
Chapter 5Wavelets with 
ompa
tsupport1. Introdu
tionIn this 
hapter we study wavelets with 
ompa
t support. It is quite easyto see that if the father wavelet or s
aling fun
tion ' has 
ompa
t support,then the �lter � has 
ompa
t support as well, i.e., it is a �nite sequen
e.At least in the 
ase where ' de
ays suÆ
iently rapidly at �1 the 
onversealso holds.First we 
onsider some results that are somewhat more general thanwhat we a
tually need for the analysis of wavelets.2. Dilation equationsIn Chapter 4 we found that a 
ru
ial property of the father wavelet or s
al-ing fun
tion ' determining a multiresolution is that it satis�es the dilationequation ' = 2Xk2Z�(k)'(2 � �k):(5.1)In this se
tion we look at some properties of a generalization of this equation.First we observe that every sequen
e (�(k))k2Z
an be identi�ed witha Radon measure, i.e. a lo
al measure, by de�ning ��(E) =Pk2E �(k) forevery bounded set E 2 R. If we assume that � 2 l1(Z), then �� is a �nitemeasure. Now (5.1) 
an be rewritten as' = 2(�� � ')(2�) 41



42 5. Wavelets with 
ompa
t support 20.10.2006where � denotes 
onvolution. Thus the generalized equation that we will belooking at here is f = �(� � f)(��);(5.2)where � is some real number > 1 and � 2 M(R; C ), i.e., � is a 
omplexmeasure on R.First we prove an auxiliary result on the 
onvergen
e of produ
ts. Weuse the notation j�j+ = maxf0; �g.Lemma 5.1. Let � 2 M(R; C ) be su
h that �(R) = 1 and RR(jlogjxjj+ +1)j�j(dx) < 1. Then the produ
t Q1k=1 �̂(��k!) 
onverges uniformly on
ompa
t subsets of R towards a 
ontinuous fun
tion.Proof. Sin
e �(R) = 1 we have �̂(�)� 1 = RR(e�i2�x� � 1)�(dx), and hen
ej�̂(�)� 1j � ZR2jsin(�x�)jj�j(dx); � 2 R:Letm be a positive integer and let ! 2 R. Now it is 
lear from the pre
edinginequality, Fubini's theorem, and the fa
t that jsin(t)j � minf1; jtjg that1Xk=m���̂(��k!)� 1�� � 2 1Xk=m ZRjsin(��k�x!)jj�j(dx)� 2 ZR�dlog�(�jx!j)eXk=m 1 + 1Xk=maxfdlog�(�jx!j)e+1;mg��k�jx!j�j�j(dx)� 2 ZR���dlog�(�jx!j)e+ 1�m��+ + 1��1��jm�dlog�(�jx!j)e�1j+� j�j(dx):From this inequality we get the uniform 
onvergen
e on 
ompa
t in-tervals of the series and this implies the 
laim of the lemma by [1, Th.15.4℄.We pro
eed with an easy result.Proposition 5.2. Assume � > 1 and that � 2M(R; C ) satis�es j�(R)j � 1and RR�jlog(jxjj+ + 1�j�j(dx) < 1 if j�(R)j = 1. If equation (5.2) has anontrivial solution f 2 L1(R; C ), then �(R) = 1 and this solution is uniquein L1(R; C ) up to a multipli
ative 
onstant.Proof. Taking Fourier transforms of both sides of (5.2) we getf̂(�!) = �̂(!)f̂(!):(5.3)If j�(R)j < 1, then it is 
lear that limm!1Qmj=1j�̂(2�j!)j = 0 for every! 2 R. Thus we see from (5.3) that f̂(!) = 0 for all ! 2 R, so we 
an haveno nontrivial solution f .
