6 Banach algebras

Banach algebra. An algebra \mathcal{A} is called a *Banach algebra* if it is a Banach space satisfying

$$||xy|| \le ||x|| \ ||y||$$

for every $x, y \in \mathcal{A}$ and

$$||\mathbb{I}|| = 1.$$

The next exercise is very important:

Exercise*. Let K be a compact space. Show that C(K) is a Banach algebra with the norm $f \mapsto ||f|| = \max_{x \in K} |f(x)|$.

Examples. Let X be a Banach space. Then the Banach space $\mathcal{L}(X)$ of bounded linear operators $X \to X$ is a Banach algebra, when the multiplication is the composition of operators, since

$$||AB|| \le ||A|| ||B||$$

for every $A, B \in \mathcal{L}(X)$; the unit is the identity operator $I: X \to X$, $x \mapsto x$. Actually, this is not far away from characterizing all the Banach algebras:

Theorem. A Banach algebra A is isometrically isomorphic to a norm closed subalgebra of $\mathcal{L}(X)$ for a Banach space X.

Proof. Here $X := \mathcal{A}$. For $x \in \mathcal{A}$, let us define

$$m(x): \mathcal{A} \to \mathcal{A}$$
 by $m(x)y := xy$.

Obviously m(x) is a linear mapping, m(xy) = m(x)m(y), $m(\mathbb{I}_{\mathcal{A}}) = \mathbb{I}_{\mathcal{L}(\mathcal{A})}$, and

$$||m(x)|| = \sup_{y \in \mathcal{A}: ||y|| \le 1} ||xy||$$

$$\leq \sup_{y \in \mathcal{A}: ||y|| \le 1} (||x|| ||y||) = ||x|| = ||m(x)\mathbb{I}_{\mathcal{A}}||$$

$$\leq ||m(x)|| ||\mathbb{I}_{\mathcal{A}}|| = ||m(x)||;$$

briefly, $m = (x \mapsto m(x)) \in \text{Hom}(\mathcal{A}, \mathcal{L}(\mathcal{A}))$ is isometric. Thereby $m(\mathcal{A}) \subset \mathcal{L}(\mathcal{A})$ is a closed subspace and a Banach algebra

Exercise*. Let a Banach space \mathcal{A} be a topological algebra. Equip \mathcal{A} with an equivalent Banach algebra norm.

Exercise. Let \mathcal{A} be a Banach algebra, and let $x, y \in \mathcal{A}$ satisfy

$$x^2 = x, \quad y^2 = y, \quad xy = yx.$$

Show that either x = y or $||x - y|| \ge 1$. Give an example of a Banach algebra \mathcal{A} with elements $x, y \in \mathcal{A}$ such that $x^2 = x \ne y = y^2$ and ||x - y|| < 1.

Proposition. Let \mathcal{A} be a Banach algebra. Then $\operatorname{Hom}(\mathcal{A}, \mathbb{C}) \subset \mathcal{A}'$ and $\|\phi\| = 1$ for every $\phi \in \operatorname{Hom}(\mathcal{A}, \mathbb{C})$.

Proof. Let $x \in \mathcal{A}$, ||x|| < 1. Let

$$y_n := \sum_{i=0}^n x^i,$$

where $x^0 := \mathbb{I}$. If n > m then

$$||y_{n} - y_{m}|| = ||x^{m} + x^{m+1} + \dots + x^{n}||$$

$$\leq ||x||^{m} (1 + ||x|| + \dots + ||x||^{n-m})$$

$$= ||x||^{m} \frac{1 - ||x||^{n-m+1}}{1 - ||x||} \to_{n>m\to\infty} 0;$$

thus $(y_n)_{n=1}^{\infty} \subset \mathcal{A}$ is a Cauchy sequence. There exists $y = \lim_{n \to \infty} y_n \in \mathcal{A}$, because \mathcal{A} is complete. Since $x^n \to 0$ and

$$y_n(\mathbb{I} - x) = \mathbb{I} - x^{n+1} = (\mathbb{I} - x)y_n,$$

we deduce $y = (\mathbb{I} - x)^{-1}$. Suppose $\lambda = \phi(x)$, $|\lambda| > ||x||$; now $||\lambda^{-1}x|| = |\lambda|^{-1} ||x|| < 1$, so that $\mathbb{I} - \lambda^{-1}x$ is invertible. Then

$$1 = \phi(\mathbb{I}) = \phi\left((\mathbb{I} - \lambda^{-1}x)(\mathbb{I} - \lambda^{-1}x)^{-1}\right)$$
$$= \phi\left(\mathbb{I} - \lambda^{-1}x\right) \phi\left((\mathbb{I} - \lambda^{-1}x)^{-1}\right)$$
$$= (1 - \lambda^{-1}\phi(x)) \phi\left((\mathbb{I} - \lambda^{-1}x)^{-1}\right) = 0,$$

a contradiction; hence

$$\forall x \in \mathcal{A} : |\phi(x)| \le ||x||,$$

that is $\|\phi\| \le 1$. Finally, $\phi(\mathbb{I}) = 1$, so that $\|\phi\| = 1$

