Chapter 5

Wavelets with compact
support

1. Introduction

In this chapter we study wavelets with compact support. It is quite easy
to see that if the father wavelet or scaling function ¢ has compact support,
then the filter o has compact support as well, i.e., it is a finite sequence.
At least in the case where ¢ decays sufficiently rapidly at oo the converse

also holds.

First we consider some results that are somewhat more general than
what we actually need for the analysis of wavelets.

2. Dilation equations

In Chapter 4 we found that a crucial property of the father wavelet or scal-
ing function ¢ determining a multiresolution is that it satisfies the dilation
equation

(5.1) o= 22&(1@)@(20 —k).
k€L
In this section we look at some properties of a generalization of this equation.

First we observe that every sequence (a(k))gez can be identified with
a Radon measure, i.e. a local measure, by defining a,(F) = > ,cpa(k) for
every bounded set F € R. If we assume that @ € I}(Z), then a, is a finite
measure. Now (5.1) can be rewritten as

¢ = 2(asx ) (20)
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where * denotes convolution. Thus the generalized equation that we will be
looking at here is

(5.2) f=p(px f)ps),
where p is some real number > 1 and p € M(R;C), i.e., p is a complex
measure on R.

First we prove an auxiliary result on the convergence of products. We
use the notation |e|y = max{0,e}.

Lemma 5.1. Let i € M(R;C) be such that n(R) = 1 and [5(|log|z||+ +
D|pl(dz) < oo. Then the product [[re, i(p~*w) converges uniformly on
compact subsets of R towards a continuous function.

Proof. Since u(R) = 1 we have i({) -1 = ‘/‘]R(e_izm§ — 1)p(da), and hence

i(6) =11 < [ 2hin(ratllul(ds), €€ R,

Let m be a positive integer and let w € R. Now it is clear from the preceding
inequality, Fubini’s theorem, and the fact that |sin(z)| < min{1, |¢|} that

1) ko) —1] <2 Y |sin(p~*raw)||p|(dz
g;\u(p )= 1 ;/}R (p~"maw)|pl(dx)

[log,,(7|zwl)] o0

<2 [(X s 5 o] elae)

k=m k=max{[log,(r|zw|)T+1,m}
< 2/]1& (‘ [log,(m|zw|)] + 1 — m‘_l_ + p%lp—lm—flogp(ﬂlxwlﬂ—lH) || (da).

From this inequality we get the uniform convergence on compact in-
tervals of the series and this implies the claim of the lemma by [1, Th.
15.4]. O

We proceed with an easy result.

Proposition 5.2. Assume p > 1 and that p € M(R; C) satisfies |p(R)] < 1
and [; (Jlog(|z||+ + 1)|pl(de) < oo if |u(R)| = 1. If equation (5.2) has a
nontrivial solution f € LYR;C), then u(R) = 1 and this solution is unique
in LY(R; C) up to a multiplicative constant.

Proof. Taking Fourier transforms of both sides of (5.2) we get

(5.3) flpw) = @) f(w).
If [u(R)| < 1, then it is clear that limu o [[72,

w € R. Thus we see from (5.3) that f(w) = 0 for all w € R, so we can have
no nontrivial solution f.
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Suppose next that |u(R)| = ( ) # 0, then we conclude from (5.3)
that u(R) = 2(0) = £(0)/f(0) = 1. If f(0) = 0 then we have

o = fim TTat~alifemal =0, e

=1
ji(p~*w)| converges by Lemma 5.1. Thus we see

because the product []}7,
that f is identically 0

If now p(R) = 1, then we have by lemma 5.1 and (5.3) that
F(0)[] alp~*w), weR,

and we see that f is unique up to the multiplicative constant f(O) U

Next we consider the case where p in (5.2) has compact support. First
we prove an auxiliary result on how the support of (u * f)(pe) is related to
the supports of u and f.