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2. Dilation equations 43Suppose next that j�(R)j = 1. If f̂(0) 6= 0, then we 
on
lude from (5.3)that �(R) = �̂(0) = f̂(0)=f̂(0) = 1. If f̂(0) = 0 then we havejf̂(!)j = limm!1 mYk=1j�̂(��k!)jjf̂(��m!)j = 0; ! 2 R:be
ause the produ
t Q1k=1j�̂(��k!)j 
onverges by Lemma 5.1. Thus we seethat f is identi
ally 0.If now �(R) = 1, then we have by lemma 5.1 and (5.3) thatf̂(!) = f̂(0) 1Yk=1 �̂(��k!); ! 2 R;and we see that f is unique up to the multipli
ative 
onstant f̂(0).Next we 
onsider the 
ase where � in (5.2) has 
ompa
t support. Firstwe prove an auxiliary result on how the support of (� � f)(��) is related tothe supports of � and f .Lemma 5.3. Assume that � > 1, � 2 M(R; C ) with supp (�) � [M�;M+℄and that f 2 L1(R; C ) with supp (f) � [F�; F+℄. Thensupp�(� � f)(��)� � hF�+M�� ; F++M+� i:(5.4)Proof. Let x < (M�+F�)=�. Then �x� t < M�+F�� t � F� if t �M�.Similarly when x > (M+ + F+)=� we have �x � t > M+ + F+ � t � F+ ift �M+. This gives the desired 
on
lusion.Sin
e the previous result says that the operator f ! (� � f)(��) for
esthe support 
loser to that of � it is natural to expe
t that if � has 
ompa
tsupport and there is a solution of (5.2), then this solution has 
ompa
tsupport as well. This turns out to be the 
ase, at least if f is integrable.Proposition 5.4. Assume that � > 1, � 2 M(R; C ) has 
ompa
t support
ontained in the interval [M�;M+℄ and that �(R) = 1. If f 2 L1(R; C ) sat-si�es (5.2), then f has 
ompa
t support 
ontained in the interval [M���1 ; M+��1 ℄.Proof. Let f 2 L1(R; C ) be some nontrivial fun
tion that satis�es (5.2).If we 
an show that f has 
ompa
t support, then it follows from repeatedappli
ations of Lemma 5.3 that the support is 
ontained in the desired in-terval.Let us for simpli
ity assume that M� < 0 and that M+ > 0 Let m � 0be an integer and let fm = f � f�[�mM�;�mM+℄. Moreover, we de�ne thelinear operator T : L1(R; C )! L1(R; C ) by T (g) = �(��g)(��). If we applyLemma 5.3 m times we see that Tm(f � fm) has support 
ontained in the
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44 5. Wavelets with 
ompa
t support 20.10.2006interval [�M���1 ; �M+��1 ℄. On the other hand we have Tm(fm) = f �Tm(f�fm),and this means thatf(x) = Tm(fm)(x); x 62 h�M��� 1 ; �M+�� 1i:(5.5)Moreover, we easily see that\Tm(fm)(!) = mYk=1 �̂(��k!)
fm(��m!):(5.6)Let h be some in�nitely many times di�erentiable fun
tion with support
ontained in [�1; 1℄ and let h� = �h(��), � > 0. Now it follows from theinversion theorem for Fourier transforms (Theorem 2.3.(b)), (5.5) and (5.6)thatZRh�(x� t)Tm(fm)(t) dt = ZRei2�x!
h�(!) mYk=1 �̂(��k!)
fm(��m!) d!:(5.7)Now we know by Lemma 5.1 that jQ1k=1 �̂(��k!)j is bounded when j!j � 1.Then it follows for all m � 1 and ! 2 R that��� mYk=1 �̂(��k!)��� � (sup!2Rj�̂(!j)dlog2(j!j)e supj�j�1j 1Yk=1 �̂(��k�)j � C(j!j+ 1)Cwhere C is some 
onstant. Sin
e h is in�nitely many times di�erentiable, itfollows that ZRj
h�(!)j(j!j+ 1)C d! <1;and therefore it follows from (5.7), the dominated 
onvergen
e theorem andfrom the fa
t that fm ! 0 in L1(R; C ) and hen
e 
fm ! 0 in L1(R; C ) asm!1 thatlimm!1 ZRh�(x� t)Tm(fm)(t) dt = 0; x 2 R; k � 1:But when we let � ! 1 we see from (5.5) that f must have 
ompa
tsupport.3. Constru
tion of wavelets with 
ompa
tsupportWhen performing 
al
ulations with the �lter � on some real data it is 
learlyadvantageous to have the sequen
e � to be real. This requirement we willmake throughout this se
tion where we want to �nd suitable sequen
es �that generate multiresolutions. From Theorems 4.12 and 4.13 we see that �must satisfy (4.11), (4.46), and (4.48).