Lemma. Let \mathcal{A} be a Banach algebra. The set $G(\mathcal{A}) \subset \mathcal{A}$ of its invertible elements is open. The mapping $(x \mapsto x^{-1}) : G(\mathcal{A}) \to G(\mathcal{A})$ is a homeomorphism.

Proof. Take $x \in G(A)$ and $h \in A$. As in the proof of the previous Proposition, we see that

$$x - h = x(\mathbb{I} - x^{-1}h)$$

is invertible if $||x^{-1}|| ||h|| < 1$, that is $||h|| < ||x^{-1}||^{-1}$; thus $G(\mathcal{A}) \subset \mathcal{A}$ is open.

The mapping $x \mapsto x^{-1}$ is clearly its own inverse. Moreover

$$\begin{aligned} \|(x-h)^{-1} - x^{-1}\| &= \|(\mathbb{I} - x^{-1}h)^{-1}x^{-1} - x^{-1}\| \\ &\leq \|(\mathbb{I} - x^{-1}h)^{-1} - \mathbb{I}\| \|x^{-1}\| = \|\sum_{n=1}^{\infty} (x^{-1}h)^n\| \|x^{-1}\| \\ &\leq \|h\| \left(\sum_{n=1}^{\infty} \|x^{-1}\|^{n+1} \|h\|^{n-1}\right) \to_{h\to 0} 0; \end{aligned}$$

hence $x \mapsto x^{-1}$ is a homeomorphism

Exercise. Let \mathcal{A} be a Banach algebra. We say that $x \in \mathcal{A}$ is a topological zero divisor if there exists a sequence $(y_n)_{n=1}^{\infty} \subset \mathcal{A}$ such that $||y_n|| = 1$ for all n and

$$\lim_{n \to \infty} x y_n = 0 = \lim_{n \to \infty} y_n x.$$

- (a) Show that if $(x_n)_{n=1}^{\infty} \subset G(\mathcal{A})$ satisfies $x_n \to x \in \partial G(\mathcal{A})$ then $||x_n^{-1}|| \to \infty$.
- (b) Using this result, show that the boundary points of G(A) are topological zero divisors.
- (c) In what kind of Banach algebras 0 is the only topological zero divisor?

Theorem (Gelfand, 1939). Let A be a Banach algebra and $x \in A$. The spectrum $\sigma(x) \subset \mathbb{C}$ is a non-empty compact set.

Proof. Let $x \in \mathcal{A}$. Then $\sigma(x)$ belongs to a 0-centered disc of radius ||x|| in the complex plane: for if $\lambda \in \mathbb{C}$, $|\lambda| > ||x||$ then $\mathbb{I} - \lambda^{-1}x$ is invertible, equivalently $\lambda \mathbb{I} - x$ is invertible.

The mapping $g: \mathbb{C} \to \mathcal{A}$, $\lambda \mapsto \lambda \mathbb{I} - x$, is continuous; the set $G(\mathcal{A}) \subset \mathcal{A}$ of invertible elements is open, so that

$$\mathbb{C} \setminus \sigma(x) = g^{-1}(G(\mathcal{A}))$$

is open. Thus $\sigma(x) \in \mathbb{C}$ is closed and bounded, i.e. compact by Heine–Borel.

The hard part is to prove the non-emptiness of the spectrum. Let us define the resolvent mapping $R: \mathbb{C} \setminus \sigma(x) \to G(A)$ by

$$R(\lambda) = (\lambda \mathbb{I} - x)^{-1}.$$

We know that this mapping is continuous, because it is composed of continuous mappings

$$(\lambda \mapsto \lambda \mathbb{I} - x) : \mathbb{C} \setminus \sigma(x) \to G(\mathcal{A}) \quad \text{and} \quad (y \mapsto y^{-1}) : G(\mathcal{A}) \to G(\mathcal{A}).$$