Lemma 5.3. Assume that p > 1, p € M(R;C) with supp (p) C [M_, M4]
and that f € LY(R;C) with supp (f) C [F_, Fy]. Then

(5:4) supp (4 + f)(pe)) C [Ette, Bt ],

Proof. Let a < (M_+F_)/p. Then pr —t < M_+F_—t < F_ift > M_.
Similarly when o > (M4 + Fy)/p we have px —t > My 4+ Fy —t > Fy if
t < M. This gives the desired conclusion. O

Since the previous result says that the operator f — (u* f)(pe) forces
the support closer to that of y it is natural to expect that if 4 has compact
support and there is a solution of (5.2), then this solution has compact
support as well. This turns out to be the case, at least if f is integrable.

Proposition 5.4. Assume that p > 1, p € M(R;C) has compact support
contained in the interval [M_, M) and that n(R) = 1. If f € LY(R; C) sat-

M_ My
p=17 p—l]'

sifies (5.2), then f has compact support contained in the interval |

Proof. Let f € L(R;C) be some nontrivial function that satisfies (5.2).
If we can show that f has compact support, then it follows from repeated
applications of Lemma 5.3 that the support is contained in the desired in-
terval.

Let us for simplicity assume that M_ < 0 and that My > 0 Let m > 0
be an integer and let f, = f — fx[pmm_ ). Moreover, we define the
linear operator T : L1(R; C) — LY(R;C) by T(g) = p(p+g)(pe). If we apply
Lemma 5.3 m times we see that 7™ (f — f,,) has support contained in the
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interval [% %]. On the other hand we have T™(f,,,) = f=T™(f — fm),

T2 p—1
and this means that
_ pm pM— pM—I—
(5.5) @) =T"u)w) o g |52, 07)
Moreover, we easily see that
(5.6) Tr(fu)w) = ] i(p™" @) fn(p™" ).
k=1

Let h be some infinitely many times differentiable function with support
contained in [—1,1] and let hy = Ah(Xe), A > 0. Now it follows from the
inversion theorem for Fourier transforms (Theorem 2.3.(b)), (5.5) and (5.6)
that

(5.7)

m

/]RhA(x—t)Tm(fm)(t)dt:/ elZmew, 1 ( H f(pFw) fr(p™"w) de.

Now we know by Lemma 5.1 that [T}~ ﬂ(p‘kw)| is bounded when |w| < 1.
Then it follows for all m > 1 and w € R that

o0

\Hup o] < Gupliate 0 sup T it *6)] < (ol + )¢
1=t

where (' is some constant. Since h is infinitely many times differentiable, it
follows that

[ @l + 1 do < .
R

and therefore it follows from (5.7), the dominated convergence theorem and
from the fact that f,, — 0 in L'(R;C) and hence f,, — 0 in L>(R;C) as
m — oo that

lim [ ha(e —OT™(f)(t)dt =0, z€R, k> 1

m—00

But when we let A — oo we see from (5.5) that f must have compact
support. ]

3. Construction of wavelets with compact
support

When performing calculations with the filter @ on some real data it is clearly
advantageous to have the sequence a to be real. This requirement we will
make throughout this section where we want to find suitable sequences «
that generate multiresolutions. From Theorems 4.12 and 4.13 we see that «
must satisfy (4.11), (4.46), and (4.48).
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We get the following characterization of the Fourier transform of filters
a with compact (i.e., finite) support.

Theorem 5.5. Let {a(k)}rez be a sequence of real numbers with only finitely
many nonzero terms. Then (4.11) and (4.46) hold if and only if

. N ) )
(5.8) d(g) — (%(1 1+ e—127rg)) Q(e—127rg)e—12qug7
where N > 1, L € Z and Q) is a polynomial with real coefficients such that

N-1
(5.9) ‘Q(e_i%ﬁ)‘z = Z (N +: B 1) sin(ﬂg)zk

+ sin(ﬂg)QNR(cos(Qﬂg))a

where R is an odd real polynomial.

