9 Polynomial approximations: Stone—Weierstrass

In this section we study densities of subalgebras in C'(X). These results will
be applied in characterizing function algebras among Banach algebras. First
we study continuous functions on [a,b] C R:

Weierstrass Theorem (1885). Polynomials are dense in C([a, b]).

Proof. Evidently, it is enough to consider the case [a,b] = [0,1]. Let f €

C([0,1]), and let g(z) = f(x) — (f(0) + (f(1) = f(0))z); then g € C(R) if we
define g(z) = 0 for x € R\ [0, 1]. For n € N let us define k, : R — [0, oo| by

_ (=)
ko(z) := 4 T5 08 at” when |z] <1,
0, when |z| > 1.

Then define P, := g * k,, (convolution of g and k,,), that is

Py(z) = / T gle— 1) kat) dt = / " gt) kale — 1) dt
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and from this last formula we see that P, is a polynomial on [0,1]. Notice
that P, is real-valued if f is real-valued. Take any ¢ > 0. Function g is
uniformly continuous, so that there exists 6 > 0 such that

Vez,y e R: [z —y|<d=|g(z) —g(y)| <e.
Let ||g|| = Inax lg(t)|. Take z € [0,1]. Then

Po(a) — g(a)| = \ [ o=tk a—g) [ o dt\
~ [ o= -t k()
< [ lote =)o@ kot
< [ ot s [ ekt [ 2l ko a

< 4]l / ) dt + .

The reader may verify that f5 n(t) dt —, 0 0 for every § > 0. Hence
|@n = fIl =n—00 0, where Qn(z) = Pu(z) + f(0) + (f(1) — £(0))z O
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Exercise. Show that the last claim in the proof of Weierstrass Theorem is
true.

For f : X — C let us define f*: X — C by f*(z) := f(x), and define
|f|: X = Cby |f|(z) := |f(x)|- A subalgebra A C F(X) is called involutive
if f* € A whenever f € A.

Stone—Weierstrass Theorem (1937). Let X be a compact space. Let
A C C(X) be an involutive subalgebra separating the points of X. Then A
is dense in C(X).

Proof. If f € A then f* € A, so that the real part Rf =
to A. Let us define

U belongs
2
Ag = {Rf | f € A};

this is a R-subalgebra of the R-algebra C'(X,R) of continuous real-valued
functions on X. Then

A:{f+2g‘fag€AR}:

so that Ag separates the points of X. If we can show that Ag is dense in
C(X,R) then A would be dense in C'(X).

First we have to show that Ag is closed under taking maximums and
minimums. For f,¢g € C(X,R) we define

max(f, g)(z) := max(f(z),g(z)), min(f,g)(z) :=min(f(z),g(z)).
Notice that Ag is an algebra over the field R. Since

_f+g+\f—g|

max(f, g) = — 5 {35 V-4

it is enough to prove that |h| € Ag whenever h € Ag. Let h € Ag. By the
Weierstrass Theorem there is a sequence of polynomials P, : R — R such
that

uniformly on the interval [—||A||, ||k]|]- Thereby
12} = Pa()]| =n-s00 0,

where P, (h)(z) := Py(h(x)). Since P,(h) € Ag for every n, this implies that
|h| € Ag. Now we know that max(f, g), min(f, g) € Agr whenever f, g € Ag.
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Now we are ready to prove that f € C(X,R) can be approximated by
elements of Ag. Take ¢ > 0 and z,y € X, z # y. Since Agr separates the
points of X, we may pick h € Ag such that h(z) # h(y). Let g,, = f(2)I,

and let
_ ) ) ) AG) )
9= =) T T k)~ hw)

Here ¢4z, 92y € Agr, since Ag is an algebra. Furthermore,

gmy(x) = f(=), gwy(y) = f(y).

Due to the continuity of g,,, there is an open set V3, € V(y) such that

f().

2 € Vyy = f(2) —e < guy(2).

Now {Vy | v € X'} is an open cover of the compact space X, so that there
is a finite subcover {V,,, | 1 < j < n}. Define

= Imax 3
9z lgjgngzy]’

gz € Ag, because Ag is closed under taking maximums. Moreover,
Vze X: f(z) —e < gu(2).

Due to the continuity of g, (and since g,(z) = f(x)), there is an open set
U, € V() such that

z€U, = g.(2) < f(2) +e.

Now {U, | x € X'} is an open cover of the compact space X, so that there is
a finite subcover {U,, | 1 <i < m}. Define

‘= min ¢,
g 1§i§mgm“

g € Ag, because Ay is closed under taking minimums. Moreover,
Vze X : g(z) < f(z) +e.
Thus

J(z) —e < min go,(2) = 9g(2) < f(2) +e,

that is |g(z) — f(2)| < € for every z € X, i.e. ||g— f|| < €. Hence Ay is dense
in C(X,R) implying that A is dense in C'(X) O
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Remark. Notice that under the assumptions of the Stone—Weierstrass The-
orem, the compact space is actually a compact Hausdorff space, since con-
tinuous functions separate the points.

Exercise*. Let K be a compact Hausdorff space, ) # S C K, and J C
C(K) be an ideal. Let us define

Z(S):={fe€eC(K)|VzeS: f(z)=0},
V(J)={xze K |VfeJ: f(x) =0}

Prove that

(a) Z(S) € C(K) a closed ideal,

(b) V(J) C K is a closed non-empty subset,
(c) V(Z(S)) = S (hint: Urysohn), and

(d) Z(V(J)) = J (hint: Stone—Weierstrass).
Lesson to be learned:

topology of K goes hand in hand with the (closed) ideal structure of C'(K).
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