
Chapter 5Wavelets with ompatsupport1. IntrodutionIn this hapter we study wavelets with ompat support. It is quite easyto see that if the father wavelet or saling funtion ' has ompat support,then the �lter � has ompat support as well, i.e., it is a �nite sequene.At least in the ase where ' deays suÆiently rapidly at �1 the onversealso holds.First we onsider some results that are somewhat more general thanwhat we atually need for the analysis of wavelets.2. Dilation equationsIn Chapter 4 we found that a ruial property of the father wavelet or sal-ing funtion ' determining a multiresolution is that it satis�es the dilationequation ' = 2Xk2Z�(k)'(2 � �k):(5.1)In this setion we look at some properties of a generalization of this equation.First we observe that every sequene (�(k))k2Zan be identi�ed witha Radon measure, i.e. a loal measure, by de�ning ��(E) =Pk2E �(k) forevery bounded set E 2 R. If we assume that � 2 l1(Z), then �� is a �nitemeasure. Now (5.1) an be rewritten as' = 2(�� � ')(2�) 41



42 5. Wavelets with ompat support 20.10.2006where � denotes onvolution. Thus the generalized equation that we will belooking at here is f = �(� � f)(��);(5.2)where � is some real number > 1 and � 2 M(R; C ), i.e., � is a omplexmeasure on R.First we prove an auxiliary result on the onvergene of produts. Weuse the notation j�j+ = maxf0; �g.Lemma 5.1. Let � 2 M(R; C ) be suh that �(R) = 1 and RR(jlogjxjj+ +1)j�j(dx) < 1. Then the produt Q1k=1 �̂(��k!) onverges uniformly onompat subsets of R towards a ontinuous funtion.Proof. Sine �(R) = 1 we have �̂(�)� 1 = RR(e�i2�x� � 1)�(dx), and henej�̂(�)� 1j � ZR2jsin(�x�)jj�j(dx); � 2 R:Letm be a positive integer and let ! 2 R. Now it is lear from the preedinginequality, Fubini's theorem, and the fat that jsin(t)j � minf1; jtjg that1Xk=m���̂(��k!)� 1�� � 2 1Xk=m ZRjsin(��k�x!)jj�j(dx)� 2 ZR�dlog�(�jx!j)eXk=m 1 + 1Xk=maxfdlog�(�jx!j)e+1;mg��k�jx!j�j�j(dx)� 2 ZR���dlog�(�jx!j)e+ 1�m��+ + 1��1��jm�dlog�(�jx!j)e�1j+� j�j(dx):From this inequality we get the uniform onvergene on ompat in-tervals of the series and this implies the laim of the lemma by [1, Th.15.4℄.We proeed with an easy result.Proposition 5.2. Assume � > 1 and that � 2M(R; C ) satis�es j�(R)j � 1and RR�jlog(jxjj+ + 1�j�j(dx) < 1 if j�(R)j = 1. If equation (5.2) has anontrivial solution f 2 L1(R; C ), then �(R) = 1 and this solution is uniquein L1(R; C ) up to a multipliative onstant.Proof. Taking Fourier transforms of both sides of (5.2) we getf̂(�!) = �̂(!)f̂(!):(5.3)If j�(R)j < 1, then it is lear that limm!1Qmj=1j�̂(2�j!)j = 0 for every! 2 R. Thus we see from (5.3) that f̂(!) = 0 for all ! 2 R, so we an haveno nontrivial solution f . G. Gripenberg 20.10.2006



