Chapter 8

The continuous wavelet
transform and its
discretization

1. The continuous transform

Suppose that ©» € L?(R). We define the family of functions »** by

(8.1) Pph(z) = ! Qb(i_b), a#0, beR.
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Often one only considers the case where @ > 0 and the normalization

is used so that ||¢“’b||L2(]R) = [|[[2(r). Other normalizations can, of course,
be used as well. Then we can define

(52) W) = (5.6°) = [ flaypeiia)da.
It is clear that |W¢f(a,b)| < ||¢||L2(]R)||f||L2(]R)

We have the following result:
Theorem 8.1. Assume 1 € L*(R)\ {0} is such that

7 2
Cy d:ef/ GG dw < 0.
R
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Then
9
[ [ weta gty dads = Culfg),

for all f and g € L*(R).
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This theorem says that in a weak sense, we have (provided, of course,

that ¢ # 0)
_ 1 a,b 1
fz) = Cw/ﬂ&/ﬂ&wd,f(a,b)qp (2)— dadb.

Proof. First we note that

Pri(w) = Ve )
so that by Plancherel’s theorem (2.4) we have
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Thus we get, again using Plancherel’s theorem,

(8.3) /ﬂ&/ﬂ&Wlpf(a,b)Wlpg(a,b)% dadb

:w/(/ﬂ5ﬁ%wwm$EMPMM)§m
(o) g
= [ et ([ 1t L da) a.

A simple change of variables now shows that
/|¢ aw|2—da = Cy,

and then the claim follows from equatlon (8.3). O

If one does not want to use negative as well as positive values for the
dilation a then one gets almost the same result, provided

(8.4) /”WWWMIAWWMﬁMg%

——_— @]

This is of course the case when 1 is real-valued.

Corollary 8.2. Assume v € L?(R)\ {0} is such that (8.4) holds with cy, <
oo. Then

o0 1
|| wertaniigtati dadb = co(f.9),
for all f and g € L*(R).

This result says that in a weak sense we have
1 &0 1
= —/ / Wy f(a,b)y*"(z)— dadb.
¥ JR JO a
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2. Frames of wavelets

The continuous wavelet transform is not necessarily a very practical tool
since it is not clear to what extent the integrals can actually be computed.
If one uses discretizations, one questiowlll to ask is when the inner products
(f,¥mn), where where 9, ,(2) = a ? 1(a;™z — nb,), really characterize
the function f. If the sequence (¥, n)mnez is an orthonormal basis, there
are no problems, but if ¢ is some quite general function, there is no reason to
expect that to be the case. But it turns out to be possible to give relatively
simple conditions for this sequence to be a frame, see Definition 3.6. We
have the following result:

Theorem 8.3. Assume a, and b, > 0 and that ) € L*(R) is such that

8.5 0 < essinf hamw)|? < MaTw)|? < oo,
(8.5) essinf 3  [i¥(al'w) < esssup Y ld(alw)? < oo

meZ meZ
and
(8.6) g B L3 B _k <essinf§ [b(alw)|?
b* b* weR * ’
kEZ meZ
k£0
where

B(s) Lesssup S [d(aZw)|[d(aTw + 5)].
w€eR mel

m

Then the sequence (W, n)mnez where ¥, ,(z) = a. > (a;™z — nb.) is a
frame in L*(R) with frame bounds

_ 1 . Nom 2 k k
A_b— ei;sel]l%xlfg |p(al'w)] Z ﬂ(b*)ﬁ( b*) ’
mel keZ
k#0

1 . k k
5=y e Slitarar+ /o () o ()
weR meZ ]?i% * *

Proof. A simple calculation shows that
(W) = a2 Pal'w)e 1 2mewbene,

Thus we get for f € L%(R), by first using Plancherel’s theorem for functions
in L%(R), then writing the intgeral over R as a sum of integrals, then using
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Plancherel’s theorem for periodic functions, then expanding the product and
again writing the sum of integrals as one integral,

Sl = Y (b )P

m,nEZ m,n€L
2

m-————

/ f 7 )eiQra;"b*ng dw

m,nEZ
2
1
al by . N . e ————
= S S| [T ernrtea Y ot o) e+ ) do
meZ n€L JEL

(by Parseval’s equality applied to the periodic function

> et gin)dlare + 1)

m
A" Oy

JEZ
2
:biz/a*b* Efw—l—a,,;b (amw—l— ) dw
* mer 1€L
1 all? b* A—,
=5 3 [T et ) iare+ )
* mer 1€L
XY J(w+ d )b (e + 5 do
k€L
1 k 0 T m k
SEDD / f@) @+ ) dlarw)d (alw + £) dw
* meZ kel
- = / Fe? (Zwa;ﬂw)ﬁ) do
* meZ
+ 5 Z Z/ F@) flw+ ) darwyd(ale + £) do
* meL kez
k#0