We want to show that R is weakly holomorphic, that is $f \circ R \in H(\mathbb{C} \setminus \sigma(x))$ for every $f \in \mathcal{A}' = \mathcal{L}(\mathcal{A}, \mathbb{C})$. Let $z \in \mathbb{C} \setminus \sigma(x)$, $f \in \mathcal{A}'$. Then we calculate

$$\frac{(f \circ R)(z+h) - (f \circ R)(z)}{h} = f\left(\frac{R(z+h) - R(z)}{h}\right)$$

$$= f\left(\frac{R(z+h)R(z)^{-1} - \mathbb{I}}{h}R(z)\right)$$

$$= f\left(\frac{R(z+h)(R(z+h)^{-1} - h\mathbb{I}) - \mathbb{I}}{h}R(z)\right)$$

$$= f(-R(z+h)R(z))$$

$$\rightarrow_{h\to 0} f(-R(z)^2),$$

because f and R are continuous; thus R is weakly holomorphic. Suppose $|\lambda| > ||x||$. Then

$$||R(\lambda)|| = ||(\lambda \mathbb{I} - x)^{-1}|| = |\lambda|^{-1} ||(\mathbb{I} - x/\lambda)^{-1}|| = |\lambda|^{-1} ||\sum_{j=0}^{\infty} (x/\lambda)^{j}||$$

$$\leq |\lambda|^{-1} \sum_{j=0}^{\infty} ||x/\lambda||^{-j} = |\lambda|^{-1} \frac{1}{1 - ||x/\lambda||} = \frac{1}{|\lambda| - ||x||}$$

$$\to_{|\lambda| \to \infty} 0.$$

Thereby

$$(f \circ R)(\lambda) \to_{|\lambda| \to \infty} 0$$

for every $f \in \mathcal{A}'$. To get a contradiction, suppose $\sigma(x) = \emptyset$. Then $f \circ R \in H(\mathbb{C})$ is 0 by Liouville's Theorem (see Appendix), for every $f \in \mathcal{A}'$; the Hahn-Banach Theorem says that then $R(\lambda) = 0$ for every $\lambda \in \mathbb{C}$; this is a contradiction, since $0 \notin G(\mathcal{A})$. Thus $\sigma(x) \neq \emptyset$

Exercise. Let \mathcal{A} be a Banach algebra, $x \in \mathcal{A}$, $\Omega \subset \mathbb{C}$ an open set, and $\sigma(x) \subset \Omega$. Then

$$\exists \delta > 0 \ \forall y \in \mathcal{A} : \|y\| < \delta \Rightarrow \sigma(x+y) \subset \Omega.$$

Corollary (Gelfand-Mazur). Let A be a Banach algebra where $0 \in A$ is the only non-invertible element. Then A is isometrically isomorphic to \mathbb{C} .

Proof. Take $x \in \mathcal{A}$, $x \neq 0$. Since $\sigma(x) \neq \emptyset$, pick $\lambda(x) \in \sigma(x)$. Then $\lambda(x)\mathbb{I} - x$ is non-invertible, so that it must be 0; $x = \lambda(x)\mathbb{I}$. By defining $\lambda(0) = 0$, we have an algebra isomorphism

$$\lambda: \mathcal{A} \to \mathbb{C}$$
.

Moreover,
$$|\lambda(x)| = ||\lambda(x)\mathbb{I}|| = ||x||$$

Exercise. Let \mathcal{A} be a Banach algebra, and suppose that there exists $C < \infty$ such that

$$||x|| \ ||y|| \le C \ ||xy||$$

for every $x, y \in \mathcal{A}$. Show that $\mathcal{A} \cong \mathbb{C}$ isometrically.

Spectral radius. Let \mathcal{A} be a Banach algebra. The *spectral radius* of $x \in \mathcal{A}$ is

$$\rho(x) := \sup_{\lambda \in \sigma(x)} |\lambda|;$$

this is well-defined, because due to Gelfand the spectrum in non-empty. In other words, $\overline{\mathbb{D}(0,\rho(x))}=\{\lambda\in\mathbb{C}:\ |\lambda|\leq\rho(x)\}$ is the smallest 0-centered closed disk containing $\sigma(x)\subset\mathbb{C}$. Notice that $\rho(x)\leq\|x\|$, since $\lambda\mathbb{I}-x=\lambda(\mathbb{I}-x/\lambda)$ is invertible if $|\lambda|>\|x\|$.

