7 New topologies from old ones

In this section families of mappings transfer (induce and co-induce) topologies
from topological spaces to a set in natural ways. The most important cases
for us are quotient and product spaces.

Comparison of topologies. If (X, 71) and (X, 7») are topological spaces
and 7y C 7o, we say that 7, is weaker than 7o and 7 is stronger than 7.

7.1 Co-induction

Co-induced topology. Let X and J be sets, (X}, 7;) be topological spaces
for every j € J,and F = {f; : X; = X | j € J} be a family mappings. The
F-co-induced topology of X is the strongest topology 7 on X such that the
mappings f; are continuous for every j € J. Indeed, this definition is sound,
because

r={UcX |VjelJ: fj'(U) e},

as the reader may easily verify.

Example. Let A be a topological vector space and J its subspace. Let
us denote [z] := z + J for x € A. Then the quotient topology of A/J =
{lz] | x € A} is the {(z — [z]) : A — A/ T }-co-induced topology.

Example. Let (X,7x) be a topological space. Let R C X x X be an
equivalence relation. Let

[z] :={y € X | (z,y) € R},

X/R:={[z] | 2 € X},

and define the quotient map p: X — X/R by x — [z]|. The quotient topology
of the quotient space X/R is the {p}-co-induced topology on X/R. Notice
that X/R is compact if X is compact, since p : X — X/R is a continuous
surjection.

Remark. The message of the following exercise is that if our compact space
X is not Hausdorff, we “factor out” inessential information that C'(X) “does
not see” to obtain a compact Hausdorff space related nicely to X.
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Exercise*. Let X be a topological space, and define C C X x X by
definition
(z,y) € C “EF" Vf e CO(X): [f(z) = f(y)-

Prove:

(a) C is an equivalence relation on X.

(b) There is a natural bijection between the sets C(X) and C(X/C).
(c) X/C is a Hausdorff space.

(d) If X is a compact Hausdorff space then X = X/C.

Exercise. For A C X the notation X/A means X/R,, where the equiva-
lence relation R4 is given by

definition

(z,y) € Ry <= =z =yor{z,y} C A

Let X be a topological space, and let oo C X be a closed subset. Prove that
the mapping
X\ oo — (X/o0) \ {oo}, x> [g],

is a homeomorphism.

Finally, let us state a basic property of co-induced topologies:

Proposition. Let X have the F-co-induced topology, andY be a topological
space. A mapping g : X — 'Y is continuous if and only if go f is continuous
for every f € F.

Proof. If g is continuous then the composed mapping g o f is continuous
for every f € F.

Conversely, suppose g o f; is continuous for every f; € F, f; : X; — X.
Let V C Y be open. Then

it g (V) = (g0 f;)7H(V) C X is open;
thereby g='(V) = f;(f;'(g7*(V))) C X is open O
Corollary. Let X,Y be topological spaces, R be an equivalence relation on

X, and endow X/R with the quotient topology. A mapping f : X/R —Y is
continuous if and only if (x — f([z])) : X = Y is continuous O
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7.2 Induction

Induced topology. Let X and J be sets, (X}, 7;) be topological spaces
for every j € Jand F = {f; : X — X, | j € J} be a family of mappings.
The F-induced topology of X is the weakest topology 7 on X such that the
mappings f; are continuous for every j € J.

Example. Let (X,7x) be a topological space, A C X, and let : : A - X
be defined by ¢(a) = a. Then the {:}-induced topology on A is

Tx|la:={UNA|Uerx}.

This is called the relative topology of A. Let f : X — Y. The restriction
fla=four: A=Y satisfies fla(a) = f(a) for every a € A C X.

Exercise. Prove Tietze’s Extension Theorem: Let X be a compact
Hausdorff space, K C X closed and f € C(K). Then there exists F' € C(X)
such that F|g = f.

Example. Let (X, 7) be a topological space. Let o be the C(X) = C(X, 7)-
induced topology, i.e. the weakest topology on X making the all 7-continuous
functions continuous. Obviously, 0 C 7, and C(X,0) = C(X, 7). If (X, 7) is
a compact Hausdorff space it is easy to check that o = 7.

