Chapter 3

Bases and frames

1. Bases in Banach spaces

Definition 3.1. Let V' be a Banach space with norm ||-||. A sequence
(gj);?';l C V is a Schauder basis for V' provided that for each element x € V
there exist unique coefficients v; such that Z;’;l v;9; = x, that is, im,,_ ||Z?:1 Y95 —
z|| = 0.

A Schauder basis (g;)32, is said to be bounded if 0 < inf;>1|lg;]| <
infj>q[lg;|| < oo.

It is, of course, possible to replace the index set N by some other count-
able set I, but then one must be more careful with the convergence and
provide an explicit bijection N — I or equivalently, give a linear ordering of
the set (g;);er.

It is clear that if there is a Schauder basis in a Banach space, then this
space must be separable, i.e., there is a countable set that is dense in the
space.

If the dimension of the space is finite, then a set is a basis if and only if it
is linearly independent and spans the space. To see that this is not sufficient
in the infinite dimensional case consider the set (e’ )72o- This set of functions
is linearly independent and by Weierstrass approximation theorem, it is also
dense in C([0,1];C). However, it is not a basis, because if it were, then
every continuous function could be written in the form

(3.1) F=Y v,
7=0



12 3. Bases and frames 20.10.2006

where the series converges uniformly on [0,1]. But then f is an analytic
function and this is clearly not always the case.

The following result describes what kind of “independence” is needed in
the infinite dimensional case and it also turns out to be very useful when
one wants to check whether a given sequence is a basis or not.

Theorem 3.2. Let V' be a Banach space with norm ||-||. The sequence
(9;)32, C is a Schauder basis for V' if and only if

(i) g; # 0 for every j > 1,
(i) span{d 2} =V,

(iii) there exists a positive number K such that
n+k

Z Y59 Z 759

for all positive integers n and k and for all scalars ;.

< K

b

Proof. Assume that (g;);en is a Schauder basis for V. Properties (i) and
(ii) follow almost immediately from the definition of a basis so it remains to

establish (iii). We define |||-||| by

k
(3.2) ]Il = sup
E>1114=

itoa=Y 79
=

It is easy to check that ||-||| is @ norm in V', but we must also prove that V),
(the space V with the norm |||-]||) is complete. Let us therefore assume that
(Tm)men is a Cauchy sequence in V). Since (g;);en is a basis, it follows
that for each m > 1 we have z,, = Z;’;l v;(2m)g;. Now we have for p > ¢

p

S (i) = vi(z))g;

J=q+1

p
Z Yi(@m) = 7i(2n))

(3.3)

E ’VJ T ) 'VJ(xn»

< 2l — @l
By taking p = ¢ + 1 we see that (7,(2,)0p)mez is a Cauchy sequence (in
Vi) as well, and therefore it converges towards some element 7,g,,.

Let € > 0 be arbitrary. There exists an integer m, such that |||z, —z,|| <
¢/4 when m, n > m.. If welet n — oo in (3.3), then we get for ever m > m,

P P
(3.4) > viwm)gi— Y migs|| < 5
Jj=q+1 J=q+1
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Now >70_, 7j(%m.)g; converges towards z,,, and hence there is a number ¢
such that [|320_ ) 7j(2m )g;l| < €/2 when ¢. < ¢ < p. But then it follows
from (3.4) with m = m, that

P

> nigi

J=q+1

(3.5) <e

and the completeness of V) implies that the series Z;’;l 7;9; converges
toward some element z of V. By the uniqueness of the coefficients v;(z), we
know that n; = v;(z) for all 7 € N. Taking ¢ = 0 in (3.4) we have

> (ilem)g; - Z%‘(ﬂﬂ)gy‘)

i=1

(3.6) llzm — || = sup
pz1

< €,

when m > m,. and thus we see that Vi s complete.

Since [[o]| < |[o][, the identity mapping T : Vj. — V| is continuous,
and since V). is complete, it follows from the inverse mapping theorem that
T~1 is continuous too, and this is exactly what (iii) says.

Next we have to prove that conditions (i)—(iii) are sufficient for (g;);en
to be a Schauder basis. For each & > 1, let g; be the linear functional
defined on span(g;);ez by letting (g}, z) = v, if v = Z;’;l v;9; with only
finitely many nonzero terms. Moreover, we then have for these elements z

k k—1
szzl V39 — 2o ngH < 28|z

[{gr- o) = |yl = <
’ gl llgwll
so that g} is continuos with norm
2K
(3.7) gzl < 57—
7

By (ii) it is possible to extend g7 by continuity to all of V. One consequence
of this result is that if z = Z;’;l 7,95, then the coefficients are uniquely
determined by v; = g7().

