1. Let α be a sequence such that $\alpha(k)=0$ if $k<a_{-}$or $k>a_{+}$. Assume that φ satisfies the equation

$$
\varphi(\underline{x})=2 \sum_{k \in \mathbb{Z}} \alpha(k) \varphi(2 \underline{x}-k),
$$

and that φ is zero outside some bounded interval. Outside what interval is φ certainly 0 ?
2. Assume that α is such that for some $N \geq 1$

$$
\hat{\alpha}(\underline{\omega})=\left(\frac{1}{2}\left(1+\mathrm{e}^{-\mathrm{i} 2 \pi \underline{\omega}}\right)\right)^{N} Q\left(\mathrm{e}^{-\mathrm{i} 2 \pi \underline{\omega}}\right),
$$

where

$$
\left|Q\left(\mathrm{e}^{-\mathrm{i} 2 \pi \underline{\omega}}\right)\right|^{2}=\sum_{k=0}^{N-1}\binom{N+k-1}{k} \sin (\pi \underline{\omega})^{2 k} .
$$

Find a set \mathcal{G} which is the finite union of halfopen intervals so that $\sum_{k \in \mathbb{Z}} \chi_{\mathcal{G}}(\omega+k)=1$ for all $\omega \in \mathbb{R}$ and $\hat{\alpha}$ does not vanish on the set $\overline{\bigcup_{k=1}^{\infty}\left(2^{-k} \mathcal{G}\right)}$.
3. Let α be the following sequence:

$$
\begin{aligned}
& \alpha(0)=\frac{1}{8}(1+\sqrt{3}), \\
& \alpha(1)=\frac{1}{8}(3+\sqrt{3}), \\
& \alpha(2)=\frac{1}{8}(3-\sqrt{3}), \\
& \alpha(3)=\frac{1}{8}(1-\sqrt{3}), \\
& \alpha(k)=0 \quad \text { muuten. }
\end{aligned}
$$

Calculate $\sum_{k \in \mathbb{Z}} \alpha(k), \sum_{k \in \mathbb{Z}}(-1)^{k} \alpha(k), \sum_{k \in \mathbb{Z}}(-1)^{k} k \alpha(k)$, and $2 \sum_{k \in \mathbb{Z}} \alpha(k) \alpha(k+2 n)$ when $n \in \mathbb{Z}$. What does this imply for $\hat{\alpha}$?
4. Assume the following Poisson summation formula to be known: If $f \in L^{1}(\mathbb{R}) \cap$ $C(\mathbb{R})$, the series $\sum_{n=-\infty}^{\infty} f(t+n)$ converges uniformly when $t \in[-\delta, \delta]$ where $\delta>0$ and the series $\sum_{n=-\infty}^{\infty} \hat{f}(n)$ converges, then

$$
\sum_{n=-\infty}^{\infty} f(n)=\sum_{n=-\infty}^{\infty} \hat{f}(n)
$$

Show with the aid of this formula that if the function $\varphi \in \mathcal{C}(\mathbb{R})$ has compact support and $n \in \mathbb{N}$ is such that $\hat{\varphi}^{(j)}(m)=0$ when $m \in \mathbb{Z} \backslash\{0\}$ and $j=0,1, \ldots, n-1$ then

$$
\sum_{k \in \mathbb{Z}} k^{j} \varphi(\underline{x}+k) \quad \text { is a polynomial of degree at most } j
$$

when $j=0,1, \ldots, n-1$.
5. Does the following claim hold: If the function $\varphi \in \mathcal{C}(\mathbb{R})$ has compact support, $\int_{\mathbb{R}} \varphi(t) \mathrm{d} t=$ $1, \varphi(\underline{t})=2 \sum_{k \in \mathbb{Z}} \alpha(k) \varphi(2 \underline{t}-k)$, where $\alpha(k) \neq 0$ only for finitely many k and where the the function $\hat{\alpha}$ has a zero of order n in the point $\frac{1}{2}$, then every polynomial of degree at most $n-1$ can be written as a finite linear combination of the functions $\varphi(\underline{t}-k)$ on each bounded interval.