Proof. Suppose first that (4.11) and (4.46) hold. Since we require that
a(0) = 1, it follows from (4.11) that &(3) = 0. In order to see that & can
be written in the form (5 8) we argue as follows: For some integer L the
function 2z~ EkeZ a(k)z" is a polynomial and this polynomial vanishes in
the point z = —1. Thus it can be written in the form (3(142))¥@Q(z) where
N > 1 and @ is a real polynomial. Substituting e™12™ for » we get (5.8).

IfQ(z) = E]‘]\io q;z, then we have

M M
|Q(e—i27rg)|2 _ Z (jke—ﬂﬂ'kw Z —127rkw —127rkg)
k=—M =

= o +2 E i cos(2mhw),

k=1
min{M,M -k}
j=max{0,—k}
cients ¢; in ) are real. Since every term cos(2mkw) can be written as a poly-

since ¢_j = G for all k& because g, = > ¢;¢+k and the coeffi-

nomial in cos(2rw) (use De Moivre’s formula and sin(27w)? = 1—cos(27w)?)

or equivalently as a polynomial in sin(7rw)? we see that there exists a poly-

nomial P such that
(5.10) |Q(e2™2) 2 = P(sin(1w)?).

Since sin(m(w+1))? = cos(rw)? = 1 —sin(rw)? and |3(1+e!2™2)| = cos(rw)?
it follows from (4.11) that
(5.11) (1-2)VP(2)+ NP1 -2) =1,

on the interval [0,1] and therefore also on R. We can write P in the form
P(z) = Z o pizt + oV Ro(z). Inserting this expression into (5.11) we get
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the following system of equations for the coefficients p;,

Po = 17
k-1
(N
=0 (Y
7=0

Next have to we check that the solution of this recursive system of equations

1S
N+Ek-1
pkz( B ) 0<k<N-—1.

For k = 0 this is certainly the case and an induction argument works because
we have

2(_1)k—j+1 (k]j]) (N —I-j' - 1)
_ %(—1)’“*12 (’;)(—1)1‘%9””"“\@

N Mk "
_ k41 j dF—1 N4j5—1
J=0

N ) _ _
— H(_1)k-|—1 dtk—l ($N 1(1 _ $)k _ (_1)kxN-|—k 1) ‘le

_Edk—l $N+k_1 . N-I—k‘—l
T g e=1 k '

Thus we define the polynomial Py by

N-1
N+k-1
(5.12) Py(z) = ; ( +k )xk

Next we observe that this polynomial is in fact a solution of (5.11),
because the construction of the coeffiecients py guarantees that

(5.13) (1—2)VPy(2)+ 2Pyl —2)—1=2NV(1 - 2),
where V' is polynomial of at most degree N — 1. But then it follows that
(5.14) AV -2)=(1-2"V(2).

It follows from a calculation similar to the one used for finding the coeflicients
Pk, that V is identically zero since it is of a most degree N — 1.

The original polynomial P was written in the form P = PN(g)—I—gNRO(g).
If we insert this expression in (5.11) we conclude that

(5.15) (1—2)N2NRo(2) + (1 - 2)V2VRo(1 - 2) = 0,
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that is Ro(z) = —Ro(1 — z) and this implies that Ro(z) = R(1 — 2z) where
R is an odd polynomial. But this is exactly what we wanted to prove.

The converse goes in exactly the same way. O

If we want to construct a filter sequence «, one possibility is to use
Theorem 5.5. But then we must be able to find the trigonometric polynomial
Q(e™272) if |Q(e™2™)|? is known. This classical result is given in the next

lemma.

Lemma 5.6. Assume that A(w) = Ei\i_M ape 27Re where ap = a_, € R
for k=0,1,..., M, is nonnegative and Ap; # 0. Then the 2M zeros of the
polynomial Ei\i_M apw*tM are of the form w;, Wy, wj_l, w;~ ' € C\R, for
j=1,...,J, and rg, 7‘;1 ER, fork=1,...,K, and

K J
B(w) = | laar [T 7+l =t [T ws1=2
k=1 j=1
K J
x [T (7 = mi) [J (77 — 2672 Re (w)) + [u?),
k=1 j=1
is a trigonometric polynomial with real coefficients such that | B(w)|? = A(w).