Example. Let X,Y be topological spaces with bases Bx, By, respectively.
Recall that the product topology for X x Y = {(z,y) | z € X, y € Y} has
a base

{UXV|UEB)(, VEBy}.

This topology is actually induced by the family
{px: X xY =X, py : X xY > Y},

where the coordinate projections px and py are defined by px((z,y)) = =
and py((z,y)) =y

Product topology. Let X; be a set for every j € J. The Cartesian product

X:HXj

jeJ
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is the set of the mappings

z:J— | JX; suchthat VjeJ: z(j) € X;.
jeJ
Due to the Axiom of Choice, X is non-empty if all X; are non-empty. The
mapping
pi: X = X;, zw—z;=z(j),

is called the jth coordinate projection. Let (X, ;) be topological spaces.
Let X := [[,.; X; be the Cartesian product. Then the {p; | j € J}-induced
topology on X is called the product topology of X.

If X; =Y forall j € J,itis customary to write

[[Xi=Y'={flf:J-Y}

jeJ

Weak*-topology. Let z — ||z|| be the norm of a normed vector space X
over a field K € {R, C}. The dual space X' = L(X,K) of X is set of bounded
linear functionals f : X — K, having a norm

IfIl:= sup [f(z)].

zeX: [|ofl<1

This endows X' with a Banach space structure. However, it is often better
to use a weaker topology for the dual: Let us define z(f) := f(z) for every
x € X and f € X'; this gives the interpretation X C X" := L(X', K),
because

() = [f (@) < A1 Ml

So we may treat X as a set of functions X’ — K, and we define the weak*-
topology of X' to be the X-induced topology of X'.

Let us state a basic property of induced topologies:

Proposition. Let X have the F-induced topology, and Y be a topological
space. A mapping g : Y — X is continuous if and only if f o g is continuous
for every f € F.
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Proof. 1If g is continuous then the composed mapping f o g is continuous
for every f € F.

Conversely, suppose f; o g is continuous for every f; € F, f: X — Xj.
Let y € Y, V C X be open, g(y) € V. Then there exist {f;, };—; C F and
open sets W;, C X, such that such that

gy) € () £;.0(W;,) C V.
k=1

Let .
U:=[(fiso9) " (W)
k=1
Then U C Y is open, y € U, and ¢g(U) C V; hence g : Y — X is continuous
at an arbitrary point y € Y, i.e. g € C(Y, X) O

Hausdorff preserved in products: It is easy to see that a Cartesian
product of Hausdorff spaces is always Hausdorff: If X = HjEJ Xjand z,y €
X, z # y, then there exists j € J such that z; # y;. Therefore there are
open sets U;, V; C X such that
z; €U y; €V, UinV;=0.
Let U := pj_l(Uj) and V :=p~ (V). Then U,V C X are open,
zelU, yeV, UNnV =0

Also compactness is preserved in products; this is stated in Tihonov’s Theo-
rem (Tychonoff’s Theorem). Before proving this we introduce a tool:

Non-Empty Finite InterSection (NEFIS) property. Let X be a set.
Let NEFIS(X) be the set of those families 7 C P(X) such that every
finite subfamily of F has a non-empty intersection. In other words, a family
F C P(X) belongs to NEFIS(X) if and only if (F' # 0 for every finite
subfamily 7' C F.

Lemma. A topological space X is compact if and only if F ¢ NEFIS(X)
whenever F C P(X) is a family of closed sets satisfying (F = 0.

Proof. Let X be aset, C P(X),and F:={X\U | U € U}. Then

NF=Nx\v)=x\Ju,

veu

so that U is a cover of X if and only if (| F = (). Now the claim follows the
definition of compactness Ul
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Tihonov’s Theorem (1935). Let X; be a compact space for every j € J.
Then X = HXj 1§ compact.
j€J

Proof. To avoid the trivial case, suppose X; # 0 for every j € J. Let
F € NEFIS(X) be afamily of closed sets. In order to prove the compactness
of X we have to show that () F # 0.
Let
P:={Ge€ NEFIS(X) | F C G}.