2. Dilation equations 43Suppose next that j�(R)j = 1. If f̂(0) 6= 0, then we onlude from (5.3)that �(R) = �̂(0) = f̂(0)=f̂(0) = 1. If f̂(0) = 0 then we havejf̂(!)j = limm!1 mYk=1j�̂(��k!)jjf̂(��m!)j = 0; ! 2 R:beause the produt Q1k=1j�̂(��k!)j onverges by Lemma 5.1. Thus we seethat f is identially 0.If now �(R) = 1, then we have by lemma 5.1 and (5.3) thatf̂(!) = f̂(0) 1Yk=1 �̂(��k!); ! 2 R;and we see that f is unique up to the multipliative onstant f̂(0).Next we onsider the ase where � in (5.2) has ompat support. Firstwe prove an auxiliary result on how the support of (� � f)(��) is related tothe supports of � and f .Lemma 5.3. Assume that � > 1, � 2 M(R; C ) with supp (�) � [M�;M+℄and that f 2 L1(R; C ) with supp (f) � [F�; F+℄. Thensupp�(� � f)(��)� � hF�+M�� ; F++M+� i:(5.4)Proof. Let x < (M�+F�)=�. Then �x� t < M�+F�� t � F� if t �M�.Similarly when x > (M+ + F+)=� we have �x � t > M+ + F+ � t � F+ ift �M+. This gives the desired onlusion.Sine the previous result says that the operator f ! (� � f)(��) foresthe support loser to that of � it is natural to expet that if � has ompatsupport and there is a solution of (5.2), then this solution has ompatsupport as well. This turns out to be the ase, at least if f is integrable.Proposition 5.4. Assume that � > 1, � 2 M(R; C ) has ompat supportontained in the interval [M�;M+℄ and that �(R) = 1. If f 2 L1(R; C ) sat-si�es (5.2), then f has ompat support ontained in the interval [M���1 ; M+��1 ℄.Proof. Let f 2 L1(R; C ) be some nontrivial funtion that satis�es (5.2).If we an show that f has ompat support, then it follows from repeatedappliations of Lemma 5.3 that the support is ontained in the desired in-terval.Let us for simpliity assume that M� < 0 and that M+ > 0 Let m � 0be an integer and let fm = f � f�[�mM�;�mM+℄. Moreover, we de�ne thelinear operator T : L1(R; C )! L1(R; C ) by T (g) = �(��g)(��). If we applyLemma 5.3 m times we see that Tm(f � fm) has support ontained in the G. Gripenberg 20.10.2006



44 5. Wavelets with ompat support 20.10.2006interval [�M���1 ; �M+��1 ℄. On the other hand we have Tm(fm) = f �Tm(f�fm),and this means thatf(x) = Tm(fm)(x); x 62 h�M��� 1 ; �M+�� 1i:(5.5)Moreover, we easily see that\Tm(fm)(!) = mYk=1 �̂(��k!)fm(��m!):(5.6)Let h be some in�nitely many times di�erentiable funtion with supportontained in [�1; 1℄ and let h� = �h(��), � > 0. Now it follows from theinversion theorem for Fourier transforms (Theorem 2.3.(b)), (5.5) and (5.6)thatZRh�(x� t)Tm(fm)(t) dt = ZRei2�x!h�(!) mYk=1 �̂(��k!)fm(��m!) d!:(5.7)Now we know by Lemma 5.1 that jQ1k=1 �̂(��k!)j is bounded when j!j � 1.Then it follows for all m � 1 and ! 2 R that��� mYk=1 �̂(��k!)��� � (sup!2Rj�̂(!j)dlog2(j!j)e supj�j�1j 1Yk=1 �̂(��k�)j � C(j!j+ 1)Cwhere C is some onstant. Sine h is in�nitely many times di�erentiable, itfollows that ZRjh�(!)j(j!j+ 1)C d! <1;and therefore it follows from (5.7), the dominated onvergene theorem andfrom the fat that fm ! 0 in L1(R; C ) and hene fm ! 0 in L1(R; C ) asm!1 thatlimm!1 ZRh�(x� t)Tm(fm)(t) dt = 0; x 2 R; k � 1:But when we let � ! 1 we see from (5.5) that f must have ompatsupport.3. Constrution of wavelets with ompatsupportWhen performing alulations with the �lter � on some real data it is learlyadvantageous to have the sequene � to be real. This requirement we willmake throughout this setion where we want to �nd suitable sequenes �that generate multiresolutions. From Theorems 4.12 and 4.13 we see that �must satisfy (4.11), (4.46), and (4.48). G. Gripenberg 20.10.2006



