1. Let $a \in \ell^{1}(\mathbb{Z})$ and define the sequence b by $b(\underline{n})=a(2 \underline{n})$. Express the Fourier transfrom \hat{b} of the sequence b wiht the aid of the Fourier transform \hat{a} of the sequence a.
2. Let $\alpha \in \ell^{2}(\mathbb{Z})$ (and you may assume that there are only finitle many non-zero elements in the sequence). Show that

$$
|\hat{\alpha}(\underline{\omega})|^{2}+\left|\hat{\alpha}\left(\underline{\omega}+\frac{1}{2}\right)\right|^{2} \stackrel{\text { a.e. }}{=} 1,
$$

if and only if

$$
2 \sum_{k \in \mathbb{Z}} \alpha(k) \overline{\alpha(k+2 n)}=\delta_{0, n}, \quad n \in \mathbb{Z}
$$

by first calculating the Fourier transform of the sequence $\left(\sum_{k \in \mathbb{Z}} \alpha(k) \overline{\alpha(k-n)}\right)_{n \in \mathbb{Z}}$.
3. What can be said about the following argument: If $\psi \in L^{2}(\mathbb{R}) \cap L^{1}(\mathbb{R})$ is such that $\int_{\mathbb{R}} \psi(t) \mathrm{d} t=0$ then it is also true that $\int_{\mathbb{R}} \psi\left(2^{-m} t-k\right) \mathrm{d} t=0$ for all integres m and k and then it is not possible to write for example

$$
\mathrm{e}^{-\underline{t}^{2}}=\sum_{m \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} c_{m, k} \psi\left(2^{-m} \underline{t}-k\right)
$$

where the series converges in $L^{2}(\mathbb{R})$ because $\int_{\mathbb{R}} \mathrm{e}^{-t^{2}} \mathrm{~d} t>0$.
4. Let $\alpha \in l^{1}(\mathbb{Z})$. Define the operators T_{α} and $S_{\alpha}: \ell^{2}(\mathbb{Z}) \rightarrow \ell^{2}(\mathbb{Z})$ as follows:

$$
\left(T_{\alpha} c\right)(k)=\sum_{j \in \mathbb{Z}} \overline{\alpha(j-2 k)} c(j) \quad \text { and } \quad\left(S_{\alpha} c\right)(k)=2 \sum_{j \in \mathbb{Z}} \alpha(k-2 j) c(j)
$$

What are the operators T_{α}^{*} and S_{α}^{*} (defined by the requirements that $\left\langle T_{\alpha} c, d\right\rangle=\left\langle c, T_{\alpha}^{*} d\right\rangle$ and $\left.\left\langle S_{\alpha} c, d\right\rangle=\left\langle c, S_{\alpha}^{*} d\right\rangle\right)$? Under which conditions is it true that $T_{\alpha} T_{\alpha}^{*}=\frac{1}{2} I$?
5. Let $\left(\left\{V_{m}\right\}_{m \in \mathbb{Z}}, \varphi\right)$ be a multiresolution for $L^{2}(\mathbb{R} ; \mathbb{C})$ and let P_{m} denote the orthogonal projection onto V_{m}. If $f \in V_{m}$ is given in the form

$$
f=\sum_{k \in \mathbb{Z}} C_{m}(k) 2^{-\frac{m}{2}} \varphi\left(2^{-m} \bullet-k\right),
$$

where $C_{m} \in \ell^{2}(\mathbb{Z} ; \mathbb{C})$, then

$$
P_{V_{m+1}} f=\sum_{k \in \mathbb{Z}} C_{m+1}(k) 2^{\frac{-m-1}{2}} \varphi\left(2^{-m-1} \bullet-k\right) .
$$

Determine the coefficients $C_{m+1}(k)$ in terms of the coefficients $C_{m}(k)$.
Do the same for the projection onto the space W_{m+1}.