Proof. Let P4y(z) = Ei\i_M a,z**M . This polynomial has 2M zeros (count-

ing multiplicities) and since the coefficients are real we have P4(z) = P4(%)
for all z, so that if z is a zero, then Z is a zero as well. Moreover, since
ar = a—y for k = 1,..., M, it follows that P4(z) = gQMPA(%) and this
implies that if z is a zero of P4, then so is z7!. (The assumption aps # 0
guarantees that P4(0) # 0.) Moreover, every zero on the unit circle has
even multiplicity because Z_MPA(Z) is by assumption nonnegative on the
unit circle. 1is a zero, then we see from the relation Pa(z) = 22M P4(1) that
it is actually a zero of even multiplicity. This gives the conclusion about the
zeros of Py.

Thus we can write P4 in the form

K

Ptz = an ([ - =)

k=1
X (ljl(z —wj)(z— W)z —w; )z - w_j_l)).
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Since we for every z € C\ 0 have

(€727 — ) (e = x| = [ (72 — 2z — o))

— |Z|—1|e—i27rg _ Z|2,

it follows from the nonnegativity of A and the fact that |A(w)| = | Pa(e™127<)|
that

Alw) = [A(w)] = [Pa(e™™) I—IaMIHITkI 1leyl ’

k=1 j=1
K J 2
x T = ) [T — wp)e )| = B
k=1 j=1
This completes the proof. O

If we want to construct a wavelet with compact support, the simplest
approach according to Theorem 5.5 is to choose a positive integer N, take
L = 0 for simplicity, since another choice only amounts to a translation,
choose the polynomial in (5.9) to be identically zero, and so on.

We leave it as an exercise to show that in this way we get a filter that in
addition to (4.11) and (4.46) also satisfies (4.48) and therefore generates a
father wavelet or scaling function that turns out to be continuous if N > 1.
In fact one can say much more about the smoothness of these functions but
this question will not be studied here.

4. Properties of compactly supported wavelets

First we consider briefly the question of how one can efficiently calculate the
values of the function ¢.

Proposition 5.7. Assume that (a(k))kez is such that a(k) = 0 when k <<
a_ ork >ay, >, aya(k)=1and ¢ € C.(R), with ¢ # 0, is a solution

to the equation
z) =2 a(k)p(2z — k).

keZ
Then the matriz A defined by A(i,j) = 2a(2i —j), t,j =a_ =1,...,a41
has the eigenvalue 1, (pla_ 4+ 1),... ,c,o(a.ﬂ))? is an eigenvector for this

ergenvalue and the values of ¢ at the points 277n, 7 > 1 can be recursively
calculated from the equation

“In) =2 Z a(k)p(27 " n—k), neZ, j>1.
k=a_
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Observe that we do not claim that the eigenvalue 1 fro the matrix A has
geometric multiplicity 1 so it is may not be clear which eigenvctor to choose,
but in most cases this turns out not to be the case.

Our next result restricts the smoothness of the scaling function ¢ in
terms of the support of the filter a.

Theorem 5.8. If m > 0 and f € C™(R;C), f # 0, has compact support
and satisfies

at
(5.16) F=2> a(k)f(2e—k),
k=a_
for some numbers {a(k)}, then m < ay —a_ — 1.

