12 Algebras of Lipschitz functions

This section is devoted to metric properties, not merely metrizability. We shall study how to recover the metric space structure from a normed algebra of Lipschitz functions in the spirit of the Gelfand theory of commutative Banach algebras. In the sequel, $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$.

Lipschitz mappings. Let $(X, d_X), (Y, d_Y)$ be metric spaces; often we drop the subscripts from metrics, i.e. write d for both d_X and d_Y without confusion. A mapping $f: X \to Y$ is called Lipschitz if

$$\exists C < \infty \ \forall x, y \in X : \ d_Y(f(x), f(y)) \le C \ d_X(x, y);$$

then the Lipschitz constant of f is

$$L(f) := \inf\{C \in \mathbb{R} \mid \forall x, y \in X : d(f(x), f(y)) \le C \ d(x, y)\}$$
$$= \sup_{x, y \in X: \ x \ne y} \frac{d(f(x), f(y))}{d(x, y)}.$$

A mapping $f: X \to Y$ is called bi-Lipschitz (or a quasi-isometry) if it is bijective and f, f^{-1} are both Lipschitz.

Examples.

- 1. Lipschitz mappings are uniformly continuous, but not the vice versa: for instance, $(t \mapsto \sqrt{t}) : [0,1] \to \mathbb{R}$ is uniformly continuous, but not Lipschitz.
- 2. The distance from $x \in X$ to a non-empty set $A \subset X$ is defined by

$$d(x, A) = d(A, x) := \inf_{a \in A} d(x, a),$$

Then $d_A = (x \mapsto d(x, A)) : X \to \mathbb{R}$ is a Lipschitz mapping, $L(d_A) \leq 1$; notice that $d_A(x) = 0$ if and only if $x \in \overline{A}$. Thus there are plenty of Lipschitz functions on a metric space.

Exercise*. Let $A, B \subset X$ be non-empty sets. Assume that the distance between A, B is positive, i.e. d(A, B) > 0, where

$$d(A, B) := \inf_{a \in A, b \in B} d(a, b).$$

Show that there exists a Lipschitz function $f: X \to \mathbb{R}$ such that

$$0 \le f \le 1$$
, $f(A) = \{0\}$, $f(B) = \{1\}$.

This is the Lipschitz analogy of Urysohn's Lemma.

Tietze's Extension Theorem (Lipschitz analogy). Let X be a metric space, $A \subset X$ non-empty, and $f : A \to \mathbb{K}$ bounded. Then there exists $F : X \to \mathbb{K}$ such that

$$F|_A = f, \quad ||F||_{C(X)} = ||f||_{C(A)}, \quad \begin{cases} L(F) = L(f), & \text{when } \mathbb{K} = \mathbb{R}, \\ L(F) \le \sqrt{2} \ L(f), & \text{when } \mathbb{K} = \mathbb{C}. \end{cases}$$

Proof. Here $||f||_{C(A)} := \sup_{x \in A} |f(x)|$. When $L(f) = \infty$, define $F : X \to \mathbb{K}$ by $F|_A = f$, $F(X \setminus A) = \{0\}$. For the rest of the proof, suppose $L(f) < \infty$. Let us start with the case $\mathbb{K} = \mathbb{R}$. Define $G : X \to \mathbb{R}$ by

$$G(x) = \inf_{a \in A} (f(a) + L(f) \ d(x, a)),$$

so that $G|_A = f$, as the reader may verify. Define $F: X \to \mathbb{R}$ by

$$F(x) = \begin{cases} G(x), & \text{when } |G(x)| \le ||f||_{C(A)}, \\ ||f||_{C(A)} \frac{G(x)}{|G(x)|}, & \text{when } |G(x)| > ||f||_{C(A)}. \end{cases}$$

Clearly $F|_A = f$, $||F||_{C(X)} = ||f||_{C(A)}$, and $L(f) \leq L(F) \leq L(G)$; let us then show that L(G) = L(f). Suppose $x, y \in X$. Take $\varepsilon > 0$. Choose $a_{\varepsilon} \in A$ such that $G(y) \geq f(a_{\varepsilon}) + L(f) d(y, a_{\varepsilon}) - \varepsilon$. Then

$$G(x) - G(y) = \inf_{a \in A} (f(a) + L(f) \ d(x, a)) - G(y)$$

$$\leq (f(a_{\varepsilon}) + L(f) \ d(x, a_{\varepsilon})) - (f(a_{\varepsilon}) + L(f) \ d(y, a_{\varepsilon}) - \varepsilon)$$

$$= L(f) \ (d(x, a_{\varepsilon}) - d(y, a_{\varepsilon})) + \varepsilon$$

$$\leq L(f) \ d(x, y) + \varepsilon,$$

which yields $G(x) - G(y) \leq L(f) \ d(x, y)$. Symmetrically, $G(y) - G(x) \leq L(f) \ d(x, y)$, so that $|G(x) - G(y)| \leq L(f) \ d(x, y)$. Hence we have proven that $L(G) \leq L(f)$, which completes the proof of the case $\mathbb{K} = \mathbb{R}$.