3. Constrution of wavelets with ompat support 45We get the following haraterization of the Fourier transform of �lters� with ompat (i.e., �nite) support.Theorem 5.5. Let f�(k)gk2Zbe a sequene of real numbers with only �nitelymany nonzero terms. Then (4.11) and (4.46) hold if and only if�̂(!) = � 12�1 + e�i2�!��NQ(e�i2�!)e�i2�L!;(5.8)where N � 1, L 2Zand Q is a polynomial with real oeÆients suh that(5.9) ��Q(e�i2�!)��2 = N�1Xk=0 �N + k � 1k � sin(�!)2k+ sin(�!)2NR�os(2�!)�;where R is an odd real polynomial.Proof. Suppose �rst that (4.11) and (4.46) hold. Sine we require that�̂(0) = 1, it follows from (4.11) that �̂(12) = 0. In order to see that �̂ anbe written in the form (5.8) we argue as follows: For some integer L thefuntion z�LPk2Z�(k)zk is a polynomial and this polynomial vanishes inthe point z = �1. Thus it an be written in the form (12(1+z))NQ(z) whereN � 1 and Q is a real polynomial. Substituting e�i2�! for z we get (5.8).If Q(z) =PMj=0 qjzj , then we havejQ(e�i2�!)j2 = MXk=�M ~qke�i2�k! = ~q0 + MXk=1 ~qk(e�i2�k! + e�i2�k!)= ~q0 + 2 MXk=1 ~qk os(2�k!);sine ~q�k = ~qk for all k beause ~qk = PminfM;M�kgj=maxf0;�kg qjqj+k and the oeÆ-ients qj in Q are real. Sine every term os(2�k!) an be written as a poly-nomial in os(2�!) (use De Moivre's formula and sin(2�!)2 = 1�os(2�!)2)or equivalently as a polynomial in sin(�!)2 we see that there exists a poly-nomial P suh that jQ(ei2�!)j2 = P (sin(�!)2):(5.10)Sine sin(�(!+ 12))2 = os(�!)2 = 1�sin(�!)2 and j12(1+ei2�!)j = os(�!)2it follows from (4.11) that(1� z)NP (z) + zNP (1� z) = 1;(5.11)on the interval [0; 1℄ and therefore also on R. We an write P in the formP (z) = PN�1j=0 pjzj + �NR0(z). Inserting this expression into (5.11) we get G. Gripenberg 20.10.2006



46 5. Wavelets with ompat support 20.10.2006the following system of equations for the oeÆients pj ,p0 = 1;pk = k�1Xj=0(�1)k�j�1� Nk � j�pj :Next have to we hek that the solution of this reursive system of equationsis pk = �N + k � 1k �; 0 � k � N � 1:For k = 0 this is ertainly the ase and an indution argument works beausewe havek�1Xj=0(�1)k�j+1� Nk � j��N + j � 1j �= Nk! (�1)k+1 k�1Xj=0 �kj�(�1)j (N + j � 1)!(N + j � k)!xN+j�k��x=1= Nk! (�1)k+1 k�1Xj=0 �kj�(�1)j dk�1dxk�1xN+j�1��x=1= Nk! (�1)k+1 dk�1dxk�1�xN�1(1� x)k � (�1)kxN+k�1���x=1= Nk! dk�1dxk�1 xN+k�1��x=1 = �N + k � 1k �:Thus we de�ne the polynomial PN byPN (z) = N�1Xk=0 �N + k � 1k �xk:(5.12)Next we observe that this polynomial is in fat a solution of (5.11),beause the onstrution of the oeÆeients pk guarantees that(1� z)NPN (z) + zNPN(1� z)� 1 = zNV (1� z);(5.13)where V is polynomial of at most degree N � 1. But then it follows thatzNV (1� z) = (1� z)NV (z):(5.14)It follows from a alulation similar to the one used for �nding the oeÆientspk, that V is identially zero sine it is of a most degree N � 1.The original polynomial P was written in the form P = PN (z)+zNR0(z).If we insert this expression in (5.11) we onlude that(1� z)NzNR0(z) + (1� z)NzNR0(1� z) = 0;(5.15)  G. Gripenberg 20.10.2006



