xj2Z
m(j) ZR'(2x�j)'(x� k) dx =Xj2Z
m(j)ZR'(x)'(2x� (j � 2k))dx;and therefore the desired 
laim follows from the de�nition of � in (4.8).The se
ond 
laim follows in exa
tly the same manner when we use (4.19).If (6.2) holds, then f 2 Vm and (6.1) holds with 
m(k) = 2�m hf; '(2�m � �k)i.If we insert the expression from (6.2) and 
hange the variable of integration,then we get the desired 
on
lusion.
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2. De
omposition and re
onstru
tion algorithms 55Note that 
oeÆ
ients 
m(k) above are not the inner produ
ts with theelements in the orthonormal basis, in fa
t we have
m(k) = 2�m2 Df; 2�m2 '(2�m � �k)E ; k;m 2Z;and hen
e for exampleXk2Z2mj
m(k)j2 = kPVmfk2L2(R):We 
an 
onsider the 
al
ulations above from a slightly di�erent point ofview, that is we look at the sequen
es only and do not 
are about whetherthey arise as 
oeÆ
ients in an expansion with respe
t to some basis.De�nition 6.2. Let � 2 `2(Z). Then(T�
)(k) =Xj2Z�(j � 2k)
(j);and (S�
)(k) = 2Xj2Z�(k � 2j)
(j):Thus we see that the operator T� 
onsists of a 
onvolution with thesequen
e �(�k) followed by a downsampling or de
imation, i.e., one throwsout all the odd 
oeÆ
ients. Similarly, S� is an upsampling, i.e., one insertszeroes in every se
ond position in the sequen
e, followed be a 
onvolutionwith � and multipli
ation by 2.Now we have the following result:Proposition 6.3. Let � 2 `2(Z) be su
h that �̂ 2 L1(T). Then the opera-tors T� and S� are bounded operators on `2(Z), T �� = 12S� anddT�
(!) = 12 ��̂(!2 )
̂(!2 ) + �̂(!+12 )
̂(!+12 )�dS�
(!) = 2�̂(!)
̂(2!):The proof is left as an exer
ise.When we look at the re
onstru
tion of the sequen
es we note that it isof 
ourse a spe
ial 
ase to have the same sequen
es � and � determiningboth in the analysis and the synthesis. However, in this 
ase we have thefollowing result.Theorem 6.4. Let � and � 2 `2(Z) be su
h that �̂ and �̂ 2 L1(T). ThenS�T� + S�T� = I
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56 6. The orthonormal dis
rete wavelet transform 20.10.2006if and only if the matrix the matrix��̂(!) �̂(! + 12)�̂(!) �̂(! + 12)� is unitary for almost every ! 2 R.Proof. By proposition 6.3 we know that the Fourier transform of the se-quen
e (S�T� + S�T�)
 is�̂(!)��̂(!)
̂(!) + �̂(! + 12)
̂(! + 12)�+ �̂(!)��̂(!)
̂(!) + �̂(! + 12)
̂(! + 12)� :If this expression is to be (almost everywhere) equal to 
̂(!) for all 
 thenone must have �̂(!)�̂(!) + �̂(!)�̂(!) a.e.= 1;and �̂(!)�̂(! + 12) + �̂(!)�̂(! + 12) a.e.= 0;and this is easily seen to be equivalent to��̂(!) �̂(! + 12)�̂(!) �̂(! + 12)���̂(!) �̂(! + 12)�̂(!) �̂(! + 12)�� a.e.= I:This is exa
tly the 
laim.3. Wavelet pa
ketsFrom the results above we see that the de
omposition of a fun
tion into thespa
es Wm+1 �Wm+2 � : : :�Wm+k � Vm+k 
an be a
hieved by 
al
ulatingthe sequen
es T�
; T�T�
; : : :T�T j�
 : : :T�T k�1� 
; T k�
Furthermore, we see that if f 2 Vm and the sequen
e 
m is de�ned by (6.1),then we havekfk2L2(R) = kXj=1 2m+jkT�T j�1� 
mk2̀2(Z) + 2m+kkT k�
mk2̀2(Z):Now there is no reason to 
onsider only these 
ombinations of T� andT�, we 
an split the spa
es Wj as well, using the same �lters � and �,(or in prin
iple some other ones as well). This is the idea behind waveletpa
kets. Now one 
learly does not ne
essarily have to split all sequen
es thesame number of times, but on needs some 
riterion for de
iding when to do
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3. Wavelet pa
kets 57and when not to do it. For this we need some kind of 
ost fun
tion. Onepossibility is to take a 
ost fun
tion of \entropy" type, i.e., takeK(
) = �Xj2Zj
(j)j2 log(j
(j)j2):But one has to remember to use normalized sequen
es. If one wants to �ndthe splitting that minimizes K, given that one 
an do at most k splittings,one possibility is to pro
eed as follows:(1) Form a set S 
onsisting of the 2k sequen
es T
kT
k�1 : : :T
1
 where 
iis either � or �, (together with information about how these sequen
eshave been formed).(2) Let K�(s) = K(2 k2 s) for ea
h s 2 S.(3) If K�(T�T
j : : :T
1
) and K�(T�T
j : : : T
1
) have been 
a
ulated, thenK�(T
j : : : T
1
) = minfK�(T�T
j : : :T
1
) +K�(T�T
j : : :T
1
);K((2 j2T
j : : : T
1
)g and if K(2 j2T
j : : :T
1
) gives the minimimum,then all sequen
es of the form T�1 : : :T�pT
j : : : T
1
 where �i = �or � and 1 � p � k � j are remove from S and T
j : : :T
1
 is addedto S.(4) Step (3) is repeated until K�(
) has been 
al
ulated.
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