12 Algebras of Lipschitz functions

This section is devoted to metric properties, not merely metrizability. We
shall study how to recover the metric space structure from a normed algebra
of Lipschitz functions in the spirit of the Gelfand theory of commutative
Banach algebras. In the sequel, K € {R, C}.

Lipschitz mappings. Let (X, dx), (Y, dy) be metric spaces; often we drop
the subscripts from metrics, i.e. write d for both dx and dy without confu-
sion. A mapping f: X — Y is called Lipschitz if

AC < oo Vz,y € X : dy(f(x), f(y)) < C dx(z,y);
then the Lipschitz constant of fis

L(f) = inf{CeR |Vz,ye X: d(f(z), f(y)) <Cd(z,y)}
d(f(z), f(y))
swexX: oty A(T,Y) .

A mapping f : X — Y is called bi-Lipschitz (or a quasi-isometry) if it is
bijective and f, f~! are both Lipschitz.

Examples.

1. Lipschitz mappings are uniformly continuous, but not the vice versa:
for instance, (¢t — /1) : [0,1] — R is uniformly continuous, but not
Lipschitz.

2. The distance from x € X to a non-empty set A C X is defined by
d(z,A) =d(A,z) := i161£ d(z,a),
Then dy = (z +— d(z, A)) : X — R is a Lipschitz mapping, L(ds) < 1;

notice that d4(x) = 0 if and only if z € A. Thus there are plenty of
Lipschitz functions on a metric space.

Exercise*. Let A,B C X be non-empty sets. Assume that the distance
between A, B is positive, i.e. d(A4, B) > 0, where

d(A,B) := inf d(a,b).

a€A, beB

Show that there exists a Lipschitz function f : X — R such that

0<f<1, f(A)=A{0}, f(B)={1}.
This is the Lipschitz analogy of Urysohn’s Lemma.
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Tietze’s Extension Theorem (Lipschitz analogy). Let X be a metric
space, A C X mnon-empty, and f : A — K bounded. Then there exists
F: X — K such that

L(F) = L(f), when K = R,

Fla=f, |Fllex) = Ifllcs {L(F) <2 L(f), when K =C.

Proof. Here ||f||c(a) := sup,e4 | f(z)]. When L(f) = oo, define F': X — K
by F|a=f, F(X \ A) = {0}. For the rest of the proof, suppose L(f) < oo.
Let us start with the case K = R. Define G : X — R by

G(x) = inf(f(a) + L(f) d(z, a)),

a€A

so that G|4 = f, as the reader may verify. Define F': X — R by

Pz) = | 6@ when |G(2)] < ||fllow
o 2, when |G(2)| > || fllow

Clearly Fa = f, ||[Fllcx) = Iflleca), and L(f) < L(F) < L(G); let us then
show that L(G) = L(f). Suppose z,y € X. Take € > 0. Choose a. € A such

that G(y) > f(a.) + L(f) d(y,a.) —&. Then
G(z) = G(y) = int(f(a)+ L(f) d(z,a)) = G(y)
< (flae) + L(f) d(z, ac)) = (f(ac) + L(f) d(y, ac) —€)
= L(f) (d(z, as) —d(y,a.)) +¢
< L(f) d(z,y) +

which yields G(z) — G(y) < L(f) d(z,y). Symmetrically, G(y) — G(z) <
L(f) d(z,y), so that |G(z) — G(y)| < L(f) d(z,y). Hence we have proven
that L(G) < L(f), which completes the proof of the case K = R.

