9 Polynomial approximations: Stone–Weierstrass

In this section we study densities of subalgebras in C(X). These results will be applied in characterizing function algebras among Banach algebras. First we study continuous functions on $[a, b] \subset \mathbb{R}$:

Weierstrass Theorem (1885). Polynomials are dense in C([a,b]).

Proof. Evidently, it is enough to consider the case [a, b] = [0, 1]. Let $f \in C([0, 1])$, and let g(x) = f(x) - (f(0) + (f(1) - f(0))x); then $g \in C(\mathbb{R})$ if we define g(x) = 0 for $x \in \mathbb{R} \setminus [0, 1]$. For $n \in \mathbb{N}$ let us define $k_n : \mathbb{R} \to [0, \infty[$ by

$$k_n(x) := \begin{cases} \frac{(1-x^2)^n}{\int_{-1}^1 (1-t^2)^n \, dt}, & \text{when } |x| < 1, \\ 0, & \text{when } |x| \ge 1. \end{cases}$$

Then define $P_n := g * k_n$ (convolution of g and k_n), that is

$$P_n(x) = \int_{-\infty}^{\infty} g(x-t) k_n(t) dt = \int_{-\infty}^{\infty} g(t) k_n(x-t) dt$$
$$= \int_{0}^{1} g(t) k_n(x-t) dt,$$

and from this last formula we see that P_n is a polynomial on [0,1]. Notice that P_n is real-valued if f is real-valued. Take any $\varepsilon > 0$. Function g is uniformly continuous, so that there exists $\delta > 0$ such that

$$\forall x, y \in \mathbb{R} : |x - y| < \delta \Rightarrow |g(x) - g(y)| < \varepsilon.$$

Let $||g|| = \max_{t \in [0,1]} |g(t)|$. Take $x \in [0,1]$. Then

$$|P_{n}(x) - g(x)| = \left| \int_{-\infty}^{\infty} g(x - t) \ k_{n}(t) \ dt - g(x) \int_{-\infty}^{\infty} k_{n}(t) \ dt \right|$$

$$= \left| \int_{-1}^{1} (g(x - t) - g(x)) \ k_{n}(t) \ dt \right|$$

$$\leq \int_{-1}^{1} |g(x - t) - g(x)| \ k_{n}(t) \ dt$$

$$\leq \int_{-1}^{-\delta} 2||g|| \ k_{n}(t) \ dt + \int_{-\delta}^{\delta} \varepsilon \ k_{n}(t) \ dt + \int_{\delta}^{1} 2||g|| \ k_{n}(t) \ dt$$

$$\leq 4||g|| \int_{\delta}^{1} k_{n}(t) \ dt + \varepsilon.$$

The reader may verify that $\int_{\delta}^{1} k_n(t) dt \to_{n\to\infty} 0$ for every $\delta > 0$. Hence $||Q_n - f|| \to_{n\to\infty} 0$, where $Q_n(x) = P_n(x) + f(0) + (f(1) - f(0))x$

Exercise. Show that the last claim in the proof of Weierstrass Theorem is true.

For $f: X \to \mathbb{C}$ let us define $f^*: X \to \mathbb{C}$ by $f^*(x) := \overline{f(x)}$, and define $|f|: X \to \mathbb{C}$ by |f|(x) := |f(x)|. A subalgebra $\mathcal{A} \subset \mathcal{F}(X)$ is called *involutive* if $f^* \in \mathcal{A}$ whenever $f \in \mathcal{A}$.

Stone-Weierstrass Theorem (1937). Let X be a compact space. Let $A \subset C(X)$ be an involutive subalgebra separating the points of X. Then A is dense in C(X).

Proof. If $f \in \mathcal{A}$ then $f^* \in \mathcal{A}$, so that the real part $\Re f = \frac{f + f^*}{2}$ belongs to \mathcal{A} . Let us define

$$\mathcal{A}_{\mathbb{R}} := \{ \Re f \mid f \in \mathcal{A} \};$$

this is a \mathbb{R} -subalgebra of the \mathbb{R} -algebra $C(X,\mathbb{R})$ of continuous real-valued functions on X. Then

$$\mathcal{A} = \{ f + ig \mid f, g \in \mathcal{A}_{\mathbb{R}} \},\$$

so that $\mathcal{A}_{\mathbb{R}}$ separates the points of X. If we can show that $\mathcal{A}_{\mathbb{R}}$ is dense in $C(X,\mathbb{R})$ then \mathcal{A} would be dense in C(X).

