7 New topologies from old ones

In this section families of mappings transfer (induce and co-induce) topologies from topological spaces to a set in natural ways. The most important cases for us are quotient and product spaces.

Comparison of topologies. If (X, τ_1) and (X, τ_2) are topological spaces and $\tau_1 \subset \tau_2$, we say that τ_1 is weaker than τ_2 and τ_2 is stronger than τ_1 .

7.1 Co-induction

Co-induced topology. Let X and J be sets, (X_j, τ_j) be topological spaces for every $j \in J$, and $\mathcal{F} = \{f_j : X_j \to X \mid j \in J\}$ be a family mappings. The \mathcal{F} -co-induced topology of X is the strongest topology τ on X such that the mappings f_j are continuous for every $j \in J$. Indeed, this definition is sound, because

$$\tau = \{ U \subset X \mid \forall j \in J : f_j^{-1}(U) \in \tau_j \},$$

as the reader may easily verify.

Example. Let \mathcal{A} be a topological vector space and \mathcal{J} its subspace. Let us denote $[x] := x + \mathcal{J}$ for $x \in \mathcal{A}$. Then the quotient topology of $\mathcal{A}/\mathcal{J} = \{[x] \mid x \in \mathcal{A}\}$ is the $\{(x \mapsto [x]) : \mathcal{A} \to \mathcal{A}/\mathcal{J}\}$ -co-induced topology.

Example. Let (X, τ_X) be a topological space. Let $R \subset X \times X$ be an equivalence relation. Let

$$[x] := \{ y \in X \mid (x, y) \in R \},$$

$$X/R := \{[x] \mid x \in X\},$$

and define the quotient map $p: X \to X/R$ by $x \mapsto [x]$. The quotient topology of the quotient space X/R is the $\{p\}$ -co-induced topology on X/R. Notice that X/R is compact if X is compact, since $p: X \to X/R$ is a continuous surjection.

Remark. The message of the following exercise is that if our compact space X is not Hausdorff, we "factor out" inessential information that C(X) "does not see" to obtain a compact Hausdorff space related nicely to X.

Exercise*. Let X be a topological space, and define $C \subset X \times X$ by

$$(x,y) \in C \stackrel{\text{definition}}{\Longleftrightarrow} \forall f \in C(X) : f(x) = f(y).$$

Prove:

- (a) C is an equivalence relation on X.
- (b) There is a natural bijection between the sets C(X) and C(X/C).
- (c) X/C is a Hausdorff space.
- (d) If X is a compact Hausdorff space then $X \cong X/C$.

Exercise. For $A \subset X$ the notation X/A means X/R_A , where the equivalence relation R_A is given by

$$(x,y) \in R_A \stackrel{\text{definition}}{\Longleftrightarrow} x = y \text{ or } \{x,y\} \subset A.$$

Let X be a topological space, and let $\infty \subset X$ be a closed subset. Prove that the mapping

$$X \setminus \infty \to (X/\infty) \setminus \{\infty\}, \quad x \mapsto [x],$$

is a homeomorphism.

Finally, let us state a basic property of co-induced topologies:

Proposition. Let X have the \mathcal{F} -co-induced topology, and Y be a topological space. A mapping $g: X \to Y$ is continuous if and only if $g \circ f$ is continuous for every $f \in \mathcal{F}$.

Proof. If g is continuous then the composed mapping $g \circ f$ is continuous for every $f \in \mathcal{F}$.

Conversely, suppose $g \circ f_j$ is continuous for every $f_j \in \mathcal{F}$, $f_j : X_j \to X$. Let $V \subset Y$ be open. Then

$$f_i^{-1}(g^{-1}(V)) = (g \circ f_j)^{-1}(V) \subset X_j$$
 is open;

thereby
$$g^{-1}(V) = f_j(f_j^{-1}(g^{-1}(V))) \subset X$$
 is open

Corollary. Let X, Y be topological spaces, R be an equivalence relation on X, and endow X/R with the quotient topology. A mapping $f: X/R \to Y$ is continuous if and only if $(x \mapsto f([x])): X \to Y$ is continuous

7.2 Induction

Induced topology. Let X and J be sets, (X_j, τ_j) be topological spaces for every $j \in J$ and $\mathcal{F} = \{f_j : X \to X_j \mid j \in J\}$ be a family of mappings. The \mathcal{F} -induced topology of X is the weakest topology τ on X such that the mappings f_j are continuous for every $j \in J$.