Spectral Radius Formula (Beurling, 1938; Gelfand, 1939). Let A be a Banach algebra, $x \in A$. Then

$$\rho(x) = \lim_{n \to \infty} ||x^n||^{1/n}.$$

Proof. For x=0 the claim is trivial, so let us assume that $x\neq 0$. By Gelfand's Theorem, $\sigma(x)\neq\emptyset$. Let $\lambda\in\sigma(x)$ and $n\geq 1$. Notice that in an algebra, if both ab and ba are invertible then the elements a,b are invertible. Therefore

$$\lambda^n \mathbb{I} - x^n = (\lambda \mathbb{I} - x) \left(\sum_{k=0}^{n-1} \lambda^{n-1-k} x^k \right) = \left(\sum_{k=0}^{n-1} \lambda^{n-1-k} x^k \right) (\lambda \mathbb{I} - x)$$

implies that $\lambda^n \in \sigma(x^n)$. Thus $|\lambda^n| \leq ||x^n||$, so that

$$\rho(x) = \sup_{\lambda \in \sigma(x)} |\lambda| \le \liminf_{n \to \infty} ||x^n||^{1/n}.$$

Let $f \in \mathcal{A}'$ and $\lambda \in \mathbb{C}$, $|\lambda| > ||x||$. Then

$$f(R(\lambda)) = f((\lambda \mathbb{I} - x)^{-1}) = f(\lambda^{-1}(\mathbb{I} - \lambda^{-1}x)^{-1})$$
$$= f(\lambda^{-1} \sum_{n=0}^{\infty} \lambda^{-n}x^n)$$
$$= \lambda^{-1} \sum_{n=0}^{\infty} f(\lambda^{-n}x^n).$$

This formula is true also when $|\lambda| > \rho(x)$, because $f \circ R$ is holomorphic in $\mathbb{C} \setminus \sigma(x) \supset \mathbb{C} \setminus \overline{\mathbb{D}(0, \rho(x))}$. Hence if we define $T_{\lambda, x, n} \in \mathcal{A}'' = \mathcal{L}(\mathcal{A}', \mathbb{C})$ by $T_{\lambda, x, n}(f) := f(\lambda^{-n}x^n)$, we obtain

$$\sup_{n\in\mathbb{N}} |T_{\lambda,x,n}(f)| = \sup_{n\in\mathbb{N}} |f(\lambda^{-n}x^n)| < \infty \qquad \text{(when } |\lambda| > \rho(x))$$

for every $f \in \mathcal{A}'$; the Banach–Steinhaus Theorem applied on the family $\{T_{\lambda,x,n}\}_{n\in\mathbb{N}}$ shows that

$$M_{\lambda,x} := \sup_{n \in \mathbb{N}} ||T_{\lambda,x,n}|| < \infty,$$

so that we have

$$\begin{split} \|\lambda^{-n}x^n\| &\stackrel{\mathrm{Hahn-Banach}}{=} & \sup_{f \in \mathcal{A}': \|f\| \leq 1} |f(\lambda^{-n}x^n)| \\ &= & \sup_{f \in \mathcal{A}': \|f\| \leq 1} |T_{\lambda,x,n}(f)| \\ &= & \|T_{\lambda,x,n}\| \\ &\leq & M_{\lambda,x}. \end{split}$$

Hence

$$||x^n||^{1/n} \le M_{\lambda,x}^{1/n} |\lambda| \to_{n \to \infty} |\lambda|,$$

when $|\lambda| > \rho(x)$. Thus

$$\limsup_{n \to \infty} ||x^n||^{1/n} \le \rho(x);$$

collecting the results, the Spectral Radius Formula is verified

Remark 1. The Spectral Radius Formula contains startling information: the spectral radius $\rho(x)$ is purely an algebraic property (though related to a topological algebra), but the quantity $\lim ||x^n||^{1/n}$ relies on both algebraic and metric properties! Yet the results are equal!

Remark 2. $\rho(x)^{-1}$ is the radius of convergence of the \mathcal{A} -valued power series $\lambda \mapsto \sum_{n=0}^{\infty} \lambda^n x^n$.

Remark 3. Let \mathcal{A} be a Banach algebra and \mathcal{B} its Banach subalgebra. If $x \in \mathcal{B}$ then

$$\sigma_{\mathcal{A}}(x) \subset \sigma_{\mathcal{B}}(x)$$

and the inclusion can be proper, but the spectral radii for both Banach algebras are the same, since

$$\rho_{\mathcal{A}}(x) = \lim_{n \to \infty} ||x^n||^{1/n} = \rho_{\mathcal{B}}(x).$$

Exercise. Let \mathcal{A} be a Banach algebra, $x, y \in \mathcal{A}$. Show that $\rho(xy) = \rho(yx)$. Show that if $x \in \mathcal{A}$ is *nilpotent* (i.e. $x^k = 0$ for some $k \in \mathbb{N}$) then $\sigma(x) = \{0\}$. Give examples of nilpotent linear operators.

Exercise. Let \mathcal{A} be a Banach algebra and $x, y \in \mathcal{A}$ such that xy = yx. Prove that $\rho(xy) \leq \rho(x)\rho(y)$.