Let us consider the case $\mathbb{K} = \mathbb{C}$. Let $f_1 = \Re(f)$, $f_2 = \Im(f)$. Then using the \mathbb{R} -result we can extend $f_1, f_2 : A \to \mathbb{R}$ to functions $F_1, F_2 : X \to \mathbb{R}$ satisfying

$$F_j|_A = f_j, \quad L(F_j) = L(f_j) \le L(f), \quad ||F_j||_{C(X)} = ||f_j||_{C(A)}.$$

Let us define $G: X \to \mathbb{C}$ by $G = F_1 + iF_2$, and define $F: X \to \mathbb{C}$ by

$$F(x) = \begin{cases} G(x), & \text{when } |G(x)| \le ||f||_{C(A)}, \\ ||f||_{C(A)} \frac{G(x)}{|G(x)|}, & \text{when } |G(x)| > ||f||_{C(A)}. \end{cases}$$

Then $||F||_{C(X)} = ||f||_{C(A)}$. Moreover, we obtain $L(G) \leq \sqrt{2} L(f)$, because $|z| \leq \sqrt{2} \max\{|\Re(z)|, |\Im(z)|\}$ for every $z \in \mathbb{C}$; hence

$$L(f) \le L(F) \le L(G) \le \sqrt{2} L(f),$$

completing the proof

Lipschitz spaces. Let X be a metric space. Let

$$\operatorname{Lip}(X) = \operatorname{Lip}(X, \mathbb{K}) := \{ f : X \to \mathbb{K} : \|f\|_{\operatorname{Lip}} = \max(\|f\|_{C(X)}, L(f)) < \infty \}.$$

A pointed metric space is a metric space X with a distinguished element, the base point $e_X = e \in X$; let

$$\text{Lip}_0(X) = \text{Lip}_0(X, \mathbb{K}) := \{ f : X \to \mathbb{K} \mid f(e) = 0, \ L(f) < \infty \}.$$

Notice that if the diameter $\operatorname{diam}(X) = \sup_{x,y \in X} d(x,y)$ of the space is finite then $\operatorname{Lip}_0(X)$ is contained in $\operatorname{Lip}(X)$,

Exercise*. Show that $\operatorname{Lip}(X)$ is a Banach space with the norm $f \mapsto ||f||_{\operatorname{Lip}}$. Show that $\operatorname{Lip}_0(X)$ is a Banach space with the norm $f \mapsto L(f)$. Show that these spaces are topological algebras if $\operatorname{diam}(X) < \infty$.

Arens–Eells space. Let X be a metric space, $x, y \in X$. The xy-atom is the function $m_{xy}: X \to \mathbb{K}$ defined by

$$m_{xy}(x) = 1$$
, $m_{xy}(y) = -1$, $m_{xy}(z) = 0$ otherwise.

A molecule on X is a linear combination $m = \sum_{j=1}^n a_j \ m_{x_j y_j}$ of such atoms; then $\{x \in X \mid m(x) \neq 0\}$ is a finite set and $\sum_{x \in X} m(x) = 0$. Let M denote the \mathbb{K} -vector space of the molecules on X. Notice that a molecule may have several representations as a linear combination of atoms. Let us define a mapping $m \mapsto ||m||_{AE} : M \to \mathbb{R}$ by

$$||m||_{AE} := \inf \left\{ \sum_{j=1}^{n} |a_j| \ d(x_j, y_j) : \ n \in \mathbb{Z}^+, \ m = \sum_{j=1}^{n} a_j \ m_{x_j y_j} \right\};$$

obviously this is a seminorm on the space of the molecules, but we shall prove that it is actually a norm; for the time being, we have to define the Arens–Eells space AE(X) for X by completing the vector space M with respect to the Arens–Eells-seminorm $m \mapsto ||m||_{AE}$ modulo the subspace $\{v: ||v||_{AE} = 0\}$.

Theorem. The Banach space dual of AE(X) is isometrically isomorphic to $\text{Lip}_0(X)$.

Proof. Let us define two linear mappings $T_1: AE(X)' \to \text{Lip}_0(X)$ and $T_2: \text{Lip}_0(X) \to AE(X)'$ by

$$(T_1\phi)(x) := \phi(m_{xe}), \quad (T_2f)(m) := \sum_{y \in X} f(y) \ m(y),$$

where $e \in X$ is the base point, and $m \in M$ is a molecule (so that T_2f is uniquely extended to a linear functional on AE(X)). These definitions are sound indeed: Firstly,

$$(T_1\phi)(e) = \phi(m_{ee}) = \phi(0) = 0,$$

$$|(T_1\phi)(x) - (T_1\phi)(y)| = |\phi(m_{xe} - m_{ye})| = |\phi(m_{xy})| \le ||\phi|| ||m_{xy}||_{AE}$$

$$\le ||\phi|| d(x, y),$$

so that $T_1\phi \in \operatorname{Lip}_0(X)$ and $L(T_1\phi) \leq \|\phi\|$; we have even proven that $T_1 \in \mathcal{L}(AE(X)', \operatorname{Lip}_0(X))$ with norm $\|T_1\| \leq 1$. Secondly, let $\varepsilon > 0$ and $m \in M$. We may choose $(a_j)_{j=1}^n \subset \mathbb{K}$ and $((x_j, y_j))_{j=1}^n \subset X \times X$ such that

$$m = \sum_{j=1}^{n} a_j \ m_{x_j y_j}, \quad \sum_{j=1}^{n} |a_j| \ d(x_j, y_j) \le ||m||_{AE} + \varepsilon.$$