Example. Let (X, τ_X) be a topological space, $A \subset X$, and let $\iota : A \to X$ be defined by $\iota(a) = a$. Then the $\{\iota\}$ -induced topology on A is

$$\tau_X|_A := \{ U \cap A \mid U \in \tau_X \}.$$

This is called the *relative topology* of A. Let $f: X \to Y$. The restriction $f|_A = f \circ \iota : A \to Y$ satisfies $f|_A(a) = f(a)$ for every $a \in A \subset X$.

Exercise. Prove **Tietze's Extension Theorem**: Let X be a compact Hausdorff space, $K \subset X$ closed and $f \in C(K)$. Then there exists $F \in C(X)$ such that $F|_K = f$.

Example. Let (X, τ) be a topological space. Let σ be the $C(X) = C(X, \tau)$ -induced topology, i.e. the weakest topology on X making the all τ -continuous functions continuous. Obviously, $\sigma \subset \tau$, and $C(X, \sigma) = C(X, \tau)$. If (X, τ) is a compact Hausdorff space it is easy to check that $\sigma = \tau$.

Example. Let X, Y be topological spaces with bases $\mathcal{B}_X, \mathcal{B}_Y$, respectively. Recall that the product topology for $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$ has a base

$$\{U \times V \mid U \in \mathcal{B}_X, V \in \mathcal{B}_Y\}.$$

This topology is actually induced by the family

$${p_X: X \times Y \to X, \ p_Y: X \times Y \to Y},$$

where the coordinate projections p_X and p_Y are defined by $p_X((x,y)) = x$ and $p_Y((x,y)) = y$.

Product topology. Let X_j be a set for every $j \in J$. The Cartesian product

$$X = \prod_{j \in J} X_j$$

is the set of the mappings

$$x: J \to \bigcup_{j \in J} X_j$$
 such that $\forall j \in J: x(j) \in X_j$.

Due to the Axiom of Choice, X is non-empty if all X_j are non-empty. The mapping

$$p_j: X \to X_j, \quad x \mapsto x_j := x(j),$$

is called the jth coordinate projection. Let (X_j, τ_j) be topological spaces. Let $X := \prod_{j \in J} X_j$ be the Cartesian product. Then the $\{p_j \mid j \in J\}$ -induced topology on X is called the product topology of X.

If $X_j = Y$ for all $j \in J$, it is customary to write

$$\prod_{j \in J} X_j = Y^J = \{ f \mid f : J \to Y \}.$$

Weak*-topology. Let $x \mapsto ||x||$ be the norm of a normed vector space X over a field $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. The dual space $X' = \mathcal{L}(X, \mathbb{K})$ of X is set of bounded linear functionals $f: X \to \mathbb{K}$, having a norm

$$||f|| := \sup_{x \in X: \ ||x|| \le 1} |f(x)|.$$

This endows X' with a Banach space structure. However, it is often better to use a weaker topology for the dual: Let us define x(f) := f(x) for every $x \in X$ and $f \in X'$; this gives the interpretation $X \subset X'' := \mathcal{L}(X', \mathbb{K})$, because

$$|x(f)| = |f(x)| \le ||f|| ||x||.$$

So we may treat X as a set of functions $X' \to \mathbb{K}$, and we define the $weak^*$ topology of X' to be the X-induced topology of X'.

Let us state a basic property of induced topologies:

Proposition. Let X have the \mathcal{F} -induced topology, and Y be a topological space. A mapping $g: Y \to X$ is continuous if and only if $f \circ g$ is continuous for every $f \in \mathcal{F}$.

Proof. If g is continuous then the composed mapping $f \circ g$ is continuous for every $f \in \mathcal{F}$.

Conversely, suppose $f_j \circ g$ is continuous for every $f_j \in \mathcal{F}$, $f: X \to X_j$. Let $y \in Y$, $V \subset X$ be open, $g(y) \in V$. Then there exist $\{f_{j_k}\}_{k=1}^n \subset \mathcal{F}$ and open sets $W_{j_k} \subset X_{j_k}$ such that

$$g(y) \in \bigcap_{k=1}^{n} f_{j_k}^{-1}(W_{j_k}) \subset V.$$

Let

$$U := \bigcap_{k=1}^{n} (f_{j_k} \circ g)^{-1} (W_{j_k}).$$

Then $U \subset Y$ is open, $y \in U$, and $g(U) \subset V$; hence $g: Y \to X$ is continuous at an arbitrary point $y \in Y$, i.e. $g \in C(Y, X)$

Hausdorff preserved in products: It is easy to see that a Cartesian product of Hausdorff spaces is always Hausdorff: If $X = \prod_{j \in J} X_j$ and $x, y \in X$, $x \neq y$, then there exists $j \in J$ such that $x_j \neq y_j$. Therefore there are open sets $U_j, V_j \subset X_j$ such that

$$x_j \in U_j, \quad y_j \in V_j, \quad U_j \cap V_j = \emptyset.$$

Let $U:=p_j^{-1}(U_j)$ and $V:=p^{-1}(V_j)$. Then $U,V\subset X$ are open,

$$x \in U, \quad y \in V, \quad U \cap V = \emptyset.$$

Also compactness is preserved in products; this is stated in Tihonov's Theorem (Tychonoff's Theorem). Before proving this we introduce a tool:

Non-Empty Finite InterSection (NEFIS) property. Let X be a set. Let NEFIS(X) be the set of those families $\mathcal{F} \subset \mathcal{P}(X)$ such that every finite subfamily of \mathcal{F} has a non-empty intersection. In other words, a family $\mathcal{F} \subset \mathcal{P}(X)$ belongs to NEFIS(X) if and only if $\bigcap \mathcal{F}' \neq \emptyset$ for every finite subfamily $\mathcal{F}' \subset \mathcal{F}$.

Lemma. A topological space X is compact if and only if $\mathcal{F} \notin NEFIS(X)$ whenever $\mathcal{F} \subset \mathcal{P}(X)$ is a family of closed sets satisfying $\bigcap \mathcal{F} = \emptyset$.

Proof. Let X be a set, $\mathcal{U} \subset \mathcal{P}(X)$, and $\mathcal{F} := \{X \setminus U \mid U \in \mathcal{U}\}$. Then

$$\bigcap \mathcal{F} = \bigcap_{U \in \mathcal{U}} (X \setminus U) = X \setminus \bigcup \mathcal{U},$$

so that \mathcal{U} is a cover of X if and only if $\bigcap \mathcal{F} = \emptyset$. Now the claim follows the definition of compactness

Tihonov's Theorem (1935). Let X_j be a compact space for every $j \in J$. Then $X = \prod_{j \in J} X_j$ is compact.

Proof. To avoid the trivial case, suppose $X_j \neq \emptyset$ for every $j \in J$. Let $\mathcal{F} \in NEFIS(X)$ be a family of closed sets. In order to prove the compactness of X we have to show that $\bigcap \mathcal{F} \neq \emptyset$.

Let

$$P := \{ \mathcal{G} \in NEFIS(X) \mid \mathcal{F} \subset \mathcal{G} \}.$$

Let us equip the set P with a partial order relation \leq :

$$\mathcal{G} < \mathcal{H} \stackrel{\text{definition}}{\iff} \mathcal{G} \subset \mathcal{H}.$$

The **Hausdorff Maximal Principle** says that the chain $\{\mathcal{F}\}\subset\mathcal{P}$ belongs to a maximal chain $C\subset P$. The reader may verify that $\mathcal{G}:=\bigcup C\in P$ is a maximal element of P.

Notice that the maximal element \mathcal{G} may contain non-closed sets. For every $j \in J$ the family

$$\{p_j(G) \mid G \in \mathcal{G}\}$$

belongs to $NEFIS(X_i)$. Define

$$\mathcal{G}_j := \{ \overline{p_j(G)} \mid G \in \mathcal{G} \}.$$

Clearly also $\mathcal{G}_j \in NEFIS(X_j)$, and the elements of \mathcal{G}_j are closed sets in X_j . Since X_j is compact, $\bigcap \mathcal{G}_j \neq \emptyset$. Hence we may choose

$$x_j \in \bigcap \mathcal{G}_j$$
.

The **Axiom of Choice** provides the existence of the element $x := (x_j)_{j \in J} \in X$. We shall show that $x \in \bigcap \mathcal{F}$, which proves Tihonov's Theorem.

If $V_j \subset X_j$ is a neighborhood of x_j and $G \in \mathcal{G}$ then

$$p_j(G) \cap V_j \neq \emptyset$$
,

because $x_j \in \overline{p_j(G)}$. Thus

$$G \cap p_j^{-1}(V_j) \neq \emptyset$$

for every $G \in \mathcal{G}$, so that $\mathcal{G} \cup \{p_j^{-1}(V_j)\}$ belongs to P; the maximality of \mathcal{G} implies that

$$p_j^{-1}(V_j) \in \mathcal{G}$$
.

Let $V \in \tau_X$ be a neighborhood of x. Due to the definition of the product topology,

$$x \in \bigcap_{k=1}^{n} p_{j_k}^{-1}(V_{j_k}) \subset V$$

for some finite index set $\{j_k\}_{k=1}^n \subset J$, where $V_{j_k} \subset X_{j_k}$ is a neighborhood of x_{j_k} . Due to the maximality of \mathcal{G} , any finite intersection of members of \mathcal{G} belongs to \mathcal{G} , so that

$$\bigcap_{k=1}^n p_{j_k}^{-1}(V_{j_k}) \in \mathcal{G}.$$

Therefore for every $G \in \mathcal{G}$ and $V \in \mathcal{V}_{\tau_X}(x)$ we have

$$G \cap V \neq \emptyset$$
.