 G. Gripenberg 20.10.2006



3. Constru
tion of wavelets with 
ompa
t support 45We get the following 
hara
terization of the Fourier transform of �lters� with 
ompa
t (i.e., �nite) support.Theorem 5.5. Let f�(k)gk2Zbe a sequen
e of real numbers with only �nitelymany nonzero terms. Then (4.11) and (4.46) hold if and only if�̂(!) = � 12�1 + e�i2�!��NQ(e�i2�!)e�i2�L!;(5.8)where N � 1, L 2Zand Q is a polynomial with real 
oeÆ
ients su
h that(5.9) ��Q(e�i2�!)��2 = N�1Xk=0 �N + k � 1k � sin(�!)2k+ sin(�!)2NR�
os(2�!)�;where R is an odd real polynomial.Proof. Suppose �rst that (4.11) and (4.46) hold. Sin
e we require that�̂(0) = 1, it follows from (4.11) that �̂(12) = 0. In order to see that �̂ 
anbe written in the form (5.8) we argue as follows: For some integer L thefun
tion z�LPk2Z�(k)zk is a polynomial and this polynomial vanishes inthe point z = �1. Thus it 
an be written in the form (12(1+z))NQ(z) whereN � 1 and Q is a real polynomial. Substituting e�i2�! for z we get (5.8).If Q(z) =PMj=0 qjzj , then we havejQ(e�i2�!)j2 = MXk=�M ~qke�i2�k! = ~q0 + MXk=1 ~qk(e�i2�k! + e�i2�k!)= ~q0 + 2 MXk=1 ~qk 
os(2�k!);sin
e ~q�k = ~qk for all k be
ause ~qk = PminfM;M�kgj=maxf0;�kg qjqj+k and the 
oeÆ-
ients qj in Q are real. Sin
e every term 
os(2�k!) 
an be written as a poly-nomial in 
os(2�!) (use De Moivre's formula and sin(2�!)2 = 1�
os(2�!)2)or equivalently as a polynomial in sin(�!)2 we see that there exists a poly-nomial P su
h that jQ(ei2�!)j2 = P (sin(�!)2):(5.10)Sin
e sin(�(!+ 12))2 = 
os(�!)2 = 1�sin(�!)2 and j12(1+ei2�!)j = 
os(�!)2it follows from (4.11) that(1� z)NP (z) + zNP (1� z) = 1;(5.11)on the interval [0; 1℄ and therefore also on R. We 
an write P in the formP (z) = PN�1j=0 pjzj + �NR0(z). Inserting this expression into (5.11) we get
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46 5. Wavelets with 
ompa
t support 20.10.2006the following system of equations for the 
oeÆ
ients pj ,p0 = 1;pk = k�1Xj=0(�1)k�j�1� Nk � j�pj :Next have to we 
he
k that the solution of this re
ursive system of equationsis pk = �N + k � 1k �; 0 � k � N � 1:For k = 0 this is 
ertainly the 
ase and an indu
tion argument works be
ausewe havek�1Xj=0(�1)k�j+1� Nk � j��N + j � 1j �= Nk! (�1)k+1 k�1Xj=0 �kj�(�1)j (N + j � 1)!(N + j � k)!xN+j�k��x=1= Nk! (�1)k+1 k�1Xj=0 �kj�(�1)j dk�1dxk�1xN+j�1��x=1= Nk! (�1)k+1 dk�1dxk�1�xN�1(1� x)k � (�1)kxN+k�1���x=1= Nk! dk�1dxk�1 xN+k�1��x=1 = �N + k � 1k �:Thus we de�ne the polynomial PN byPN (z) = N�1Xk=0 �N + k � 1k �xk:(5.12)Next we observe that this polynomial is in fa
t a solution of (5.11),be
ause the 
onstru
tion of the 
oeÆe
ients pk guarantees that(1� z)NPN (z) + zNPN(1� z)� 1 = zNV (1� z);(5.13)where V is polynomial of at most degree N � 1. But then it follows thatzNV (1� z) = (1� z)NV (z):(5.14)It follows from a 
al
ulation similar to the one used for �nding the 
oeÆ
ientspk, that V is identi
ally zero sin
e it is of a most degree N � 1.The original polynomial P was written in the form P = PN (z)+zNR0(z).If we insert this expression in (5.11) we 
on
lude that(1� z)NzNR0(z) + (1� z)NzNR0(1� z) = 0;(5.15) 
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3. Constru
tion of wavelets with 
ompa
t support 47that is R0(z) = �R0(1� z) and this implies that R0(z) = R(1� 2z) whereR is an odd polynomial. But this is exa
tly what we wanted to prove.The 
onverse goes in exa
tly the same way.If we want to 
onstru
t a �lter sequen
e �, one possibility is to useTheorem 5.5. But then we must be able to �nd the trigonometri
 polynomialQ(e�i2�!) if jQ(e�i2�!)j2 is known. This 
lassi