Let us consider the case K = C. Let f; = R(f), fo = S(f). Then using
the R-result we can extend fi, fo : A — R to functions Fi,F5 : X — R
satisfying

Fila=f;, L(F;) = L(f;) < L(f), [Fjllex) = llfillecy-

Let us define G : X — C by G = F} + iF5, and define F' : X — C by

Fla) = 4 6@ when |G(2)] < [Iflleca
Il ©&, when |G(@)| > || fllow)
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Then ||F|lox) = || fllc(a). Moreover, we obtain L(G) < v/2 L(f), because
2| < V2 max{|R(2)|,|3(2)|} for every z € C; hence

L(f) < L(F) < L(G) £ V2 L(f),

completing the proof O

Lipschitz spaces. Let X be a metric space. Let
Lip(X) = Lip(X,K) :={f : X = K: || flluip = max(|| f|lcx), L(f)) < oo}

A pointed metric space is a metric space X with a distinguished element, the
base point ex = e € X; let

Lipy(X) = Lipy(X,K) :={f : X = K[ f(e) =0, L(f) < o0}

Notice that if the diameter diam(X) = sup, ,cx d(x,y) of the space is finite
then Lip,(X) is contained in Lip(X),

Exercise*. Show that Lip(X) is a Banach space with the norm f +— || f||Lip-
Show that Lipy(X) is a Banach space with the norm f — L(f). Show that
these spaces are topological algebras if diam(X) < oco.

Arens—Eells space. Let X be a metric space, z,y € X. The zy-atom is
the function mg, : X — K defined by

May(2) =1, Mygy(y) = —1, myy(2) = 0 otherwise.

A molecule on X is a linear combination m = Z?Zl aj My, of such atoms;
then {z € X | m(z) # 0} is a finite set and ) m(z) = 0. Let M denote
the K-vector space of the molecules on X. Notice that a molecule may have
several representations as a linear combination of atoms. Let us define a
mapping m ~ ||m|[ag : M — R by

bl = {3l ) €2 = Y |

j=1 j=1

obviously this is a seminorm on the space of the molecules, but we shall
prove that it is actually a norm; for the time being, we have to define the
Arens—Fells space AE(X) for X by completing the vector space M with
respect to the Arens-Eells-seminorm m — ||m| 4z modulo the subspace

{v: |lvllap =0}
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Theorem. The Banach space dual of AE(X) is isometrically isomorphic
to Lipy(X).

Proof. Let us define two linear mappings 77 : AE(X)" — Lipy(X) and
T, : Lipy(X) — AE(X) by

(T10)(x) == $(mae), (Taf)(m) =) fly

yeX

where e € X is the base point, and m € M is a molecule (so that T,f is
uniquely extended to a linear functional on AE(X)). These definitions are
sound indeed: Firstly,

(Tﬂﬁ)(@) = ¢(mee) = ¢(O) = 07

(T10)(2) — (T2) ()| = |¢(Mae — mye)| = |d(may)| < (|Gl [yl a5
[0l d(z,y),
so that T1¢ € Lipy(X) and L(T1¢) < ||¢||; we have even proven that 77 €

L(AE(X)', Lipy(X)) with norm ||7%|| < 1. Secondly, let € > 0 and m € M.
We may choose (a;)7-; C K and ((x,y;))j-; C X x X such that

IA

n n
m = Zaj Mazjy; Z laj| d(z,y;) < [Im|las +e.

Then
(Taf)(m)| = |(Tof) Zaj Mgy, Za] f(yj))
< D lagl 1 () = £(5)]

< L(f) ZW\ d(z,y;)
< L(f) (Imllae +¢),

meaning that 7, € L£(Lipy(X), AE(X)') with norm [|T5|| < 1. Next we notice
that Tp = T7 %

(T1(Tof)) (@) = (Tof)(mae) = D f(y) meely) = f(2) = f(e) = f(2),

yeX
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(L(T1i9))(m) = Y (Tid)(y) mly) = Y d(mye) m(y)

yeX yeX

= ¢ (Z m(y) mye) = ¢(m)

yeX

Finally, for f € Lip,(X) we have
L(f) = L(LT2f) < Tl T2/l < T2 f1] < (T2l L(f) < L(f),

so that T, T} = T{l are isometries O

Remark. Let us denote

= ¥ f@) ma

zeX

where

if m € M. From now on, the weak*-topology of Lip,(X) refers to the AE(X)-
induced topology, with the interpretation

AE(X) C AE(X)" 2 Lip,y(X)".