Hence $x \in \overline{G}$ for every $G \in \mathcal{G}$, yielding

$$x \in \bigcap_{G \in \mathcal{G}} \overline{G} \stackrel{\mathcal{F} \subset \mathcal{G}}{\subset} \bigcap_{F \in \mathcal{F}} \overline{F} = \bigcap_{F \in \mathcal{F}} F = \bigcap \mathcal{F},$$

so that $\bigcap \mathcal{F} \neq \emptyset$

Remark. Actually, Tihonov's Theorem is equivalent to the Axiom of Choice; we shall not prove this.

Banach-Alaoglu Theorem (1940). Let X be a normed \mathbb{C} -vector space (or a normed \mathbb{R} -vector space). The norm-closed unit ball

$$K := \overline{B_{X'}(0,1)} = \{ \phi \in X' : \|\phi\|_{X'} < 1 \}$$

of the dual space X' is weak*-compact.

Proof. Due to Tihonov,

$$P := \prod_{x \in X} \{ \lambda \in \mathbb{C} : |\lambda| \le ||x|| \} = \overline{\mathbb{D}(0, ||x||)}^X$$

is compact in the product topology τ_P . Any element $f \in P$ is a mapping

$$f: X \to \mathbb{C}$$
 such that $f(x) \le ||x||$.

Hence $K = X' \cap P$. Let τ_1 and τ_2 be the relative topologies of K inherited from the weak*-topology $\tau_{X'}$ of X' and the product topology τ_P of P, respectively. We shall prove that $\tau_1 = \tau_2$ and that $K \subset P$ is closed; this would show that K is a compact Hausdorff space.

First, let $\phi \in X'$, $f \in P$, $S \subset X$, and $\delta > 0$. Define

$$U(\phi, S, \delta) := \{ \psi \in X' : x \in S \Rightarrow |\psi x - \phi x| < \delta \},$$

$$V(f, S, \delta) := \{ g \in P : x \in S \Rightarrow |g(x) - f(x)| < \delta \}.$$

Then

$$\mathcal{U} := \{ U(\phi, S, \delta) \mid \phi \in X', \ S \subset X \text{ finite, } \delta > 0 \},$$

$$\mathcal{V} := \{ V(f, S, \delta) \mid f \in P, \ S \subset X \text{ finite, } \delta > 0 \}$$

are bases for the topologies $\tau_{X'}$ and τ_P , respectively. Clearly

$$K \cap U(\phi, S, \delta) = K \cap V(\phi, S, \delta),$$

so that the topologies $\tau_{X'}$ and τ_P agree on K, i.e. $\tau_1 = \tau_2$.

Still we have to show that $K \subset P$ is closed. Let $f \in \overline{K} \subset P$. First we show that f is linear. Take $x, y \in X$, $\lambda, \mu \in \mathbb{C}$ and $\delta > 0$. Choose $\phi_{\delta} \in K$ such that

$$f \in V(\phi_{\delta}, \{x, y, \lambda x + \mu y\}, \delta).$$

Then

$$|f(\lambda x + \mu y) - (\lambda f(x) + \mu f(y))|$$

$$\leq |f(\lambda x + \mu y) - \phi_{\delta}(\lambda x + \mu y)| + |\phi_{\delta}(\lambda x + \mu y) - (\lambda f(x) + \mu f(y))|$$

$$= |f(\lambda x + \mu y) - \phi_{\delta}(\lambda x + \mu y)| + |\lambda(\phi_{\delta} x - f(x)) + \mu(\phi_{\delta} y - f(y))|$$

$$\leq |f(\lambda x + \mu y) - \phi_{\delta}(\lambda x + \mu y)| + |\lambda| |\phi_{\delta} x - f(x)| + |\mu| |\phi_{\delta} y - f(y)|$$

$$\leq \delta (1 + |\lambda| + |\mu|).$$

This holds for every $\delta > 0$, so that actually

$$f(\lambda x + \mu y) = \lambda f(x) + \mu f(y),$$

f is linear! Moreover, $||f|| \le 1$, because

$$|f(x)| \le |f(x) - \phi_{\delta}x| + |\phi_{\delta}x| \le \delta + ||x||.$$

Hence $f \in K$, K is closed

Remark. The Banach-Alaoglu Theorem implies that a bounded weak*-closed subset of the dual space is a compact Hausdorff space in the relative weak*-topology. However, in a normed space norm-closed balls are compact if and only if the dimension is finite!