al result is given in the nextlemma.Lemma 5.6. Assume that A(!) =PMk=�M ake�i2�k!, where ak = a�k 2 Rfor k = 0; 1; : : : ;M , is nonnegative and AM 6= 0. Then the 2M zeros of thepolynomialPMk=�M ak!k+M are of the form wj, wj, w�1j , wj�1 2 C nR, forj = 1; : : : ; J, and rk, r�1k 2 R, for k = 1; : : : ; K, andB(!) =vuutjaM j KYk=1jrkj�1 JYj=1jwjj�2� KYk=1�e�i2�! � rk� JYj=1�e�i4�! � 2e�i2�!Re (wj) + jwjj2�;is a trigonometri
 polynomial with real 
oeÆ
ients su
h that jB(!)j2 = A(!).Proof. Let PA(z) =PMk=�M akzk+M . This polynomial has 2M zeros (
ount-ing multipli
ities) and sin
e the 
oeÆ
ients are real we have PA(z) = PA(z)for all z, so that if z is a zero, then z is a zero as well. Moreover, sin
eak = a�k for k = 1; : : : ;M , it follows that PA(z) = z2MPA(1z ) and thisimplies that if z is a zero of PA, then so is z�1. (The assumption aM 6= 0guarantees that PA(0) 6= 0.) Moreover, every zero on the unit 
ir
le haseven multipli
ity be
ause z�MPA(z) is by assumption nonnegative on theunit 
ir
le. 1 is a zero, then we see from the relation PA(z) = z2MPA(1z ) thatit is a
tually a zero of even multipli
ity. This gives the 
on
lusion about thezeros of PA.Thus we 
an write PA in the formPA(z) = aM� KYk=1(z � rk)(z � r�1k )�� � JYj=1(z � wj)(z � wj)(z � w�1j )(z � wj�1)�:
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48 5. Wavelets with 
ompa
t support 20.10.2006Sin
e we for every z 2 C n 0 havej(e�i2�! � z)(e�i2�! � z�1)j = jzj�1j(e�i2�! � z)(z � ei2�!)j= jzj�1je�i2�! � zj2;it follows from the nonnegativity ofA and the fa
t that jA(!)j = jPA(e�i2�!)jthatA(!) = jA(!)j = jPA(e�i2�!)j = jaM j KYk=1jrkj�1 JYj=1jwjj�2� ������ KYk=1�e�i2�! � rk� JYj=1(e�i2�! � wj)(e�i2�! � wj)������2 = jB(!)j2:This 
ompletes the proof.If we want to 
onstru
t a wavelet with 
ompa
t support, the simplestapproa
h a

ording to Theorem 5.5 is to 
hoose a positive integer N , takeL = 0 for simpli
ity, sin
e another 
hoi
e only amounts to a translation,
hoose the polynomial in (5.9) to be identi
ally zero, and so on.We leave it as an exer
ise to show that in this way we get a �lter that inaddition to (4.11) and (4.46) also satis�es (4.48) and therefore generates afather wavelet or s
aling fun
tion that turns out to be 
ontinuous if N > 1.In fa
t one 
an say mu
h more about the smoothness of these fun
tions butthis question will not be studied here.4. Properties of 
ompa
tly supported waveletsFirst we 
onsider brie
y the question of how one 
an eÆ
iently 
al
ulate thevalues of the fun
tion '.Proposition 5.7. Assume that (�(k))k2Zis su
h that �(k) = 0 when k �<a� or k > a+, Pk=a� a+�(k) = 1 and ' 2 C
(R), with ' 6� 0, is a solutionto the equation '(x) = 2Xk2Z�(k)'(2x� k):Then the matrix A de�ned by A(i; j) = 2�(2i� j), i; j = a� = 1; : : : ; a+1has the eigenvalue 1, ('(a� + 1); : : : ; '(a+1))T is an eigenve
tor for thiseigenvalue and the values of ' at the points 2�jn, j � 1 
an be re
ursively
al
ulated from the equation'(2�jn) = 2 a+Xk=a� �(k)'(2�j+1n� k); n 2Z; j � 1:
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4. Properties of 
ompa
tly supported wavelets 49Observe that we do not 
laim that the eigenvalue 1 fro the matrix A hasgeometri
 multipli
ity 1 so it is may not be 
lear whi
h eigenv
tor to 
hoose,but in most 
ases this turns out not to be the 
ase.Our next result restri
ts the smoothness of the s
aling fun
tion ' interms of the support of the �lter �.Theorem 5.8. If m � 0 and f 2 Cm(R; C ), f 6� 0, has 
ompa
t supportand satis�es f = 2 a+Xk=a� �(k)f(2 � �k);(5.16)for some numbers f�(k)g, then m < a+ � a� � 1.Proof. If we apply Lemma 5.3, we see that the support of f must be 
on-tained in the 
losed interval [a�; a+℄. Thus the support of f (j) must alsobe 