First we have to show that $\overline{\mathcal{A}}_{\mathbb{R}}$ is closed under taking maximums and minimums. For $f, g \in C(X, \mathbb{R})$ we define

$$\max(f, g)(x) := \max(f(x), g(x)), \quad \min(f, g)(x) := \min(f(x), g(x)).$$

Notice that $\overline{\mathcal{A}_{\mathbb{R}}}$ is an algebra over the field \mathbb{R} . Since

$$\max(f,g) = \frac{f+g}{2} + \frac{|f-g|}{2}, \quad \min(f,g) = \frac{f+g}{2} - \frac{|f-g|}{2},$$

it is enough to prove that $|h| \in \overline{\mathcal{A}_{\mathbb{R}}}$ whenever $h \in \overline{\mathcal{A}_{\mathbb{R}}}$. Let $h \in \overline{\mathcal{A}_{\mathbb{R}}}$. By the Weierstrass Theorem there is a sequence of polynomials $P_n : \mathbb{R} \to \mathbb{R}$ such that

$$P_n(x) \to_{n\to\infty} |x|$$

uniformly on the interval $[-\|h\|, \|h\|]$. Thereby

$$||h| - P_n(h)|| \rightarrow_{n \to \infty} 0,$$

where $P_n(h)(x) := P_n(h(x))$. Since $P_n(h) \in \overline{\mathcal{A}_{\mathbb{R}}}$ for every n, this implies that $|h| \in \overline{\mathcal{A}_{\mathbb{R}}}$. Now we know that $\max(f,g), \min(f,g) \in \overline{\mathcal{A}_{\mathbb{R}}}$ whenever $f,g \in \overline{\mathcal{A}_{\mathbb{R}}}$.

Now we are ready to prove that $f \in C(X, \mathbb{R})$ can be approximated by elements of $\mathcal{A}_{\mathbb{R}}$. Take $\varepsilon > 0$ and $x, y \in X$, $x \neq y$. Since $\mathcal{A}_{\mathbb{R}}$ separates the points of X, we may pick $h \in \mathcal{A}_{\mathbb{R}}$ such that $h(x) \neq h(y)$. Let $g_{xx} = f(x)\mathbb{I}$, and let

$$g_{xy}(z) := \frac{h(z) - h(y)}{h(x) - h(y)} f(x) + \frac{h(z) - h(x)}{h(y) - h(x)} f(y).$$

Here $g_{xx}, g_{xy} \in \mathcal{A}_{\mathbb{R}}$, since $\mathcal{A}_{\mathbb{R}}$ is an algebra. Furthermore,

$$g_{xy}(x) = f(x), \quad g_{xy}(y) = f(y).$$

Due to the continuity of g_{xy} , there is an open set $V_{xy} \in \mathcal{V}(y)$ such that

$$z \in V_{xy} \implies f(z) - \varepsilon < g_{xy}(z).$$

Now $\{V_{xy} \mid y \in X\}$ is an open cover of the compact space X, so that there is a finite subcover $\{V_{xy_i} \mid 1 \leq j \leq n\}$. Define

$$g_x := \max_{1 \le i \le n} g_{xy_j};$$

 $g_x \in \overline{\mathcal{A}_{\mathbb{R}}}$, because $\overline{\mathcal{A}_{\mathbb{R}}}$ is closed under taking maximums. Moreover,

$$\forall z \in X : f(z) - \varepsilon < g_x(z).$$

Due to the continuity of g_x (and since $g_x(x) = f(x)$), there is an open set $U_x \in \mathcal{V}(x)$ such that

$$z \in U_x \implies g_x(z) < f(z) + \varepsilon.$$

Now $\{U_x \mid x \in X\}$ is an open cover of the compact space X, so that there is a finite subcover $\{U_{x_i} \mid 1 \leq i \leq m\}$. Define

$$g := \min_{1 < i < m} g_{x_i};$$

 $g \in \overline{\mathcal{A}_{\mathbb{R}}}$, because $\overline{\mathcal{A}_{\mathbb{R}}}$ is closed under taking minimums. Moreover,

$$\forall z \in X : g(z) < f(z) + \varepsilon.$$

Thus

$$f(z) - \varepsilon < \min_{1 \le i \le m} g_{x_i}(z) = g(z) < f(z) + \varepsilon,$$

that is $|g(z) - f(z)| < \varepsilon$ for every $z \in X$, i.e. $||g - f|| < \varepsilon$. Hence $\mathcal{A}_{\mathbb{R}}$ is dense in $C(X, \mathbb{R})$ implying that \mathcal{A} is dense in C(X)

Remark. Notice that under the assumptions of the Stone–Weierstrass Theorem, the compact space is actually a compact Hausdorff space, since continuous functions separate the points.

Exercise*. Let K be a compact Hausdorff space, $\emptyset \neq S \subset K$, and $\mathcal{J} \subset C(K)$ be an ideal. Let us define

$$\mathcal{I}(S) := \{ f \in C(K) \mid \forall x \in S : f(x) = 0 \},$$

$$V(\mathcal{J}) := \{ x \in K \mid \forall f \in \mathcal{J} : f(x) = 0 \}.$$

Prove that

- (a) $\mathcal{I}(S) \subset C(K)$ a closed ideal,
- (b) $V(\mathcal{J}) \subset K$ is a closed non-empty subset,
- (c) $V(\mathcal{I}(S)) = \overline{S}$ (hint: Urysohn), and
- (d) $\mathcal{I}(V(\mathcal{J})) = \overline{\mathcal{J}}$ (hint: Stone–Weierstrass).

Lesson to be learned:

topology of K goes hand in hand with the (closed) ideal structure of C(K).