Next we show how X is canonically embedded in the Arens—Eells space:

Corollary. The Arens—Eells seminorm m > ||ml||ag is a norm, and the
mapping (x — myge) : X — AE(X) is an isometry.

Proof. Take m € M, m # 0. Choose zq € X such that m(zy) # 0. Due to
the theorem above,

Hahn—Banach
[mllag " = sup  [(f,m)| = sup
fEAB(X):||fII<1 feLipo(X):L(f)<

Zf

zeX

Let A := {e}U{z € X | m(z) # 0}. Let r := d(xy, A\{zo}). By the Lipschitz
analogy of Tietze’s Extension Theorem, there exists fy € Lipy(X,R) such
that fo(zo) =7 >0, fo(A\ {z0}) = {0}, and L(fy) = 1. Thereby

D folw

reX

lmllap > |(fo,m)| =

= | fo(zo) m(zo)| > 0,
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i.e. m — ||m| g is actually a norm. N
Let z,y € X. Clearly |mgyl|lar < d(z,y). Define d,(2) := d(z,y)—d(e, y),
where e € X is the base point. Now d, € Lipy(X) and L(d,) = 1, so that

3" dy(2) muy(2)] = ldy(z) — dy(y)|

z€X

Imayllae > [dy, mey)| =

= d(z,y).

Hence [|mge —myellap = [|mayllap = d(z,y) 0

Nets and convergence. A partial order (J, <) is called a directed if
VijeJ3keJ: i<k j<k

A net in a topological space (X, 7) is a family (z;),e; C X, where J = (J, <)
is directed. A net (x;);jes C X converges to a point x € X, denoted by

Tj =T OI T —rjes T OF :v:hmacjzglerr}xj,

if for every U € V,(x) there exists jy € J such that z; € U whenever jy < j.

An example of a net is a sequence (z,)nen C X, where N has the usual
partial order; sequences characterize topology in spaces of countable local
bases, for instance metric spaces. But there are more complicated topologies,
where sequences are not enough; for example, weak*-topology for infinite-
dimensional spaces.

Exercise*. Nets can be used to characterize the topology: Let (X, 7) be a
topological space and A C X. Show that + € A C X if and only if there
exists a net (z;)je; C A such that z; — z. Let f : X — Y show that
felCX,)Y)ifandonlyifz; = z€ X = f(z;) = f(z) €Y.

(Hint: define a partial order relation on V,(z) by U <V & V CU.)

Lemma. Let E be a Banach space. The weak*-converging nets in E' are
bounded.

Proof. Let f; — f in the weak*-topology of E', i.e. (f;,¢) — (f,¢) € K
for every ¢ € E. Define T; : E — K by ¢ — (f;, ¢). Since Tj¢ — (f, ¢) € K,
we have sup,c; [Tj¢| < oo for every ¢ € E, so that C' := sup,¢, ||T}|| < oo
according to the Banach—Steinhaus Theorem. Thereby

Hahn—Banach Hahn—Banach
161 ="0 sup [(fy 00 = sup  [Tiel TTTETTT|T < C
PeE:||¢l|<1 PeE:||¢||<1
so that the net (f;);e; C E' is bounded O
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Proposition. On bounded subsets of Lipy(X) the weak*-topology is the
topology of pointwise convergence. Moreover, if X is compact, on bounded
sets these topologies coincide with the topology of uniform convergence.

Proof. Let & C Lipy(X) be a bounded set containing a net (f;) ;e such that
f; — f in the weak*-topology. Endow the norm-closure £ with the relative

weak*-topology 71, and also with the topology 7» of pointwise convergence.
If z € X then

fi(@) = fi(2) = fi(e) = {fj: Mae) = (fimae) = f(2) = f(e) = f(2),

i.e. f; — f pointwise. This means that the topology of pointwise convergence
is weaker than the weak*-topology, 72 C 7. Now 7y is compact due to the
Banach—Alaoglu Theorem, and of course 75 is Hausdorff; hence 7 = 75, the
weak*-topology and the topology of the pointwise convergence coincide on
bounded subsets.

