Exercise 5

10.10-17.10.2006

1. Let $N_{1}(\underline{t})=\chi_{[0,1)}(\underline{t})$, that is $N_{1}(t)=1$ when $0 \leq t<1$ and $N_{1}(t)=0$ otherwise and let $N_{m}=N_{m-1} * N_{1}$ when $m \geq 2$. Show that one can find a sequnce c such that $(\varphi(\underline{x}-n))_{n \in Z}$ is an orthonormal sequnce in the space $L^{2}(\mathbb{R})$ when $\varphi(\underline{x})=\sum_{k \in \mathbb{Z}} c(k) N_{2}(x-k)$. (You may assume that $\sum_{k \in \mathbb{Z}}\left|\widehat{N_{2}}(\omega+k)\right|^{2}=\frac{1}{3}+\frac{2}{3} \cos (\pi \omega)^{2}$.) Is it true that $\varphi(\underline{x})=\sum_{k \in \mathbb{Z}} \alpha(k) \varphi(2 \underline{x}-k)$ for some sequnce α (using the fact that $N_{2}(\underline{x})=2 \sum_{k=0}^{2} a(k) N_{2}(2 \underline{x}-k)$ where $a(0)=a(2)=\frac{1}{4}$ and $\left.a(1)=\frac{1}{2}\right)$?
2. Let

$$
\Phi(\underline{t})=\int_{\mathbb{R}} \varphi(x) \varphi(x+\underline{t}) \mathrm{d} x
$$

where φ is the function constructed in the previous exercise. Show that Φ is a twice continuously differentiable function which on each interval $(n, n+1)$ is a polynomial of degree at most 3 , that is, Φ is the fundamental interpolation function for cubic interpolation.
3. Let $N>1$ and $P_{N}(\underline{x})=\sum_{k=0}^{N-1}\binom{N+k-1}{k} \underline{x}^{k}$ so that we have $(1-\underline{x})^{N} P_{N}(\underline{x})+\underline{x}^{N} P_{N}(1-$ $\underline{x})=1$. In addition, let α_{N} be such that $\hat{\alpha}_{N}(\underline{\omega})=\left(\frac{1}{2}\left(1+\mathrm{e}^{-\mathrm{i} 2 \pi \underline{\omega}}\right)\right)^{N} Q_{N}\left(\mathrm{e}^{-\mathrm{i} 2 \pi \Omega}\right)$ where $\left|Q_{N}\left(\mathrm{e}^{-\mathrm{i} 2 \pi \Omega}\right)\right|^{2}=P_{N}\left(\sin (\pi \omega)^{2}\right)$.
(a) Calculate $P_{N}\left(\frac{1}{2}\right)$.
(b) Show that $y^{-N+1} P_{N}(y)>x^{-N+1} P_{N}(x)$ kun $0<y<x$.
(c) Show that $P_{N}(x)<x^{N-1} 2^{2 N-2}$ kun $\frac{1}{2}<x<1$.
(d) Show that

$$
\lim _{N \rightarrow \infty}\left|\hat{\alpha}_{N}(\omega)\right|= \begin{cases}1, & |\omega|<\frac{1}{4} \\ 0, & \frac{1}{4}<|\omega|<\frac{3}{4} .\end{cases}
$$

4. Let

$$
w(t)=\sum_{k=0}^{\infty} a^{k} \cos \left(2 \pi b^{k} \underline{t}\right)
$$

where $0<a<1$ and $b>1$. In addition, let

$$
\psi(t)= \begin{cases}\mathrm{e}^{-\left(t-\frac{1}{b}\right)^{-2}-(t-b)^{-2}+\left(1-\frac{1}{b}\right)^{-2}+(1-b)^{-2}}, & \frac{1}{b}<t<b, \\ 0, & t \leq \frac{1}{b} \text { or } t \geq b,\end{cases}
$$

so that we know that ψ and $\hat{\psi} \in \mathcal{C}_{\downarrow}^{\infty}(\mathbb{R})$. Define

$$
f_{j}(\underline{t})=b^{j} \int_{-\infty}^{\infty} w(\underline{t}-s) \hat{\psi}\left(b^{j} s\right) \mathrm{d} s
$$

Show that

$$
f_{j}(\underline{t})=\frac{1}{2} a^{j} \mathrm{e}^{-\mathrm{i} 2 \pi b^{j} \underline{t}} .
$$

5. Let w, ψ and $f_{j}, j \geq 1$ be as in the previous exercise. Assume that w is differentiable in the point t, and define the function v by the formula

$$
v(s)= \begin{cases}\frac{w(t-s)-w(t)+s w^{\prime}(t)}{s}, & s \neq 0 \\ 0, & s=0\end{cases}
$$

Is v continuous and bounded? Show, by writing $w(t-\underline{s})=\underline{s} v(\underline{s})+w(t)-\underline{s} w^{\prime}(t)$, that

$$
f_{j}(t)=b^{-j} \int_{-\infty}^{\infty} s v\left(b^{-j} s\right) \hat{\psi}(s) \mathrm{d} s
$$

Show with the aid of this result that $\lim _{j \rightarrow \infty} b^{j} f_{j}(t)=0$. For which values of the product $a b$ does this contradict the result of the previous exercise?