Then

$$|(T_{2}f)(m)| = \left| (T_{2}f) \sum_{j=1}^{n} a_{j} m_{x_{j}y_{j}} \right| = \left| \sum_{j=1}^{n} a_{j} (f(x_{j}) - f(y_{j})) \right|$$

$$\leq \sum_{j=1}^{n} |a_{j}| |f(x_{j}) - f(y_{j})|$$

$$\leq L(f) \sum_{j=1}^{n} |a_{j}| |d(x_{j}, y_{j})$$

$$\leq L(f) (||m||_{AE} + \varepsilon),$$

meaning that $T_2 \in \mathcal{L}(\text{Lip}_0(X), AE(X)')$ with norm $||T_2|| \leq 1$. Next we notice that $T_2 = T_1^{-1}$:

$$(T_1(T_2f))(x) = (T_2f)(m_{xe}) = \sum_{y \in X} f(y) \ m_{xe}(y) = f(x) - f(e) = f(x),$$

$$(T_2(T_1\phi))(m) = \sum_{y \in X} (T_1\phi)(y) \ m(y) = \sum_{y \in X} \phi(m_{ye}) \ m(y)$$

= $\phi\left(\sum_{y \in X} m(y) \ m_{ye}\right) = \phi(m).$

Finally, for $f \in \text{Lip}_0(X)$ we have

$$L(f) = L(T_1 T_2 f) \le ||T_1|| ||T_2 f|| \le ||T_2 f|| \le ||T_2|| L(f) \le L(f),$$

so that $T_2, T_1 = T_2^{-1}$ are isometries

Remark. Let us denote

$$((f,m) \mapsto \langle f, m \rangle) : \operatorname{Lip}_0(X) \times AE(X) \to \mathbb{K}$$

where

$$\langle f, m \rangle = \sum_{x \in X} f(x) \ m(x)$$

if $m \in M$. From now on, the weak*-topology of $\operatorname{Lip}_0(X)$ refers to the AE(X)-induced topology, with the interpretation

$$AE(X) \subset AE(X)'' \cong \operatorname{Lip}_0(X)'.$$

Next we show how X is canonically embedded in the Arens–Eells space:

Corollary. The Arens-Eells seminorm $m \mapsto ||m||_{AE}$ is a norm, and the mapping $(x \mapsto m_{xe}): X \to AE(X)$ is an isometry.

Proof. Take $m \in M$, $m \neq 0$. Choose $x_0 \in X$ such that $m(x_0) \neq 0$. Due to the theorem above,

$$\|m\|_{AE} \stackrel{\mathrm{Hahn-Banach}}{=} \sup_{f \in AE(X)': \|f\| \le 1} |\langle f, m \rangle| = \sup_{f \in \mathrm{Lip}_0(X): L(f) \le 1} \left| \sum_{x \in X} f(x) \ m(x) \right|.$$

Let $A := \{e\} \cup \{x \in X \mid m(x) \neq 0\}$. Let $r := d(x_0, A \setminus \{x_0\})$. By the Lipschitz analogy of Tietze's Extension Theorem, there exists $f_0 \in \text{Lip}_0(X, \mathbb{R})$ such that $f_0(x_0) = r > 0$, $f_0(A \setminus \{x_0\}) = \{0\}$, and $L(f_0) = 1$. Thereby

$$||m||_{AE} \ge |\langle f_0, m \rangle| = \left| \sum_{x \in X} f_0(x) \ m(x) \right| = |f_0(x_0) \ m(x_0)| > 0,$$

i.e. $m \mapsto ||m||_{AE}$ is actually a norm.

Let $x, y \in X$. Clearly $||m_{xy}||_{AE} \leq d(x, y)$. Define $\widetilde{d}_y(z) := d(z, y) - d(e, y)$, where $e \in X$ is the base point. Now $\widetilde{d}_y \in \text{Lip}_0(X)$ and $L(\widetilde{d}_y) = 1$, so that

$$||m_{xy}||_{AE} \geq |\langle \widetilde{d}_y, m_{xy} \rangle| = \left| \sum_{z \in X} \widetilde{d}_y(z) \ m_{xy}(z) \right| = |\widetilde{d}_y(x) - \widetilde{d}_y(y)|$$
$$= d(x, y).$$

Hence
$$||m_{xe} - m_{ye}||_{AE} = ||m_{xy}||_{AE} = d(x, y)$$

Nets and convergence. A partial order (J, \leq) is called a *directed* if

$$\forall i, j \in J \ \exists k \in J : \ i \leq k, \ j \leq k.$$

A net in a topological space (X, τ) is a family $(x_j)_{j \in J} \subset X$, where $J = (J, \leq)$ is directed. A net $(x_j)_{j \in J} \subset X$ converges to a point $x \in X$, denoted by

$$x_j \to x$$
 or $x_j \to_{j \in J} x$ or $x = \lim x_j = \lim_{j \in J} x_j$,

if for every $U \in \mathcal{V}_{\tau}(x)$ there exists $j_U \in J$ such that $x_j \in U$ whenever $j_U \leq j$. An example of a net is a sequence $(x_n)_{n \in \mathbb{N}} \subset X$, where \mathbb{N} has the usual partial order; sequences characterize topology in spaces of countable local bases, for instance metric spaces. But there are more complicated topologies, where sequences are not enough; for example, weak*-topology for infinite-

Exercise*. Nets can be used to characterize the topology: Let (X, τ) be a topological space and $A \subset X$. Show that $x \in \overline{A} \subset X$ if and only if there exists a net $(x_j)_{j \in J} \subset A$ such that $x_j \to x$. Let $f: X \to Y$; show that $f \in C(X,Y)$ if and only if $x_j \to x \in X \Rightarrow f(x_j) \to f(x) \in Y$. (Hint: define a partial order relation on $\mathcal{V}_{\tau}(x)$ by $U \leq V \Leftrightarrow V \subset U$.)

Lemma. Let E be a Banach space. The weak*-converging nets in E' are bounded.