3. Constrution of wavelets with ompat support 47that is R0(z) = �R0(1� z) and this implies that R0(z) = R(1� 2z) whereR is an odd polynomial. But this is exatly what we wanted to prove.The onverse goes in exatly the same way.If we want to onstrut a �lter sequene �, one possibility is to useTheorem 5.5. But then we must be able to �nd the trigonometri polynomialQ(e�i2�!) if jQ(e�i2�!)j2 is known. This lassial result is given in the nextlemma.Lemma 5.6. Assume that A(!) =PMk=�M ake�i2�k!, where ak = a�k 2 Rfor k = 0; 1; : : : ;M , is nonnegative and AM 6= 0. Then the 2M zeros of thepolynomialPMk=�M ak!k+M are of the form wj, wj, w�1j , wj�1 2 C nR, forj = 1; : : : ; J, and rk, r�1k 2 R, for k = 1; : : : ; K, andB(!) =vuutjaM j KYk=1jrkj�1 JYj=1jwjj�2� KYk=1�e�i2�! � rk� JYj=1�e�i4�! � 2e�i2�!Re (wj) + jwjj2�;is a trigonometri polynomial with real oeÆients suh that jB(!)j2 = A(!).Proof. Let PA(z) =PMk=�M akzk+M . This polynomial has 2M zeros (ount-ing multipliities) and sine the oeÆients are real we have PA(z) = PA(z)for all z, so that if z is a zero, then z is a zero as well. Moreover, sineak = a�k for k = 1; : : : ;M , it follows that PA(z) = z2MPA(1z ) and thisimplies that if z is a zero of PA, then so is z�1. (The assumption aM 6= 0guarantees that PA(0) 6= 0.) Moreover, every zero on the unit irle haseven multipliity beause z�MPA(z) is by assumption nonnegative on theunit irle. 1 is a zero, then we see from the relation PA(z) = z2MPA(1z ) thatit is atually a zero of even multipliity. This gives the onlusion about thezeros of PA.Thus we an write PA in the formPA(z) = aM� KYk=1(z � rk)(z � r�1k )�� � JYj=1(z � wj)(z � wj)(z � w�1j )(z � wj�1)�: G. Gripenberg 20.10.2006



48 5. Wavelets with ompat support 20.10.2006Sine we for every z 2 C n 0 havej(e�i2�! � z)(e�i2�! � z�1)j = jzj�1j(e�i2�! � z)(z � ei2�!)j= jzj�1je�i2�! � zj2;it follows from the nonnegativity ofA and the fat that jA(!)j = jPA(e�i2�!)jthatA(!) = jA(!)j = jPA(e�i2�!)j = jaM j KYk=1jrkj�1 JYj=1jwjj�2� ������ KYk=1�e�i2�! � rk� JYj=1(e�i2�! � wj)(e�i2�! � wj)������2 = jB(!)j2:This ompletes the proof.If we want to onstrut a wavelet with ompat support, the simplestapproah aording to Theorem 5.5 is to hoose a positive integer N , takeL = 0 for simpliity, sine another hoie only amounts to a translation,hoose the polynomial in (5.9) to be identially zero, and so on.We leave it as an exerise to show that in this way we get a �lter that inaddition to (4.11) and (4.46) also satis�es (4.48) and therefore generates afather wavelet or saling funtion that turns out to be ontinuous if N > 1.In fat one an say muh more about the smoothness of these funtions butthis question will not be studied here.4. Properties of ompatly supported waveletsFirst we onsider briey the question of how one an eÆiently alulate thevalues of the funtion '.Proposition 5.7. Assume that (�(k))k2Zis suh that �(k) = 0 when k �<a� or k > a+, Pk=a� a+�(k) = 1 and ' 2 C(R), with ' 6� 0, is a solutionto the equation '(x) = 2Xk2Z�(k)'(2x� k):Then the matrix A de�ned by A(i; j) = 2�(2i� j), i; j = a� = 1; : : : ; a+1has the eigenvalue 1, ('(a� + 1); : : : ; '(a+1))T is an eigenvetor for thiseigenvalue and the values of ' at the points 2�jn, j � 1 an be reursivelyalulated from the equation'(2�jn) = 2 a+Xk=a� �(k)'(2�j+1n� k); n 2Z; j � 1: G. Gripenberg 20.10.2006