Let us equip the set P with a partial order relation <:

-
G < M et & gy

The Hausdorff Maximal Principle says that the chain {F} C P belongs
to a maximal chain C' C P. The reader may verify that G := |JC € P is a
maximal element of P.

Notice that the maximal element G may contain non-closed sets. For
every j € J the family

{r;(G) | G e g}
belongs to NEFIS(X;). Define

g = 1{p;(G) | G € G}.

Clearly also G; € NEFI1S(X;), and the elements of G; are closed sets in X;.
Since X is compact, ()G; # 0. Hence we may choose

.’l?j € ﬂgj

The Axiom of Choice provides the existence of the element z := (z;),cs €
X. We shall show that = € (| F, which proves Tihonov’s Theorem.
If V; C X is a neighborhood of z; and G € G then

pi(G)NV; # 0,
because z; € p;(G). Thus
Gnp;'(V;) #0

for every G € G, so that G U {p;l(V])} belongs to P; the maximality of G
implies that
p; (V) €6.

43



Let V € 7x be a neighborhood of . Due to the definition of the product
topology,

YS ﬂp;kl(‘/;k) cVv
k=1

for some finite index set {jx}}p_; C J, where V;, C X, is a neighborhood
of z;,. Due to the maximality of G, any finite intersection of members of G
belongs to G, so that

() r; (Vi) €G-
k=1
Therefore for every G € G and V € V. (z) we have
GNV #0.
Hence z € G for every G € G, yielding

reNG'E NF=NF=N7%

Geg FeF FeF

so that (F # 0 O

Remark. Actually, Tihonov’s Theorem is equivalent to the Axiom of Choice;
we shall not prove this.

Banach—Alaoglu Theorem (1940). Let X be a normed C-vector space
(or a normed R-vector space). The norm-closed unit ball

K :=Bx(0,1)={¢ € X": [g]lx <1}

of the dual space X' is weak*-compact.

Proof. Due to Tihonov,
— X
P:=[[{reC: A <|lz]} = D(O, [|=)
zeX

is compact in the product topology 7p. Any element f € P is a mapping
f:X — C such that f(z) < |z

Hence K = X' N P. Let 7y and 73 be the relative topologies of K inherited
from the weak*-topology 7x of X’ and the product topology 7p of P, re-
spectively. We shall prove that 7 = 7 and that K C P is closed; this would
show that K is a compact Hausdorff space.
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First, let ¢ € X', f € P, S C X, and § > 0. Define

Ulp,S,6) = {veX': ze8=|pr— dx| <},
V(f,8,6) == {geP: zeS=|g(z)— fz)| <4}

Then

U = {U(,S,0)|¢e X', SCX finite, 6 > 0},
V = {V(f,S,6)| feP, SCX finite, § > 0}

are bases for the topologies 7x» and 7p, respectively. Clearly
KnU(¢,S,6)=KnNV(p,S,0d),

so that the topologies 7x: and 7p agree on K, i.e. 7y = .

Still we have to show that K C P is closed. Let f € K C P. First we
show that f is linear. Take z,y € X, \,u € C and § > 0. Choose ¢5 € K
such that

f € V(¢57 {x,y,)\x + :U'y}a 5)

Then
|f(Ar + py) — (Mf (@) + pf(y))]
< [f(Az + py) — ds(Ax + py)| + |9s(Az + py) — (Af () + 1f (y))]
= [f(Az + py) — ds(Az + py)| + [Mdsz — f(z)) + p(dsy — f(y))]
< [f(Az + py) — ds(Ax + py)| + (Al [gsx — f(2)| + |l b5y — f(y)]
< 0 (1 [A A+ |ul).

This holds for every § > 0, so that actually

fOz 4+ py) = Af(2) + nf(y),
f is linear! Moreover, ||f|| < 1, because
[f (@) < [f(z) — dsz| + |poz| < 0+ []].

Hence f € K, K is closed O
Remark. The Banach-Alaoglu Theorem implies that a bounded weak*-
closed subset of the dual space is a compact Hausdorff space in the relative

weak*-topology. However, in a normed space norm-closed balls are compact
if and only if the dimension is finite!
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