Next we consider the element h, = z — 2?21 <g;,x> g;, where n > 1.
By (ii) hy, belongs to the closure of span(g;);>1, but since g¥(h,) = 0 for
every integer j between 1 and n, it follows that h, actually belongs to
span(g;)j>nt1-

Let ¢ > 0 be arbitrary. Invoking (ii) once more, we see that there exist
an integer N and numbers v;, 7 > 1 with 7; = 0 when 57 > N such that
13255, 7595 — #ll < ¢/(1 + K) Then

n

> ({g5:2) = e)gi + hn

J=1

(3.8) n>N.

€
< 1FK:
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Since h,, € span(g;);>n+1 We can invoke (iii) to conclude that

n

> gpz) = 5)9;

J=1

< e n Z ]V7

(3.9) 1T

and it follows from the triangle inequality that
(3.10) |ho|l <€, n > N.
This completes the proof. O

2. Unconditional bases

A Schauder basis in a Banach space is said to be unconditional if, whenever
the sum Z;’;l v;9; converges, it actually converges unconditionally, i.e.,
if every permutation of the series converges. An immediate property of
unconditional bases is that there are no problems with the summation if the
index set is an arbitrary countable set I, instead of N.

Recall that if a series converges absolutely in a Banach space, then it
converges unconditionally. In finite dimensional spaces the converse also
holds but this is no longer the case if the dimension is infinite.

Next we give a useful characterization of unconditional bases that is
analoguous to Theorem 3.2.

Theorem 3.3. Let V be a Banach space with norm ||-||. The set (g;);er is
an unconditional basis for V' if and only if

(i) g; # 0 for every j €1,

(if) span{g;}jer =V,
(iii) there exists a positive integer K such that
> ig; > ig;
JjEA JEAUB
for all finite subsets A and B of I and all scalars ;.

(3.11) <K

b

3. Orthonormal and Riesz bases in Hilbert
spaces

First we consider a Hilbert space and give some equivalent conditions for a
sequence to be an orthonormal basis. Usually the space H is separable and
the sequence countable, but this is not necessary.

Theorem 3.4. Let H be a Hilbert space with inner product (-,-), and as-
sume that e, € H for all n € 1. Then the following properties are equivalent
(and if they hold the sequence (e,,)ne1 is said to be an orthonormal basis for

H):
© G. Gripenberg 20.10.2006
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(i)

(i)

(iii)

spani{e, tner = H and

1, ifn=mcel,
<€n7€m>: .
0, ifn#m,n,méel

spani{e, tner = H and

D leal =

n=A

2

b

E Cn€n

neA

for all numbers ¢,,, n € A, where A is a finite subset of 1.

llen]l =1, n € I and

S ed= /% fed.

nel

Next we consider so called Riesz bases, but note that there are other
ways of characterizing such bases than the ones given below.

Theorem 3.5. Let H be a Hilbert space with inner product (-,-) and let
fn € H for alln € 1. Then the following properties are equivalent (and if
they hold, the sequence (f,)ne1 is said to be a Riesz basis):

There is an orthonormal basis (e,)ne1 of H and a bounded linear
operator T : H — H with bounded inverse such that f, = Te, for
eachn € 1.

(fr)ner is an unconditional basis for H and there are positive con-
stants o and § such that 0 < o < ||f,]| < 8 < o for all n € L.

span{ f, }ner = H and there are positive constants a and b such that
and

2
<Y enl,

neA

E Cn€n

neA

QZ|CTL|2 <

neA

for all numbers ¢,,, n € A where A is a finite subset of 1.

span{ f, }ner = H and there are positive constants a and B such that

k k
@Y leal® <Y encall®,
n=1 n=1

for all numbers c1,....,cp, k> 1, and
STUE S < BIFIE, fed.
nel
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(v) span{fulner = H and there is a sequence (g,)ner such that
span{g,tner = H and for all m, n > 1 we have (f,,gm) = 0 if
n#m and {f,,g,) = 1, and there is a constant B such that

S 1S £ < Bl
nel f € I

> 1f 9017 < Bl

nel

(vi) There is a sequence (gn)ner such that for all m, n > 1 we have
(fr'gm) = 0 if n # m and (f,,g9,) = 1, and there are constants
0 < A< B < oo such that

AL <Y I £ < BISIP

nel
feHn
AILFIP <D [ Fg0)* < BIIFIP,

nel

Proof. (ii)=-(iii): It is part of the definition of an unconditional basis that
span{ f, }ner = H.