Now suppose X is a compact metric space. Uniform convergence trivially
implies pointwise convergence. Let (f;);c; C £ be as above, f; — f point-
wise. Since £ is bounded, there exists C' < oo such that L(g) < C for every
g € €. Tt is easy to check that L(f) < C. Take ¢ > 0. Since X is compact,
there exists {xy},=; C X such that

Vee X ke {l,--- n}: dz,z) < e.
Due to the pointwise convergence f; — f, there exists j. € J such that

\fi(we) = flae)] < e

for every k € {1,---,n.} whenever j. < j. Take z € X. Take k €
{1,---,n.} such that d(z,z;) < e. Then

|fi(z) = f(=)| (@) = fi(@e)| + | fi(e) — f (@) + | f (@) = f(2)]
L(fj) d(xa xk) tet L(f) d(xka .’L’)
Ce+e+Ce = (20+1) e

ININ A

Thereby || f;— f|lc(x) — 0; pointwise convergence on bounded subsets implies
uniform convergence, when X is compact (]

Algebra Lip,(X). Let X be a metric space such that diam(X) < oo.
In the sequel, we shall call Lip,(X) an algebra, even though I ¢ Lip,(X).
An algebra homomorphism between such non-unital algebras is a linear and
multiplicative mapping; then even the 0-mapping is a homomorphism!
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Proposition. Let X,Y be metric spaces with finite diameters, with the
respective base points ex,ey. Let g : Y — X be a Lipschitz mapping such
that g(ey) = ex. Then the mapping

L, : Lipy(X) — Lipy(Y), f—= fouy,

is an algebra homomorphism, and ||L4|| = L(g).

Proof. If f € Lipy(X) and z,y € Y then

f(g(2)) = flg(w)] < L(f) d(g(z), 9(y)) < L(f) L(g) d(z,y).

Hence L(L,f) = L(f o g) < L(f) L(g), implying || Ly|| < L(g). Take yo € Y.

Define fq € Lipy(X) by fo(z) := d(=, g(y0)) — d(ex, g(y0)), so that L(fy) = 1.
Take y € Y, y # yo. Then

|Lgll > L(L,(fo))
|(Lgfo)(y) — (Lo o) (o) _ dl9(y), 9(w0))
d(y, vo) d(y, o)

so that ||L,|| > L(g); hence ||Ly|| = L(g).
If A € K and f,h € Lipy(X) then
LyAf)=(Af)eg=A(foyg) =X Lyf,
Ly(f+h)=(f+h)og=fog+hog=Lyf + Lgh,
Ly(fh) = (fh)og=(fog)(hog)=(Lyf)(Lgh),

so that L, is a homomorphism [l

>

Order-completeness. Non-empty B C Lip(X,R) is called order-complete
if
sup G,infG € B

for every bounded family G C B. Here supremums and infimums are point-
wise, naturally.

Uniform separation. A family F C Lipy(X) separates uniformly the
points of X if

3C <ocoVz,y€ X 3g€ F: L(g) < C, |g(z) — g(y)| = d(z,y).

In a striking resemblance with the “classical” Stone-Weierstrass Theorem,
we have the following:
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Theorem (Lipschitz Stone—Weierstrass). Let X be a compact metric
space. Let A be an involutive, weak*-closed subalgebra of Lipy(X) separating
the points of X uniformly. Then A = Lipy(X).

Proof. Asin the proof of the “classical” Stone—Weierstrass Theorem, invo-
lutivity justifies our concentration on the R-scalar case, where the involution
is trivial, f* = f. Hence we assume that A is a weak*-closed R-subalgebra
of Lipy(X,R) separating the points of X uniformly.

