Exercise 6

17.10-24.10.2006

1. Let $N \geq 1, P_{N}(\underline{x})=\sum_{k=0}^{N-1}\binom{N+k-1}{k} \underline{x}^{k}$, let α_{N} be such that $\widehat{\alpha_{N}}(\underline{\omega})=\left(\frac{1}{2}(1+\right.$ $\left.\left.\mathrm{e}^{-\mathrm{i} 2 \pi \underline{\omega}}\right)\right)^{N} Q_{N}\left(\mathrm{e}^{-\mathrm{i} 2 \pi \Omega}\right)$ where $\left|Q_{N}\left(\mathrm{e}^{-\mathrm{i} 2 \pi \Omega}\right)\right|^{2}=P_{N}\left(\sin (\pi \omega)^{2}\right)$, and let $\psi_{N}(\underline{x})=2 \sum_{k \in \mathbb{Z}}(-1)^{k} \alpha_{N}(1-$ $k) \varphi(2 \underline{x}-k)$ where $\hat{\varphi}(\underline{\omega})=\prod_{k=1}^{\infty} \hat{\alpha}\left(2^{-k} \underline{\omega}\right)$. Show that

$$
\lim _{N \rightarrow \infty}\left|\widehat{\psi_{N}}(\omega)\right|=0, \quad|\omega|<\frac{1}{2} \quad \text { or } \quad|\omega|>1 .
$$

What kind of additional knowledge about $\widehat{\psi_{N}}$ is needed in order to conlcude that

$$
\lim _{N \rightarrow \infty}\left|\widehat{\psi_{N}}(\omega)\right|=1, \quad \frac{1}{2}<|\omega|<1 ?
$$

2. Let H be a Hilbert space with inner product $\langle\cdot, \cdot\rangle$. Show that if there are two sequnces $\left(f_{n}\right)_{n \in \mathbb{I}}$ and $\left(g_{n}\right)_{n \in \mathbb{I}}$ of elements in H such that

$$
\langle f, g\rangle=\sum_{n=1}^{\infty}\left\langle f, f_{n}\right\rangle \overline{\left\langle g, g_{n}\right\rangle}, \quad f, g \in H
$$

and

$$
\sum_{n=1}^{\infty}\left(\left|\left\langle f, f_{n}\right\rangle\right|^{2}+\left|\left\langle f, g_{n}\right\rangle\right|^{2}\right) \leq C\|f\|^{2}, \quad f \in H
$$

for some constant C, then $\left(f_{n}\right)_{n \in \mathbb{I}}$ and $\left(g_{n}\right)_{n \in \mathbb{I}}$ are frames in the space H.
3. Suppose $\left(f_{n}\right)_{n \in \mathbb{I}}$ is a tight frame in H, that is, for same $A>0$,

$$
\sum_{n \in \mathbb{I}}\left\|\left\langle f, f_{n}\right\rangle\right\|^{2}=A\|f\|^{2}, \quad f \in H
$$

Show that

$$
f=\frac{1}{A} \sum_{n \in \mathbb{I}}\left\langle f, f_{n}\right\rangle f_{n}, \quad f \in H,
$$

by first calculating $A\langle f, g\rangle$ using the formula

$$
\langle f, g\rangle=\frac{1}{4}\left(\|f+g\|^{2}-\|f-g\|^{2}+\mathbf{i}\|f+\mathbf{i} g\|^{2}-\mathrm{i}\|f-\mathrm{i} g\|^{2}\right) .
$$

4. Let φ be the scaling function and ψ the corresponding wavelet function for an orthonormal multiresolution and assume that φ and ψ have compact support. Let $m \leq 0$ and define

$$
\begin{aligned}
\varphi_{\mathbb{T}, m, k}(\underline{x}) & =\sum_{j \in \mathbb{Z}} 2^{-\frac{m}{2}} \varphi\left(2^{-m}(\underline{x}+j)-k\right), \\
\psi_{\mathbb{T}, m, k}(\underline{x}) & =\sum_{j \in \mathbb{Z}} 2^{-\frac{m}{2}} \psi\left(2^{-m}(\underline{x}+j)-k\right) .
\end{aligned}
$$

Show that if $m_{0} \leq 0$ then $\left\{\varphi_{\mathbb{T}, m_{0}, k} \mid k=0, \ldots, 2^{-m_{0}}-1\right\} \cup\left\{\psi_{\mathbb{T}, m, k} \mid k=0, \ldots, 2^{-m}-1, m \leq\right.$ $\left.m_{0}\right\}$ is an orthonormal set in $L^{2}(\mathbb{T})=L^{2}([0,1])$.
5. Let φ be the scaling function for an orthonormal multiresolution and assume that φ has compact support. Let $m \leq 0$ and define

$$
\varphi_{\mathbb{T}, m, k}(\underline{x})=\sum_{j \in \mathbb{Z}} 2^{-\frac{m}{2}} \varphi\left(2^{-m}(\underline{x}+j)-k\right)
$$

and let $V_{\mathbb{T}, m}$ be the subspace of $L^{2}(\mathbb{T})$ spanned by $\left(\varphi_{\mathbb{T}, m, k}\right)_{k=0}^{2^{-m}-1}$. Show that $V_{m} \rightarrow L^{2}(\mathbb{T})$ as $m \rightarrow-\infty$.