Proof. Let $f_j \to f$ in the weak*-topology of E', i.e. $\langle f_j, \phi \rangle \to \langle f, \phi \rangle \in \mathbb{K}$ for every $\phi \in E$. Define $T_j : E \to \mathbb{K}$ by $\phi \mapsto \langle f_j, \phi \rangle$. Since $T_j \phi \to \langle f, \phi \rangle \in \mathbb{K}$, we have $\sup_{j \in J} |T_j \phi| < \infty$ for every $\phi \in E$, so that $C := \sup_{j \in J} ||T_j|| < \infty$ according to the Banach–Steinhaus Theorem. Thereby

$$\|f_j\| \stackrel{\mathrm{Hahn-Banach}}{=} \sup_{\phi \in E: \|\phi\| \leq 1} |\langle f_j, \phi \rangle| = \sup_{\phi \in E: \|\phi\| \leq 1} |T_j \phi| \stackrel{\mathrm{Hahn-Banach}}{=} \|T_j\| \leq C,$$

so that the net $(f_j)_{j\in J}\subset E'$ is bounded

dimensional spaces.

Proposition. On bounded subsets of $\operatorname{Lip}_0(X)$ the weak*-topology is the topology of pointwise convergence. Moreover, if X is compact, on bounded sets these topologies coincide with the topology of uniform convergence.

Proof. Let $\mathcal{E} \subset \operatorname{Lip}_0(X)$ be a bounded set containing a net $(f_j)_{j \in J}$ such that $f_j \to f$ in the weak*-topology. Endow the norm-closure $\overline{\mathcal{E}}$ with the relative weak*-topology τ_1 , and also with the topology τ_2 of pointwise convergence. If $x \in X$ then

$$f_j(x) = f_j(x) - f_j(e) = \langle f_j, m_{xe} \rangle \rightarrow \langle f, m_{xe} \rangle = f(x) - f(e) = f(x),$$

i.e. $f_j \to f$ pointwise. This means that the topology of pointwise convergence is weaker than the weak*-topology, $\tau_2 \subset \tau_1$. Now τ_1 is compact due to the Banach-Alaoglu Theorem, and of course τ_2 is Hausdorff; hence $\tau_1 = \tau_2$, the weak*-topology and the topology of the pointwise convergence coincide on bounded subsets.

Now suppose X is a compact metric space. Uniform convergence trivially implies pointwise convergence. Let $(f_j)_{j\in J}\subset \mathcal{E}$ be as above, $f_j\to f$ pointwise. Since \mathcal{E} is bounded, there exists $C<\infty$ such that $L(g)\leq C$ for every $g\in \mathcal{E}$. It is easy to check that $L(f)\leq C$. Take $\varepsilon>0$. Since X is compact, there exists $\{x_k\}_{k=1}^{n_{\varepsilon}}\subset X$ such that

$$\forall x \in X \ \exists k \in \{1, \cdots, n_{\varepsilon}\}: \ d(x, x_k) < \varepsilon.$$

Due to the pointwise convergence $f_j \to f$, there exists $j_{\varepsilon} \in J$ such that

$$|f_j(x_k) - f(x_k)| < \varepsilon$$

for every $k \in \{1, \dots, n_{\varepsilon}\}$ whenever $j_{\varepsilon} \leq j$. Take $x \in X$. Take $k \in \{1, \dots, n_{\varepsilon}\}$ such that $d(x, x_k) < \varepsilon$. Then

$$|f_{j}(x) - f(x)| \leq |f_{j}(x) - f_{j}(x_{k})| + |f_{j}(x_{k}) - f(x_{k})| + |f(x_{k}) - f(x)|$$

$$\leq L(f_{j}) d(x, x_{k}) + \varepsilon + L(f) d(x_{k}, x)$$

$$< C \varepsilon + \varepsilon + C \varepsilon = (2C + 1) \varepsilon.$$

Thereby $||f_j - f||_{C(X)} \to 0$; pointwise convergence on bounded subsets implies uniform convergence, when X is compact

Algebra $\operatorname{Lip}_0(X)$. Let X be a metric space such that $\operatorname{diam}(X) < \infty$. In the sequel, we shall call $\operatorname{Lip}_0(X)$ an algebra, even though $\mathbb{I} \not\in \operatorname{Lip}_0(X)$. An algebra homomorphism between such non-unital algebras is a linear and multiplicative mapping; then even the 0-mapping is a homomorphism!

Proposition. Let X, Y be metric spaces with finite diameters, with the respective base points e_X, e_Y . Let $g: Y \to X$ be a Lipschitz mapping such that $g(e_Y) = e_X$. Then the mapping

$$L_q: \operatorname{Lip}_0(X) \to \operatorname{Lip}_0(Y), \quad f \mapsto f \circ g,$$

is an algebra homomorphism, and $||L_g|| = L(g)$.

Proof. If $f \in \text{Lip}_0(X)$ and $x, y \in Y$ then

$$|f(g(x)) - f(g(y))| \le L(f) \ d(g(x), g(y)) \le L(f) \ L(g) \ d(x, y).$$

Hence $L(L_g f) = L(f \circ g) \leq L(f) L(g)$, implying $||L_g|| \leq L(g)$. Take $y_0 \in Y$. Define $f_0 \in \text{Lip}_0(X)$ by $f_0(x) := d(x, g(y_0)) - d(e_X, g(y_0))$, so that $L(f_0) = 1$. Take $y \in Y$, $y \neq y_0$. Then

$$||L_g|| \geq L(L_g(f_0))$$

$$\geq \frac{|(L_gf_0)(y) - (L_gf_0)(y_0)|}{d(y, y_0)} = \frac{d(g(y), g(y_0))}{d(y, y_0)},$$