Let us show that B = A + RI is closed under the pointwise convergence
of bounded nets. Let (g;)jes C B be a bounded net converging to pointwise
to g € Lip(X); here g; = f; + A\;I with f; € A and \; € R. Especially

A= file) + A; = gj(e) = gle) € R

Thus

fiz) = gj(x) = A; — g(z) — g(e) €R,
ie. f; = g — g(e)l pointwise. But (f;)jes C A is a bounded net, so that
fi = g—g(e)l in the weak*-topology; since A is weak*-closed, g — g(e)I € A.
Thereby

g=(g—-g(e)+g(e)le A+RI =5;

B is closed under the pointwise convergence of bounded nets.
Let us show that B is order-complete. First, let g € B. Take ¢ > 0. Let

ge(z) :=/g(x)? + 2.

By the Weierstrass Approximation Theorem, there exists a sequence (P.,)5,
of real-valued polynomials such that P.,(0) = ¢ and

d t

Pl(t) =noeo V2 +62 = N
uniformly on [—||g||c(x), [|9]lc(x)]; consequently, (P.,(g))s>; C Bis abounded
sequence, converging uniformly to g.; hence P.,(g9) — g¢. also pointwise.
Since B is closed under the pointwise convergence of bounded nets, we deduce
ge € B; consequently, (g.)o<e<1 is a bounded net in B, so that go := lim,_,o+ g,
belongs to B. But go(z) = |g(z)|, so that g € B implies |g| € B. Therefore if
f,g € B then

maX(f’g):f+g+|f+g|’ _[f+g |f+4

belong to B. Let G C B be a bounded non-empty family. Let H C Lip(X, R)
be the smallest family closed under taking maximums and minimums and
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containing G. Now H C B, since B is closed under taking maximums and
minimums. Moreover, H is bounded. Clearly

supG =supH € Lip(X,R) and infG =infH € Lip(X,R).

Let g := supG € Lip(X,R). Take ¢ > 0. For each x € X there exists
gz € G such that g(z) — e < g,(x). Due to the continuity of g,, there exists
U, € V(z) such that g(y) — ¢ < g.(y) for every y € U,. Then {U, | z € X}
is an open cover of the compact space X, so that there is a finite subcover
{Us; | 1 <j < n}. Let he :== max(gs,,** ,Y,) € H- Then

g(x) —e < he(x) < g(z)

for every x € X, so that (h.)o<e<1 C H C B is a bounded net, h. —.0+ g.
Hence supG = g € B, because B is closed under the pointwise convergence of
bounded nets. Similarly one proves that inf G € B. Thus B is order-complete.

Take f € Lipy(X,R). We have to show that f € A. We may assume
that L(f) < 1. Due to the uniform separation, for every x,y € X there
exists g, € A such that L(g,,) < C (C does not depend on z,y € X) and

192y(%) = Guy(y)| = d(z,y). Since |f(z) = f(y)| < L(f) d(z,y) < d(,y)
and since A is an algebra, there exists h,, € A satisfying hyy(x) — hyy(y) =

f(z) — f(y) and L(hyy) < C. Define f,, € B by
oy = hay — (hay(y) — f(y))L.
Then foy(z) = f(z) and foy(y) = f(y), L(fzy) = L(hsy) < C, and
[ fayllew < Mlhaylle) + ey (y)| + £ (m)] < 2C + 1) r(X),

where 7(X) = sup,cyx d(z,e) < oo is the “radius” of the space. The family
(foy)zyex C B is hence bounded; due to the order-completeness of B,

= inf su
f zeX ye)I? fzy

belongs to B; but f(e) =0, so that f € A d

Quotient metrics. Let X be a compact metric space and A C Lipy(X) be
an involutive, weak*-closed subalgebra. Let R4 be the equivalence relation
definitjon
(z,y) € Ry “EX" Vfe A: f(z) = f(y).
Let [z] :={y € X | (z,y) € R4}. Let usendow X4 := X/R4 = {[z] |z € X}

with the metric

dx,([z],[y]) == sup [f(z) = f(y)l.

feA:L(f)<1

Let 7 = (z = [7]) : X — X4. Recall that this induces a homomorphism
Ly = (f = fom): Lipy(X.a) — Lipy(X).
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Corollary. Let X be a compact metric space, and let A be an involutive,
weak*-closed subalgebra of Lipy(X). Then L, : Lipy(X4) — A C Lipy(X) is
a bounded algebra isomorphism Lipy(X 4) = A with a bounded inverse.