Suppose next that A C Lis a finite set with #A number of elements. Let
6 be a function: A — {—1,1} and let My be the function on span{f,},ca
defined by Mg(D_,cscnfn) = 2 ca 0(n)cnfn. By Theorem 3.3 there is a
constant K such that

> entn

neA

Do ekl SE|D eafal, and | Y efu| S K

neA ncA neA
f(n)=1 0(n)=—1

From these inequalities we can conclude that
(3.12) || Mg|| <2K.

Next, let © 4 be the set of functions 8 : A — {—1,1}. Clearly there are 2#4
elements in this set. A straightforward calculation shows that

2 2
250> sl DTS (L R DR TAISS ot

(54

0€0 4 neA €@ 4 lIneA 0€0 4 neA n,meA
n#m
= Y lealPlfall? 274 Y (eafusenfn) Y 8(m)8(m) =Y leal[1 Sl
neA n,meA €O 4 neA

n#m
© G. Gripenberg 20.10.2006
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Using (3.12) we see from the previous equality that

> ekn

neA

2

S lealPllfal? < 48

neA
and because MyMy = I that

2
Z Cnfn = 2_#A Z

b

[}

n(5:)

n€A 0€0 4 neA
2
< 4K #4 Z My (Z Cnfn) =4K? Z|Cn|2||fn||2
6e® 4 neA neA

Thus we conclude from the assumption that the basis (f,,)ner is bounded
that
2

2
= D leal” < < 4K26% 3 e,

neA

> entn

neA

and this is exactly what we had to prove.

(i)=-(ii): Let f € H be arbitrary. Since (e, ),er is an orthonormal basis

we have
T_lf = chenv
nel
(where, of course, ¢, = <T_1f, en>, n € I). Since T is continuous and

Te, = f, for n € I, it follows that

f = chfn

nel
The uniqueness of the coefficients follows from the uniqueness of the ex-

pansion in the orthonormal basis and thus we conclude that (f,).er is an
unconditional basis. Because ||e,|| = 1 it follows that

1
T < £l <IIT[l, nel

(i)=-(iii): Since f, = Te, for all n we have

d enfa=T (Z cnen) and T7' cnfn = (Z cnen)

neA neA neA neA

so that
2

S| <ITI?

neA

E Cn€n

2 n
= |01 Y leal?,
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and
2 2 n
Yokl NI enen| = 17772 el
neA n€A k=1
(iii)«<(iv): Suppose (iii) holds. If ¢,,, » = 1,..., k are arbitrary numbers
we have
2 2 2
Y ealfifa)| = ‘<f Zmﬂ> AP @ata| SOIAPD lexl.
n€A n€A n€A n€A

If we now choose ¢, = (f, f.) and let & — oo, then we get the missing claim.

For the converse we let f = > . c,f,. Then

2

LA = K5 DI =

> ke (f, fa)
n=1
< el YOI )P < BIFIP D leal®.

n€A n€A n€A
When we divide by ||f]|? we get the desired result.
(iv)=(v): The first inequality implies that for each m > 1

k

chfn_fm >a> 0.

n=1
n#m

Thus f,, ¢ span{ f, | n > 1,n # m} and therefore there exists an element
gm € H such that (f,,g,)=0if n #m and 1if n = m.

If f=2,cacnfn we must therefore have ¢, = (f, g,). Thus we have

S0 < =S,

n€l

for f in a dense subset of H, and by continuity for all f € H. In order
to prove that span{g,}n.er = H it suffices to recall that (iv) implies (iii)
because then we can conclude that if for some f € H we have (f,g,) =0
for all n > 1 then f = 0.

(v)=(i): Let (ey)ner be an arbitrary orthonormal basis for H. further-
more, Let f = > icnfn and g = > o4 dngn. By the biorthogonality
assumption we have ¢, = (f, ¢,) and d,, = (g, f,.). If we now define

Sf= Z Cn€n,

neA

Ug = zx: kde,,
n=1

© G. Gripenberg 20.10.2006
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then we conclude that

IS =D leal® = D1 90* < Bl
n€A n€A
A similar inequality can be derived for U so that we conclude, since 5 and
U are densely defined that they can be extended to bounded continuous
operators on H with norms at most v/B. The biorthogonality combined
with the continuous extension implies that

(Sf.Ug)={(f.9), f.g€H.

Thus we conclude that

A1 = (f.9) = (SLUL < ISANUL < IS FIVBIAL

Since the range of 5 is dense in [ we conclude that 5 has a bounded inverse
and the proof is completed.

(v)&(vi): First assume that (v) holds. Since we know that (v) is equiv-
alent to (i) there is an operator T such that (77! f,),er is an orthonormal
basis. Then

ST =D A TT )

nel n€l
* _ 2 N 1
= S U LT = WP 2 s I
2 1T
Since (g, )ner satisfies the same assumptions as (f,)ner we get the second
conclusion as well.