so that $||L_g|| \ge L(g)$; hence $||L_g|| = L(g)$. If $\lambda \in \mathbb{K}$ and $f, h \in \text{Lip}_0(X)$ then

$$L_g(\lambda f) = (\lambda f) \circ g = \lambda \ (f \circ g) = \lambda \ L_g f,$$

$$L_g(f+h) = (f+h) \circ g = f \circ g + h \circ g = L_g f + L_g h,$$

$$L_g(fh) = (fh) \circ g = (f \circ g)(h \circ g) = (L_g f)(L_g h),$$

so that L_g is a homomorphism

Order-completeness. Non-empty $\mathcal{B} \subset \operatorname{Lip}(X,\mathbb{R})$ is called *order-complete* if

$$\sup \mathcal{G}$$
, $\inf \mathcal{G} \in \mathcal{B}$

for every bounded family $\mathcal{G} \subset \mathcal{B}$. Here supremums and infimums are pointwise, naturally.

Uniform separation. A family $\mathcal{F} \subset \operatorname{Lip}_0(X)$ separates uniformly the points of X if

$$\exists C < \infty \ \forall x, y \in X \ \exists g \in \mathcal{F} : \ L(g) \le C, \ |g(x) - g(y)| = d(x, y).$$

In a striking resemblance with the "classical" Stone-Weierstrass Theorem, we have the following:

Theorem (Lipschitz Stone–Weierstrass). Let X be a compact metric space. Let A be an involutive, weak*-closed subalgebra of $\operatorname{Lip}_0(X)$ separating the points of X uniformly. Then $A = \operatorname{Lip}_0(X)$.

Proof. As in the proof of the "classical" Stone–Weierstrass Theorem, involutivity justifies our concentration on the \mathbb{R} -scalar case, where the involution is trivial, $f^* = f$. Hence we assume that \mathcal{A} is a weak*-closed \mathbb{R} -subalgebra of $\operatorname{Lip}_0(X,\mathbb{R})$ separating the points of X uniformly.

Let us show that $\mathcal{B} = \mathcal{A} + \mathbb{RI}$ is closed under the pointwise convergence of bounded nets. Let $(g_j)_{j \in J} \subset \mathcal{B}$ be a bounded net converging to pointwise to $g \in \text{Lip}(X)$; here $g_j = f_j + \lambda_j \mathbb{I}$ with $f_j \in \mathcal{A}$ and $\lambda_j \in \mathbb{R}$. Especially

$$\lambda_i = f_i(e) + \lambda_i = g_i(e) \to g(e) \in \mathbb{R}.$$

Thus

$$f_j(x) = g_j(x) - \lambda_j \to g(x) - g(e) \in \mathbb{R},$$

i.e. $f_j \to g - g(e)\mathbb{I}$ pointwise. But $(f_j)_{j \in J} \subset \mathcal{A}$ is a bounded net, so that $f_j \to g - g(e)\mathbb{I}$ in the weak*-topology; since \mathcal{A} is weak*-closed, $g - g(e)\mathbb{I} \in \mathcal{A}$. Thereby

$$g = (g - g(e)\mathbb{I}) + g(e)\mathbb{I} \in \mathcal{A} + \mathbb{R}\mathbb{I} = \mathcal{B};$$

 \mathcal{B} is closed under the pointwise convergence of bounded nets.

Let us show that \mathcal{B} is order-complete. First, let $g \in \mathcal{B}$. Take $\varepsilon > 0$. Let

$$g_{\varepsilon}(x) := \sqrt{g(x)^2 + \varepsilon^2}.$$

By the Weierstrass Approximation Theorem, there exists a sequence $(P_{\varepsilon n})_{n=1}^{\infty}$ of real-valued polynomials such that $P_{\varepsilon n}(0) = \varepsilon$ and

$$P'_{\varepsilon n}(t) \to_{n \to \infty} \frac{\mathrm{d}}{\mathrm{d}t} \sqrt{t^2 + \varepsilon^2} = \frac{t}{\sqrt{t^2 + \varepsilon^2}}$$

uniformly on $[-\|g\|_{C(X)}, \|g\|_{C(X)}]$; consequently, $(P_{\varepsilon n}(g))_{n=1}^{\infty} \subset \mathcal{B}$ is a bounded sequence, converging uniformly to g_{ε} ; hence $P_{\varepsilon n}(g) \to g_{\varepsilon}$ also pointwise. Since \mathcal{B} is closed under the pointwise convergence of bounded nets, we deduce $g_{\varepsilon} \in \mathcal{B}$; consequently, $(g_{\varepsilon})_{0 < \varepsilon \leq 1}$ is a bounded net in \mathcal{B} , so that $g_0 := \lim_{\varepsilon \to 0^+} g_{\varepsilon}$ belongs to \mathcal{B} . But $g_0(x) = |g(x)|$, so that $g \in \mathcal{B}$ implies $|g| \in \mathcal{B}$. Therefore if $f, g \in \mathcal{B}$ then

$$\max(f,g) = \frac{f+g}{2} + \frac{|f+g|}{2}, \quad \min(f,g) = \frac{f+g}{2} - \frac{|f+g|}{2}$$

belong to \mathcal{B} . Let $\mathcal{G} \subset \mathcal{B}$ be a bounded non-empty family. Let $\mathcal{H} \subset \operatorname{Lip}(X, \mathbb{R})$ be the smallest family closed under taking maximums and minimums and

containing \mathcal{G} . Now $\mathcal{H} \subset \mathcal{B}$, since \mathcal{B} is closed under taking maximums and minimums. Moreover, \mathcal{H} is bounded. Clearly

$$\sup \mathcal{G} = \sup \mathcal{H} \in \operatorname{Lip}(X, \mathbb{R}) \quad \text{and} \quad \inf \mathcal{G} = \inf \mathcal{H} \in \operatorname{Lip}(X, \mathbb{R}).$$

