Miscellany on (Banach) algebras

Exercise. Let $\{A_j \mid j \in J\}$ be a family of topological algebras. Endow $A := \prod_{j \in J} A_j$ with a structure of a topological algebra.

Before examining commutative Banach algebras in detail, we derive some useful results that could have been treated already in earlier sections (but we forgot to do so :)

Lemma. Let \mathcal{A} be a commutative algebra and \mathcal{M} be its ideal. Then \mathcal{M} is maximal if and only if [0] is the only non-invertible element of \mathcal{A}/\mathcal{M} .

Proof. Of course, here [x] means $x + \mathcal{M}$, where $x \in \mathcal{A}$. Assume that \mathcal{M} is a maximal ideal. Take $[x] \neq [0]$, so that $x \notin \mathcal{M}$. Define

$$\mathcal{J} := \mathcal{A}x + \mathcal{M} = \{ax + m \mid a \in \mathcal{A}, \ m \in \mathcal{M}\}.$$

Then clearly $\mathcal{J} \neq \mathcal{M} \subset \mathcal{J}$, and \mathcal{J} is a vector subspace of \mathcal{A} . If $y \in \mathcal{A}$ then

$$\mathcal{J}y = y\mathcal{J} = y\mathcal{A}x + y\mathcal{M} \subset \mathcal{A}x + \mathcal{M} = \mathcal{J},$$

so that either \mathcal{J} is an ideal or $\mathcal{J} = \mathcal{A}$. But since \mathcal{M} is a maximal ideal contained properly in \mathcal{J} , we must have $\mathcal{J} = \mathcal{A}$. Thus there exist $a \in \mathcal{A}$ and $m \in \mathcal{M}$ such that $ax + m = \mathbb{I}_{\mathcal{A}}$. Then

$$[a][x] = \mathbb{I}_{\mathcal{A}/\mathcal{M}} = [x][a],$$

[x] is invertible in \mathcal{A}/\mathcal{M} .

Conversely, assume that all the non-zero elements are invertible in \mathcal{A}/\mathcal{M} . Assume that $\mathcal{J} \subset \mathcal{A}$ is an ideal containing \mathcal{M} . Suppose $\mathcal{J} \neq \mathcal{M}$, and pick $x \in \mathcal{J} \setminus \mathcal{M}$. Now $[x] \neq [0]$, so that for some $y \in \mathcal{A}$ we have $[x][y] = [\mathbb{I}_{\mathcal{A}}]$. Thereby

$$\mathbb{I}_{\mathcal{A}} \in xy + \mathcal{M} \overset{x \in \mathcal{I}}{\subset} \mathcal{J} + \mathcal{M} \subset \mathcal{J} + \mathcal{J} = \mathcal{J},$$

which is a **contradiction**, since no ideal can contain invertible elements. Therefore we must have $\mathcal{J} = \mathcal{M}$, meaning that \mathcal{M} is maximal

Proposition. A maximal ideal in a Banach algebra is closed.

Proof. In a topological algebra, the closure of an ideal is either an ideal or the whole algebra. Let \mathcal{M} be a maximal ideal of a Banach algebra \mathcal{A} . The set $G(\mathcal{A}) \subset \mathcal{A}$ of the invertible elements is open, and $\mathcal{M} \cap G(\mathcal{A}) = \emptyset$ (because no ideal contains invertible elements). Thus $\mathcal{M} \subset \overline{\mathcal{M}} \subset \mathcal{A} \setminus G(\mathcal{A})$, so that $\overline{\mathcal{M}}$ is an ideal containing a maximal ideal \mathcal{M} ; thus $\overline{\mathcal{M}} = \mathcal{M}$

Proposition. Let \mathcal{J} be a closed ideal of a Banach algebra \mathcal{A} . Then the quotient vector space \mathcal{A}/\mathcal{J} is a Banach algebra; moreover, \mathcal{A}/\mathcal{J} is commutative if \mathcal{A} is commutative.

Proof. Let us denote $[x] := x + \mathcal{J}$ for $x \in \mathcal{A}$. Since \mathcal{J} is a closed vector subspace, the quotient space \mathcal{A}/\mathcal{J} is a Banach space with the norm

$$[x] \mapsto ||[x]|| = \inf_{j \in \mathcal{J}} ||x + j||.$$

Let $x, y \in \mathcal{A}$ and $\varepsilon > 0$. Then there exist $i, j \in \mathcal{J}$ such that

$$||x + i|| \le ||[x]|| + \varepsilon, \quad ||y + j|| \le ||[y]|| + \varepsilon.$$

Now $(x+i)(y+j) \in [xy]$, so that

$$||[xy]|| \leq ||(x+i)(y+j)||$$

$$\leq ||x+i|| ||y+j||$$

$$\leq (||[x]|| + \varepsilon) (||[y]|| + \varepsilon)$$

$$= ||[x]|| ||[y]|| + \varepsilon (||[x]|| + ||[y]|| + \varepsilon);$$

since $\varepsilon > 0$ is arbitrary, we have

$$||[x][y]|| \le ||[x]|| ||[y]||.$$

Finally, $\|[\mathbb{I}]\| \le \|\mathbb{I}\| = 1$ and $\|[x]\| = \|[x][\mathbb{I}]\| \le \|[x]\| \|[\mathbb{I}]\|$, so that we have $\|[\mathbb{I}]\| = 1$

Exercise*. Let \mathcal{A} be an algebra. The *commutant* of a subset $\mathcal{S} \subset \mathcal{A}$ is

$$\Gamma(\mathcal{S}) := \{ x \in \mathcal{A} \mid \forall y \in \mathcal{S} : xy = yx \}.$$

Prove the following claims:

- (a) $\Gamma(S) \subset A$ is a subalgebra; $\Gamma(S)$ is closed if A is a topological algebra.
- (b) $S \subset \Gamma(\Gamma(S))$.
- (c) If xy = yx for every $x, y \in \mathcal{S}$ then $\Gamma(\Gamma(\mathcal{S})) \subset \mathcal{A}$ is a commutative subalgebra, where $\sigma_{\Gamma(\Gamma(\mathcal{S}))}(z) = \sigma_{\mathcal{A}}(z)$ for every $z \in \Gamma(\Gamma(\mathcal{S}))$.