Exercise*. Prove the previous Corollary.

Exercise*. Show that weak*-closed ideals of Lipy(X) are involutive, when
X is compact. (Hint: Lipschitz—Stone-Weierstrass.)

Varieties and ideals. Let X be a metric space, S C X, and J C Lipy(X).
Then
Z(S) :=={f € Lipy(X) |Vz € S: f(z) =0}
is a weak*-closed ideal of Lipy(X) (the ideal of S), and
V(J)={zeX |VfeT: f(z)=0}
is a closed subset of X (the variety of J).

Theorem. Let X be a compact metric space, J be a weak*-closed ideal of
Lipy(X). Then J =Z(V(J)).

Exercise*. Prove the previous theorem. (Hint: show that d(z,V(J)) =
dx, ([z],V(J)) for every x € X, use Lipschitz-Stone-Weierstrass.)

Corollary. Let X be a compact metric space, and let w : Lipy(X) — K
be an algebra homomorphism. Then w is weak*-continuous if and only if
w=wg = (x> f(x)) for somez € X.

Proof. If w, := (z — f(z)) : Lipy(X) — K then w, = my, € AE(X) in
the sense that (f,w;) = f(x) = (f, Mge); hence evaluation homomorphisms
are weak*-continuous.

Conversely, let w : Lipy(X) — K be a weak*-continuous homomorphism.
Then Ker(w) is an weak*-closed ideal of Lipy(X), hence involutive. Thus
by the previous Theorem Ker(w) = Z(V) for some V' C X. Notice that
0 = we; assume that w # 0. Since w is a surjective linear mapping onto K,
Ker(w) must be of co-dimension 1 in Lipy(X), and thereby V = {e,z} for
some x € X. Hence w = (f — Af(x)) for some A € K, A # 0. Choose
f € Lipy(X) such that f(z) =1, so that

A= wlf) = () = wlr)? = 2
This yields A = 1, i.e. w=w, = (f — f(z)) O
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Spectra. In these lecture notes we started with unital algebras (which
we simply called “algebras”). At the present, we have encountered non-
unital algebras, e.g. Lipy(X) and its ideals on a compact metric space
X. In the sequel, let the word “algebra” stand for both unital and non-
unital algebras. We say that a homomorphism is a linear multiplicative
mapping between algebras such that if both algebras are unital then one
unit element is mapped to another; the set of homomorphisms A — B is
denoted by Hom(.A, B). Notice that 0 € Hom(.A, B) if and only if A or B is
non-unital. With these nominations, let the spectrum of a Banach space and
a commutative topological algebra A be

Spec(A) := Hom(A, K).
If furthermore A = E’ for a Banach space E, let
Spec”” (A) := {w € Spec(A) | w is weak*—continuous}.

Endow all these spectra with the metric given by the norm of the Banach
space A'; there are also the relative weak*-topologies of A’ on the spectra.

Theorem. Let X be a compact metric space. Then the metric topology and
the relative weak*-topology of Spec®” (Lipy(X)) are the same, and X is iso-
metric to Spec”” (Lipy(X)). Moreover, Spec® (Lipy(X)) = Spec(Lipy(X)).

Proof. Let us denote A := Lip,(X). The weak*-topology on K := Spec® (.A)
is the topology induced by the family {f | f € A}, where f: K — K is de-

~

fined by f(w) := w(f) (sort of Gelfand transform).
The previous Corollary indicates that K is the set of evaluation homo-
morphisms w, = (f — f(z)), and we know that

v=(z > Mpe=wg): X > AE(X) C A

is an isometry. Hence X is isometric to K.