Suppose next that (vi) holds. Then we have only to establish the fact
that span{ f,, },er = H and span{g, },ecr = H and these claims follow directly
because by (vi) there cannot be a nonzero vector orthogonal to all vectors
fn or to all vectors g,,. O

4. Frames

If the first condition in Theorem 3.5.(iv) holds, then we have a Riesz-Fischer
sequence and if the second one holds then we have a Bessel sequence. How-
ever, here we shall consider the case where we require the first inequality in

3.5.(vi) to hold.

Definition 3.6. Let H be a separable Hilbert space. A sequence ( f,)ner of
elements in H is a frame if there are positive constants A and B (the bounds
for the frame) such that

AP <Y L FIP < BISIP,  f € H.

nel

© G. Gripenberg 20.10.2006
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Theorem 3.7. If (fu)ne1 is a frame then the formula
(3.13) Tf=>"{ffa) fu:
nel

defines a bounded, selfadjoint, invertible, linear operator with ||T|| < B and
IT71|] < A=, Moreover, if f € H, then

f:zanfn where an:<T_1f,fn>:<f,T_1fn>, n>1,

nel
and if f =3 c1bnfn, then

(3.14) 7Bl = lanlP 4+ Jan = ba|* > > Jan

nel nel nel nel
Proof. First we have to show that T is well defined. Let J be a finite subset
of I and
Tsf =Y fs fu) o

neJ
Observe that

IT5fI1* = KI5 f. T ) = D (Fs fud (s T3 )

neJ

<Y WL I D TN <

neJ neJ

{anfn?nTan?,
B EneJKfv fn>|2||T.7f||2

Thus we conclude that

15 A1l < BIAI,

and
17517 < BY (S, f)l?
neJ

From this we conclude that the sum > ;(f, f) fn converges to an element
T f where T is a linear operator satisfying

IT]] < B.

Next we observe that

(TFF)y =D W £ > AllFIP

nel

From this we first conclude that ||T'f|| > A|| f|| which implies that the range
of T is closed. If this range is not H there is a nonzero vector h € H
orthogonal to it, but this is impossible because (Th,h) > Al|h||*> > 0. Thus
we conclude that 7" is invertible.

© G. Gripenberg 20.10.2006
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Next we show that T is self-adjoint. Let f and ¢ € H be arbitrary. Then

(TF,9) = AL Fa) (Frg) =D AFs fu) (Fnr 9)

nel nel
= <f,2<fn,g>fn> =(f,Tg).

nel

By the definition of T" we have
F=1@ = T ) fa =Y (R T f), -

n=1 n=1

Suppose now that f =3 by fn. If 30, 4]bs|* = oo there is nothing to
prove, so we assume that the sum is finite. Now we have

D (bn = an)Tm =D (b —an) (£, T7'f) = <Z(bn - an)fn,T_1f>

n€l n€l nel

= <anfn - Zanfan_1f> = <f_ fvT_1f> =0,

nel n€l
which means that (b, — @, )ner L (@, )ner and using this fact we get (3.14).
|

Theorem 3.8. Let H be a separable Hilbert space and let ( f,,)ner be a frame
in H. Let g, = T~'f, where T is the operator T f = Yoneci {fs fu) fa. Then
either (f,)ne1 is a Riesz basis for H (with (f,,gm) = 0 if n # m and 1 if
n = m) or there is a number k > 1 such that (f,)52, is a frame.

n=1
n

Proof. If for all m and n > 1 we have

0, if n# m,

1, if n=m,

{(frs Gm) = {

then (f,,)ner is a Riesz basis by Theorem 3.5.(vi).

Suppose that for some k > 1 either (fi, gx) # 1 or (fi, gm) # 0 for some
m # k. Since (f,)ner is a frame we have write

fk = Z <fkvgn> fn
nel

If now (fi,gx) = 1 then we have

0=> {fs:9n) I
nik
© G. Gripenberg 20.10.2006
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On the other hand we have

0=12 0F,

nel
and by Theorem 3.7 we must therefore have

Thus we may assume that ay, def (fr,gk) # 1. Then we have

1 o0
fk = 1—a; Z <fkvgn> fnv
ngk
and in particular
1 N ————
(f, fo)l? = M=o ; (frr 9n) {f5 fn)
n#£k

1 s &0
< T 2 Ui gl DA S
nEk ik
Thus we conclude that

UL FP < I,

n=1

where ' =1+ ﬁ S0 [k gn)|?. Tt follows that
n#£k

A o0
AllfIP < DU LIP < BIAIE,
ek
and we conclude that (f,)%2, is a frame. This completes the proof. O
n#£k
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