ontained in this interval for 0 � j � m. Moreover, di�erentiating bothsides of (5.16) we getf (j) = 2j+1 a+Xk=a� �(k)f (j)(2 � �k):(5.17)Let A be a matrix with elements A(i; j) = 2�2i�j for i, j = a� +1; : : : ; a+ � 1 (the indexing is nonstandard but this is of no 
onsequen
e).Nowwe see from (5.17) that if the ve
tor (f (j)(a�+1); f (j)(a�+2); : : : ; f (j)(a+�1))T is not the zero ve
tor, then it is an eigenve
tor of the matrix A 
or-responding to the eigenvalue 2�j . We leave it as an exer
ise to show thatthis ve
tor 
annot be the zero ve
tor. Thus A has at least m + 1 distin
teigenvalues so that A must be at least an m + 1� m+ 1 matrix. Thus wesee that m+ 1 � a+ � a� � 1 and this gives the desired 
on
lusion.Next we show that ex
ept for the Haar fun
tion, no father wavelet ors
aling fun
tion for a multiresolution 
an not be symmetri
 with respe
t toany point.Proposition 5.9. Let (fVmgm2Z; ') be a multiresolution of L2(R; C ) su
hthat ' is real-valued and has 
ompa
t support. Then ' is not symmetri
(nor antisymmetri
) with respe
t to any point unless ' is the Haar fun
tion�[0;1℄.Proof. It is 
lear that we 
annot have '(�+�) = �'(���) for some � 2 R,be
ause then we would have RR '(x) dx = 0 whi
h is impossible by Theorem4.9.Suppose on the other hand that '(�+ �) = '(�� �). If � is an integer,then 
an take an integer translation of ', so we may without loss of generality
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50 5. Wavelets with 
ompa
t support 20.10.2006asume that ' is an even fun
tion. It follows that the �lter � is even as welland has 
ompa
t support. We shall show that this leads to a 
ontradi
tion.Let us introdu
e the notation that if p is a trigonometri
 polynomialwith period 1, i.e., p =Pk p̂(k)ei2�k�, thenN+(p) = maxf k j p̂(k) 6= 0 g;N�(p) = minf k j p̂(k) 6= 0 g:It is easy to 
he
k thatN+(jpj2) = �N�(jpj2) = N+(p)�N�(p):(5.18)Let �e be the sequen
e �ek = 12(1 + (�1)k)�(k) with nonzero even indi
esand �o the sequen
e �ok = 12(1�(�1)k)�(k) with nonzero odd indi
es. Sin
e
�e = 12(�̂(�)+ �̂(�+ 12)) and 
�o = 12(�̂(�)� �̂(�+ 12)), it follows from (4.11)that j
�ej2 + j
�oj2 = 12 :(5.19)Sin
e neither �e nor �o 
annot be identi
ally zero (be
ause 
�e(0) = 
�o(0) =12) it follows from (5.18) thatN+(
�e �N+(
�e = N+(
�o �N+(
�e:(5.20)From the de�nition of �e and �o we getN+(�̂) = maxfN+(
�e); N+(
�o)g;N�(�̂) = minfN�(
�e); N�(
�o)g;If we 
ombine this result with (5.20) we 
on
lude thatN+(�̂)�N�(�̂) = maxfN+(
�e)�N�(
�o); N+(
�o)�N�(
�e)g:(5.21)Sin
e N�(
�e) are even numbers andN�(
�o) are odd numbers, it follows thatN+(�̂)�N�(�̂) is an odd number. But then � 
annot be an even sequen
eand we have a 
ontradi
tion.Assume next that '(�+ �) = '(�� �) where � is not an integer. Wemay again shift the fun
tion ' so that � 2 (0; 1). Taking Fourier transformswe get '̂(�) = e�4�i��'̂(��):(5.22)But then it follows from (4.10) that we also have�̂(�) = e�4�i���̂(��):(5.23)Now �̂ and �̂(��) are both trigonometri
 polynomials with period 1 andtherefore we must have � = 12 . Thus we have '(�+ 1) = '(��). It follows
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4. Properties of 
ompa
tly supported wavelets 51from (4.8) after some 
hanges of variables that �2k+1 = ��2k for all k 2 Z.Sin
e ' is real-valued, � is real-valued as well, and hen
e we have
�e = 
�o;(5.24)and 
ombining this result with (5.19) we getj
�ej2 = 14 :(5.25)It follows that there exists an index k su
h that �j = 12 when j = 2k+ 1 orj = �2k. If k = 0, then we get the Haar fun
tion and otherwise we get�̂ = e��i� 
os((4k+ 1)��):(5.26)But then it follows from Proposition 4.15 that (4.48) 
annot hold true, andthis 
ontradi
ts Theorem 4.13.
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