Let $g := \sup \mathcal{G} \in \operatorname{Lip}(X, \mathbb{R})$. Take $\varepsilon > 0$. For each $x \in X$ there exists $g_x \in \mathcal{G}$ such that $g(x) - \varepsilon < g_x(x)$. Due to the continuity of g_x , there exists $U_x \in \mathcal{V}(x)$ such that $g(y) - \varepsilon < g_x(y)$ for every $y \in U_x$. Then $\{U_x \mid x \in X\}$ is an open cover of the compact space X, so that there is a finite subcover $\{U_{x_i} \mid 1 \leq j \leq n\}$. Let $h_{\varepsilon} := \max(g_{x_1}, \dots, g_{x_n}) \in \mathcal{H}$. Then

$$g(x) - \varepsilon < h_{\varepsilon}(x) < g(x)$$

for every $x \in X$, so that $(h_{\varepsilon})_{0 < \varepsilon \le 1} \subset \mathcal{H} \subset \mathcal{B}$ is a bounded net, $h_{\varepsilon} \to_{\varepsilon \to 0^+} g$. Hence $\sup \mathcal{G} = g \in \mathcal{B}$, because \mathcal{B} is closed under the pointwise convergence of bounded nets. Similarly one proves that $\inf \mathcal{G} \in \mathcal{B}$. Thus \mathcal{B} is order-complete.

Take $f \in \text{Lip}_0(X, \mathbb{R})$. We have to show that $f \in \mathcal{A}$. We may assume that $L(f) \leq 1$. Due to the uniform separation, for every $x, y \in X$ there exists $g_{xy} \in \mathcal{A}$ such that $L(g_{xy}) \leq C$ (C does not depend on $x, y \in X$) and $|g_{xy}(x) - g_{xy}(y)| = d(x, y)$. Since $|f(x) - f(y)| \leq L(f) d(x, y) \leq d(x, y)$ and since \mathcal{A} is an algebra, there exists $h_{xy} \in \mathcal{A}$ satisfying $h_{xy}(x) - h_{xy}(y) = f(x) - f(y)$ and $L(h_{xy}) \leq C$. Define $f_{xy} \in \mathcal{B}$ by

$$f_{xy} := h_{xy} - (h_{xy}(y) - f(y))\mathbb{I}.$$

Then $f_{xy}(x) = f(x)$ and $f_{xy}(y) = f(y)$, $L(f_{xy}) = L(h_{xy}) \leq C$, and

$$||f_{xy}||_{C(X)} \le ||h_{xy}||_{C(X)} + |h_{xy}(y)| + |f(y)| \le (2C+1) r(X),$$

where $r(X) := \sup_{z \in X} d(z, e) < \infty$ is the "radius" of the space. The family $(f_{xy})_{x,y \in X} \subset \mathcal{B}$ is hence bounded; due to the order-completeness of \mathcal{B} ,

$$f = \inf_{x \in X} \sup_{y \in X} f_{xy}$$

belongs to \mathcal{B} ; but f(e) = 0, so that $f \in \mathcal{A}$

Quotient metrics. Let X be a compact metric space and $A \subset \text{Lip}_0(X)$ be an involutive, weak*-closed subalgebra. Let R_A be the equivalence relation

$$(x,y) \in R_{\mathcal{A}} \stackrel{\text{definition}}{\Longleftrightarrow} \forall f \in \mathcal{A} : f(x) = f(y).$$

Let $[x] := \{y \in X \mid (x, y) \in R_{\mathcal{A}}\}$. Let us endow $X_{\mathcal{A}} := X/R_{\mathcal{A}} = \{[x] \mid x \in X\}$ with the metric

$$d_{X_{\mathcal{A}}}([x], [y]) := \sup_{f \in \mathcal{A}: L(f) < 1} |f(x) - f(y)|.$$

Let $\pi = (x \mapsto [x]) : X \to X_{\mathcal{A}}$. Recall that this induces a homomorphism $L_{\pi} = (\tilde{f} \mapsto \tilde{f} \circ \pi) : \operatorname{Lip}_{0}(X_{\mathcal{A}}) \to \operatorname{Lip}_{0}(X)$.

Corollary. Let X be a compact metric space, and let \mathcal{A} be an involutive, weak*-closed subalgebra of $\operatorname{Lip}_0(X)$. Then $L_{\pi}: \operatorname{Lip}_0(X_{\mathcal{A}}) \to \mathcal{A} \subset \operatorname{Lip}_0(X)$ is a bounded algebra isomorphism $\operatorname{Lip}_0(X_{\mathcal{A}}) \cong \mathcal{A}$ with a bounded inverse.

Exercise*. Prove the previous Corollary.

Exercise*. Show that weak*-closed ideals of $\text{Lip}_0(X)$ are involutive, when X is compact. (Hint: Lipschitz-Stone-Weierstrass.)

Varieties and ideals. Let X be a metric space, $S \subset X$, and $\mathcal{J} \subset \text{Lip}_0(X)$. Then

$$\mathcal{I}(S) := \{ f \in \operatorname{Lip}_0(X) \mid \forall x \in S : f(x) = 0 \}$$

is a weak*-closed ideal of $\operatorname{Lip}_0(X)$ (the ideal of S), and

$$V(\mathcal{J}) := \{ x \in X \mid \forall f \in \mathcal{J} : f(x) = 0 \}$$

is a closed subset of X (the variety of \mathcal{J}).