4. Properties of ompatly supported wavelets 49Observe that we do not laim that the eigenvalue 1 fro the matrix A hasgeometri multipliity 1 so it is may not be lear whih eigenvtor to hoose,but in most ases this turns out not to be the ase.Our next result restrits the smoothness of the saling funtion ' interms of the support of the �lter �.Theorem 5.8. If m � 0 and f 2 Cm(R; C ), f 6� 0, has ompat supportand satis�es f = 2 a+Xk=a� �(k)f(2 � �k);(5.16)for some numbers f�(k)g, then m < a+ � a� � 1.Proof. If we apply Lemma 5.3, we see that the support of f must be on-tained in the losed interval [a�; a+℄. Thus the support of f (j) must alsobe ontained in this interval for 0 � j � m. Moreover, di�erentiating bothsides of (5.16) we getf (j) = 2j+1 a+Xk=a� �(k)f (j)(2 � �k):(5.17)Let A be a matrix with elements A(i; j) = 2�2i�j for i, j = a� +1; : : : ; a+ � 1 (the indexing is nonstandard but this is of no onsequene).Nowwe see from (5.17) that if the vetor (f (j)(a�+1); f (j)(a�+2); : : : ; f (j)(a+�1))T is not the zero vetor, then it is an eigenvetor of the matrix A or-responding to the eigenvalue 2�j . We leave it as an exerise to show thatthis vetor annot be the zero vetor. Thus A has at least m + 1 distinteigenvalues so that A must be at least an m + 1� m+ 1 matrix. Thus wesee that m+ 1 � a+ � a� � 1 and this gives the desired onlusion.Next we show that exept for the Haar funtion, no father wavelet orsaling funtion for a multiresolution an not be symmetri with respet toany point.Proposition 5.9. Let (fVmgm2Z; ') be a multiresolution of L2(R; C ) suhthat ' is real-valued and has ompat support. Then ' is not symmetri(nor antisymmetri) with respet to any point unless ' is the Haar funtion�[0;1℄.Proof. It is lear that we annot have '(�+�) = �'(���) for some � 2 R,beause then we would have RR '(x) dx = 0 whih is impossible by Theorem4.9.Suppose on the other hand that '(�+ �) = '(�� �). If � is an integer,then an take an integer translation of ', so we may without loss of generality G. Gripenberg 20.10.2006



50 5. Wavelets with ompat support 20.10.2006asume that ' is an even funtion. It follows that the �lter � is even as welland has ompat support. We shall show that this leads to a ontradition.Let us introdue the notation that if p is a trigonometri polynomialwith period 1, i.e., p =Pk p̂(k)ei2�k�, thenN+(p) = maxf k j p̂(k) 6= 0 g;N�(p) = minf k j p̂(k) 6= 0 g:It is easy to hek thatN+(jpj2) = �N�(jpj2) = N+(p)�N�(p):(5.18)Let �e be the sequene �ek = 12(1 + (�1)k)�(k) with nonzero even indiesand �o the sequene �ok = 12(1�(�1)k)�(k) with nonzero odd indies. Sine�e = 12(�̂(�)+ �̂(�+ 12)) and �o = 12(�̂(�)� �̂(�+ 12)), it follows from (4.11)that j�ej2 + j�oj2 = 12 :(5.19)Sine neither �e nor �o annot be identially zero (beause �e(0) = �o(0) =12) it follows from (5.18) thatN+(�e �N+(�e = N+(�o �N+(�e:(5.20)From the de�nition of �e and �o we getN+(�̂) = maxfN+(�e); N+(�o)g;N�(�̂) = minfN�(�e); N�(�o)g;If we ombine this result with (5.20) we onlude thatN+(�̂)�N�(�̂) = maxfN+(�e)�N�(�o); N+(�o)�N�(�e)g:(5.21)Sine N�(�e) are even numbers andN�(�o) are odd numbers, it follows thatN+(�̂)�N�(�̂) is an odd number. But then � annot be an even sequeneand we have a ontradition.Assume next that '(�+ �) = '(�� �) where � is not an integer. Wemay again shift the funtion ' so that � 2 (0; 1). Taking Fourier transformswe get '̂(�) = e�4�i��'̂(��):(5.22)But then it follows from (4.10) that we also have�̂(�) = e�4�i���̂(��):(5.23)Now �̂ and �̂(��) are both trigonometri polynomials with period 1 andtherefore we must have � = 12 . Thus we have '(�+ 1) = '(��). It follows G. Gripenberg 20.10.2006



4. Properties of ompatly supported wavelets 51from (4.8) after some hanges of variables that �2k+1 = ��2k for all k 2 Z.Sine ' is real-valued, � is real-valued as well, and hene we have�e = �o;(5.24)and ombining this result with (5.19) we getj�ej2 = 14 :(5.25)It follows that there exists an index k suh that �j = 12 when j = 2k+ 1 orj = �2k. If k = 0, then we get the Haar funtion and otherwise we get�̂ = e��i� os((4k+ 1)��):(5.26)But then it follows from Proposition 4.15 that (4.48) annot hold true, andthis ontradits Theorem 4.13.

 G. Gripenberg 20.10.2006