Proof. If we apply Lemma 5.3, we see that the support of f must be con-
tained in the closed interval [a_,a4]. Thus the support of @) must also
be contained in this interval for 0 < j < m. Moreover, differentiating both
sides of (5.16) we get

(5.17) FO =20 N a(k) fU)(20 k).

k=a_

Let A be a matrix with elements A(¢,7) = 2ag,_; for ¢, j = a_ +
1,...,a4 — 1 (the indexing is nonstandard but this is of no consequence).
Now we see from (5.17) that if the vector (fU)(a_+1), fO(a_+2), ..., fD(ay—
1))" is not the zero vector, then it is an eigenvector of the matrix A cor-
responding to the eigenvalue 277. We leave it as an exercise to show that
this vector cannot be the zero vector. Thus A has at least m 4+ 1 distinct
eigenvalues so that A must be at least an m + 1 X m + 1 matrix. Thus we
see that m 4+ 1 < ay — a— — 1 and this gives the desired conclusion. O

Next we show that except for the Haar function, no father wavelet or
scaling function for a multiresolution can not be symmetric with respect to
any point.

Proposition 5.9. Let ({Vy}mez, ¢) be a multiresolution of L*(R;C) such
that ¢ is real-valued and has compact support. Then o is nol symmetric
(nor antisymmetric) with respect to any point unless ¢ is the Haar function

X[0,1]*
Proof. It is clear that we cannot have p(A+e) = —p(A—e) for some A € R,

because then we would have [, ¢(z)dz = 0 which is impossible by Theorem
4.9.

Suppose on the other hand that ¢(A + e) = (A —e). If A is an integer,
then can take an integer translation of ¢, so we may without loss of generality
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asume that ¢ is an even function. It follows that the filter a is even as well
and has compact support. We shall show that this leads to a contradiction.

Let us introduce the notation that if p is a trigonometric polynomial
with period 1, i.e., p = >, p(k)ei?™*® then
Ny(p) = max{k | p(k) # 0},
N_(p) = min{ k| p(k) # 0},
It is easy to check that

(5.18) Ni(lpl*) = =N_(|p]*) = N(p) = N-(p)-

Let a® be the sequence « 1+ (=1)")a(k) with nonzero even indices
k

€
k
0 o _ 1
and a° the sequence af = 5(

—1)")a(k) with nonzero odd indices. Since
af = 1(6(e)+ a(e+ 1)) and ad = 1(a(e) — a(e 4+ 1)), it follows from (4.11)
that
(5.19) T + [P = 1.

—

Since neither a® nor a® cannot be identically zero (because a¢(0) = a°(0) =
1) it follows from (5.18) that

(5.20) Ni(af — Ny(af = Ny(a® — Ny (ac.
From the definition of a® and a® we get
N4 (@) = max{Ny(a%), Ny(a%)},
N_(&) = min{N_(@), N_(@)},
If we combine this result with (5.20) we conclude that
(5:21)  Ny(a) = N_(a) = max{ N, (a?) = N_(a%), N4(a?) — N_(a)}.

Since Ni(af) are even numbers and N4 (a?) are odd numbers, it follows that
Ni(&)— N_(&) is an odd number. But then o cannot be an even sequence
and we have a contradiction.

Assume next that ¢(A 4 o) = (A — @) where A is not an integer. We
may again shift the function ¢ so that A € (0,1). Taking Fourier transforms
we get

(5.22) B(0) = e ().
But then it follows from (4.10) that we also have
(5.23) a(e) = e~ 1mA*G ().

Now & and G(—e) are both trigonometric polynomials with period 1 and
therefore we must have A = . Thus we have o(e + 1) = p(—e). It follows
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from (4.8) after some changes of variables that agx41 = a_g for all k € Z.
Since ¢ is real-valued, « is real-valued as well, and hence we have

— =

(5.24) a® = a°,
and combining this result with (5.19) we get
—~ 1
5.25 €? = -
(5.25) g =

It follows that there exists an index % such that a; = % when j =2k + 1 or
j=—2k. If k=0, then we get the Haar function and otherwise we get

(5.26) & = e~ cos((4k + 1)me).
But then it follows from Proposition 4.15 that (4.48) cannot hold true, and
this contradicts Theorem 4.13. O
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