Theorem. Let X be a compact metric space, \mathcal{J} be a weak*-closed ideal of $\operatorname{Lip}_0(X)$. Then $\mathcal{J} = \mathcal{I}(V(\mathcal{J}))$.

Exercise*. Prove the previous theorem. (Hint: show that $d(x, V(\mathcal{J})) = d_{X_{\mathcal{J}}}([x], V(\mathcal{J}))$ for every $x \in X$, use Lipschitz-Stone-Weierstrass.)

Corollary. Let X be a compact metric space, and let $\omega : \operatorname{Lip}_0(X) \to \mathbb{K}$ be an algebra homomorphism. Then ω is weak*-continuous if and only if $\omega = \omega_x := (x \mapsto f(x))$ for some $x \in X$.

Proof. If $\omega_x := (x \mapsto f(x)) : \operatorname{Lip}_0(X) \to \mathbb{K}$ then $\omega_x = m_{xe} \in AE(X)$ in the sense that $\langle f, \omega_x \rangle = f(x) = \langle f, m_{xe} \rangle$; hence evaluation homomorphisms are weak*-continuous.

Conversely, let $\omega : \operatorname{Lip}_0(X) \to \mathbb{K}$ be a weak*-continuous homomorphism. Then $\operatorname{Ker}(\omega)$ is an weak*-closed ideal of $\operatorname{Lip}_0(X)$, hence involutive. Thus by the previous Theorem $\operatorname{Ker}(\omega) = \mathcal{I}(V)$ for some $V \subset X$. Notice that $0 = \omega_e$; assume that $\omega \neq 0$. Since ω is a surjective linear mapping onto \mathbb{K} , $\operatorname{Ker}(\omega)$ must be of co-dimension 1 in $\operatorname{Lip}_0(X)$, and thereby $V = \{e, x\}$ for some $x \in X$. Hence $\omega = (f \mapsto \lambda f(x))$ for some $\lambda \in \mathbb{K}$, $\lambda \neq 0$. Choose $f \in \operatorname{Lip}_0(X)$ such that f(x) = 1, so that

$$\lambda = \omega(f) = \omega(f^2) = \omega(f)^2 = \lambda^2.$$

This yields $\lambda = 1$, i.e. $\omega = \omega_x := (f \mapsto f(x))$

Spectra. In these lecture notes we started with **unital** algebras (which we simply called "algebras"). At the present, we have encountered **non-unital** algebras, e.g. $\operatorname{Lip}_0(X)$ and its ideals on a compact metric space X. In the sequel, let the word "algebra" stand for both unital and non-unital algebras. We say that a *homomorphism* is a linear multiplicative mapping between algebras such that if both algebras are unital then one unit element is mapped to another; the set of homomorphisms $\mathcal{A} \to \mathcal{B}$ is denoted by $\operatorname{Hom}(\mathcal{A}, \mathcal{B})$. Notice that $0 \in \operatorname{Hom}(\mathcal{A}, \mathcal{B})$ if and only if \mathcal{A} or \mathcal{B} is non-unital. With these nominations, let the *spectrum* of a Banach space and a commutative topological algebra \mathcal{A} be

$$\operatorname{Spec}(\mathcal{A}) := \operatorname{Hom}(\mathcal{A}, \mathbb{K}).$$

If furthermore $\mathcal{A} \cong E'$ for a Banach space E, let

$$\operatorname{Spec}^{w^*}(\mathcal{A}) := \{ \omega \in \operatorname{Spec}(\mathcal{A}) \mid \omega \text{ is weak}^* - \operatorname{continuous} \}.$$

Endow all these spectra with the metric given by the norm of the Banach space \mathcal{A}' ; there are also the relative weak*-topologies of \mathcal{A}' on the spectra.

Theorem. Let X be a compact metric space. Then the metric topology and the relative weak*-topology of $\operatorname{Spec}^{w^*}(\operatorname{Lip}_0(X))$ are the same, and X is isometric to $\operatorname{Spec}^{w^*}(\operatorname{Lip}_0(X))$. Moreover, $\operatorname{Spec}^{w^*}(\operatorname{Lip}_0(X)) = \operatorname{Spec}(\operatorname{Lip}_0(X))$.

Proof. Let us denote $\mathcal{A} := \operatorname{Lip}_0(X)$. The weak*-topology on $K := \operatorname{Spec}^{w^*}(\mathcal{A})$ is the topology induced by the family $\{\widehat{f} \mid f \in \mathcal{A}\}$, where $\widehat{f} : K \to \mathbb{K}$ is defined by $\widehat{f}(\omega) := \omega(f)$ (sort of Gelfand transform).

The previous Corollary indicates that K is the set of evaluation homomorphisms $\omega_x = (f \mapsto f(x))$, and we know that

$$\iota = (x \mapsto m_{xe} = \omega_x) : X \mapsto AE(X) \subset \mathcal{A}'$$

is an isometry. Hence X is isometric to K.