We have to get some estimates for the second term, and we get by using
the Cauchy-Schwarz inequality, a change of variables, and then the Cauchy-
Schwarz inequality in the sum over m:

,,’fb*)lﬁ(afw)lﬁ(afw + ﬁ) dw

23 [

* mer keZ
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<2 5 ( [Ifpitaaliare + >|dw)

keZ meZ

< ([l

~ . ZZ(/V P d(aw)l[d(alw + )|dw)

keZ meZ

l

o)l + >|dw)
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When we combine the results we have deduced above, we get the desired
conclusion. O

It is clear that for (8.5) to hold we must have a, # 1, but it turns out
that one can quite easily get sufficient conditions for the assumptions of
Theorem 8.3 to hold.

Corollary 8.4. Assume that ¢ € L?*(R;R) is real-valued, not the zero func-
tion, ¥ is continuous and satisfies

[()(L+ |w]7)

sup - < 00,
WER\{0} |l

for some constants v > o+ 1 > 1. Then the assumptions of Theorem 8.3
hold, provided a. has been chosen sufficiently close to 1 and then b, > 0 has
been chosen to be sufficiently small.

Proof. Since ¢ is real-valued we have ¢(—w) = )(w) and since 1 is contin-
uous and not identically zero there are positive numbers wg, 6 and 7 so that
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[h(w)] > 6 when wy < |w| < wo+ 7. It follows that if 0 < |a, — 1] < oo then

inf o) 2 62
ess in %W(a* w)|* > 6° >0,

because if for example 1 < a, < 1+ = and af’|w| < wo then am o] <
a.wy < wo + 7 and therefore there is for every w # 0 an index m. such that
wo < |al*w| < wg + 7 and we have the first inequality in (8.5).

Next we derive some useful inequalities. Clearly

R i 2]
T+ jzv 1+ ]z + sy — |o+s/y—o7

and if |s| > 2|z| then |2 + s| > |s| — || > |s| — £|s| = |4] so that we get

z|* e+ s]® |z
T+ [P 14 e+ s = [P

(8.7) |s| > 2|z|.

In the same way we get the following crude estimate

|| |z 4 s|* 1 1 1
(8.8) < < 5
L fa[r o4 s = Jep=ofo 4+ spme = Japmefgp-e
1 1 1
= y—a—1 y—a+l : y—a+l y—a—1 S y—a-—1 y—a+l ?
I I T I b
s > 2Je| > 2.

because vy — a— 1 > 0. On the other hand we have for the same reason

|| |z 4 s|” 1 1

8.9 < =
N WSS R

1
< |s| < 2|

y—a—1 y—atl?
] 3]

If a. > 0 and a, # 1 and we may without loss of generality assume that
a. > 1 because in the sums involving a, we may replace m by —m which is
the same as replacing a. by i

It follows from the assumptions that there is a constant €' such that

jw]®

_— R.
Ty |w|77 w €

(8.10) [d(w) < C

Since ¥(0) = 0 we have Emezm(afw)P =0ifw =0. Let w # 0 and

let mg be such that a70|w| < 1 but a0t |w| > 1, ie., a|w| > 1 where
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my = mg + 1. Then

mo

Lom N2 o 2 afwl e afwP
<C —_—
EE:Z‘¢(Q* w)‘ — m:z_:oo 1+ |QTW|2’V Z 1+ |amw|2'y
mo
> lalw 47 E gl
m=—00 m=mi
2 |am°‘*’|2cy 2|QT1W|2(Q_W) 2 1 2 1
=C (1)2a+c 1 — a2e=7) — 1—a*_2a+c 1— g2’

by the formula for the sum of a geometric series and because |a"w| < 1,
lalw| > 1, 2a > 0 ja 2(av — ) < 0. This gives the second inequality in
(8.5).

If now |s| > 2 then we have by (8.7)~(8.10) and the fact that a]"®|w| <1
and a7 |w| > 1 that

Z ‘QL(QTM)‘ ‘QL(aTw + §)‘

meZ

mo © 1 y—atl
m, |o|s |7t 2 m s|77 =2

§ |a*w| ‘5‘ +C § |a*w 5‘

m=—o00 m=mji
y—a—1
R L A i e P
- 1 —qZ 2 _y—a—1 2
* 1— s 2

From this we see that there is a constant C; = C'?2

such that

y— a+1

B(s) < Cyls|™ ;s> 2.

Then

3 (5) 0 (c5) 2w

kE€Z
E£0

when 0 < b, < £. Thus we see that (8.6) holds provided

20 b. Z gt

which is possible if b, is sufﬁ(:lently small. O
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