The norm topology of A’ is stronger than the weak*-topology, so that the
metric topology on K is stronger than the relative weak*-topology. Notice
that f, € A, where fy(w;) = fy(z) = d(z,y) — d(e, y); hence f, : K — R is

-1
weak*-continuous on K, so that f, (U) C K is weak*-open for every open
set U C R. Thus the metric ball

B(wy,e) = {wy: |wa —wyl| <e} = {ws: d(z,y) < e}
= {w;: fy(wz) <e—dey)}
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is a weak*-open set. Clearly {B(wy,e) | vy € X, € > 0} is a basis for the
metric topology of the spectrum; thereby the metric topology is weaker than
the weak*-topology. Consequently, the topologies must be the same.

Let us extend w € Spec(A) C A’ linearly to @ : Lip(X) — K by setting
w(I) = 1. Then w € Spec(Lip(X)). Assume that for every x € X there
exists f, € Ker(w) such that f,(z) # 0. Then pick a neighborhood U, € V()
such that 0 ¢ f,(U;). Due to the compactness of X we may pick a finite
subcover {U,,}"_, out of the open cover {U, | * € X}. Then

F=) fasl? =D Fay fy € Ker(@);
j=1 j=1

so f belongs to an ideal of Lip(X), but on the other hand f(x) > 0 for every
x € X, so that 1/f € Lip(X) as the reader may verify — a contradiction.
Hence there exists x € X such that f(z) = 0 for every f € Ker(w). The
reader may prove analogies of the Lipschitz Stone-Weierstrass Theorem and
its consequences replacing (non-unital) subalgebras of Lip,(X) by (unital)
subalgebras of Lip(X); of course, the weak*-convergence has to be replaced
by the pointwise convergence of bounded nets; then it follows that Ker(w) =
{f € Lip(X) | f(z) = 0}, which would imply that & = (f — f(x)).

Hence w = (f — f(x)) for some z € X, and consequently w = w,.

Evaluation homomorphisms are weak*-continuous, so that we have proven
that Spec(A) = K O

Theorem. Let A be a Banach space and a non-unital commutative topo-
logical algebra, and endow Spec(A) with the relative metric of A'. Then
Spec(A) is a complete pointed metric space of finite diameter, and the ez-
tended Gelfand transform

(f = f) : A= Lipy(Spec(A)),
(where f(w) :=w(f) for f € A and w € Spec(A)) is of norm < 1.

Proof. We may always endow A with an equivalent Banach algebra norm
(even though the algebra is non-unital). From the Gelfand theory of com-
mutative Banach algebras, we know that Spec(.A) is a bounded weak*-closed
(even weak*-compact) subset of A’; hence the metric is complete, and the
diameter is finite.

Now let z — ||z|| be the original norm of A. Let ¢, € Spec(A). Then

Z(¢) — 2()| = [(¢ — ¥)(@)| < [l¢ — | ||,
so that L(z) < ||z||. Notice that Z(0) = 0, so that the proof is complete [
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Theorem. Let A be a commutative Banach algebra, and endow Spec(A)
with the relative metric of A'. Then Spec(.A) is a complete metric space of

diameter at most 2, and the Gelfand transform (f — f) : A — Lip(Spec(A))
15 of norm 1.

Proof. In the Gelfand theory we have seen that Spec(A) belongs to the
closed unit ball of A’, so that the diameter of the spectrum is at most 2. If
¢ € Spec(A) and = € A then |Z(¢)| = |¢(z)| < ||z||, and the rest of the proof
is as in the previous Theorem O

Remark. Let A be a Banach space and a non-unital topological algebra.

If Spec(.A) is compact in the metric topology then the metric topology is the
relative weak*-topology, and Lip,(Spec(A)) C C(Spec(.A)).
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