The norm topology of \mathcal{A}' is stronger than the weak*-topology, so that the metric topology on K is stronger than the relative weak*-topology. Notice that $f_y \in \mathcal{A}$, where $\widehat{f_y}(\omega_x) = f_y(x) = d(x,y) - d(e,y)$; hence $\widehat{f_y}: K \to \mathbb{R}$ is weak*-continuous on K, so that $\widehat{f_y}^{-1}(U) \subset K$ is weak*-open for every open set $U \subset \mathbb{R}$. Thus the metric ball

$$B(\omega_y, \varepsilon) = \{\omega_x : \|\omega_x - \omega_y\| < \varepsilon\} = \{\omega_x : d(x, y) < \varepsilon\}$$
$$= \{\omega_x : \widehat{f}_y(\omega_x) < \varepsilon - d(e, y)\}$$

is a weak*-open set. Clearly $\{B(\omega_y, \varepsilon) \mid y \in X, \varepsilon > 0\}$ is a basis for the metric topology of the spectrum; thereby the metric topology is weaker than the weak*-topology. Consequently, the topologies must be the same.

Let us extend $\omega \in \operatorname{Spec}(A) \subset A'$ linearly to $\widetilde{\omega} : \operatorname{Lip}(X) \to \mathbb{K}$ by setting $\widetilde{\omega}(\mathbb{I}) = 1$. Then $\widetilde{\omega} \in \operatorname{Spec}(\operatorname{Lip}(X))$. **Assume** that for every $x \in X$ there exists $f_x \in \operatorname{Ker}(\widetilde{\omega})$ such that $f_x(x) \neq 0$. Then pick a neighborhood $U_x \in \mathcal{V}(x)$ such that $0 \notin f_x(U_x)$. Due to the compactness of X we may pick a finite subcover $\{U_x\}_{i=1}^n$ out of the open cover $\{U_x \mid x \in X\}$. Then

$$f := \sum_{j=1}^{n} |f_{x_j}|^2 = \sum_{j=1}^{n} \overline{f_{x_j}} f_{x_j} \in \operatorname{Ker}(\widetilde{\omega});$$

so f belongs to an ideal of $\operatorname{Lip}(X)$, but on the other hand f(x) > 0 for every $x \in X$, so that $1/f \in \operatorname{Lip}(X)$ as the reader may verify — a **contradiction**. Hence there exists $x \in X$ such that f(x) = 0 for every $f \in \operatorname{Ker}(\widetilde{\omega})$. The reader may prove analogies of the Lipschitz Stone–Weierstrass Theorem and its consequences replacing (non-unital) subalgebras of $\operatorname{Lip}_0(X)$ by (unital) subalgebras of $\operatorname{Lip}(X)$; of course, the weak*-convergence has to be replaced by the pointwise convergence of bounded nets; then it follows that $\operatorname{Ker}(\widetilde{\omega}) = \{f \in \operatorname{Lip}(X) \mid f(x) = 0\}$, which would imply that $\widetilde{\omega} = (f \mapsto f(x))$.

Hence $\widetilde{\omega} = (f \mapsto f(x))$ for some $x \in X$, and consequently $\omega = \omega_x$. Evaluation homomorphisms are weak*-continuous, so that we have proven that $\operatorname{Spec}(A) = K$

Theorem. Let \mathcal{A} be a Banach space and a non-unital commutative topological algebra, and endow $\operatorname{Spec}(\mathcal{A})$ with the relative metric of \mathcal{A}' . Then $\operatorname{Spec}(\mathcal{A})$ is a complete pointed metric space of finite diameter, and the extended Gelfand transform

$$(f \mapsto \widehat{f}) : \mathcal{A} \to \operatorname{Lip}_0(\operatorname{Spec}(\mathcal{A})),$$

(where $\widehat{f}(\omega) := \omega(f)$ for $f \in \mathcal{A}$ and $\omega \in \operatorname{Spec}(\mathcal{A})$) is of norm ≤ 1 .

Proof. We may always endow \mathcal{A} with an equivalent Banach algebra norm (even though the algebra is non-unital). From the Gelfand theory of commutative Banach algebras, we know that $\operatorname{Spec}(\mathcal{A})$ is a bounded weak*-closed (even weak*-compact) subset of \mathcal{A}' ; hence the metric is complete, and the diameter is finite.

Now let $x \mapsto ||x||$ be the original norm of \mathcal{A} . Let $\phi, \psi \in \operatorname{Spec}(\mathcal{A})$. Then

$$|\widehat{x}(\phi) - \widehat{x}(\psi)| = |(\phi - \psi)(x)| \le ||\phi - \psi|| \ ||x||,$$

so that $L(\widehat{x}) \leq ||x||$. Notice that $\widehat{x}(0) = 0$, so that the proof is complete \Box

Theorem. Let \mathcal{A} be a commutative Banach algebra, and endow $\operatorname{Spec}(\mathcal{A})$ with the relative metric of \mathcal{A}' . Then $\operatorname{Spec}(\mathcal{A})$ is a complete metric space of diameter at most 2, and the Gelfand transform $(f \mapsto \widehat{f}) : \mathcal{A} \to \operatorname{Lip}(\operatorname{Spec}(\mathcal{A}))$ is of norm 1.

Proof. In the Gelfand theory we have seen that $\operatorname{Spec}(\mathcal{A})$ belongs to the closed unit ball of \mathcal{A}' , so that the diameter of the spectrum is at most 2. If $\phi \in \operatorname{Spec}(\mathcal{A})$ and $x \in \mathcal{A}$ then $|\widehat{x}(\phi)| = |\phi(x)| \leq ||x||$, and the rest of the proof is as in the previous Theorem

Remark. Let \mathcal{A} be a Banach space and a non-unital topological algebra. If $\operatorname{Spec}(\mathcal{A})$ is compact in the metric topology then the metric topology is the relative weak*-topology, and $\operatorname{Lip}_0(\operatorname{Spec}(\mathcal{A})) \subset C(\operatorname{Spec}(\mathcal{A}))$.