10 C*-algebras Now we are finally in the position to abstractly characterize algebras C(X) among Banach algebras: according to Gelfand and Naimark, the category of compact Hausdorff spaces is equivalent to the category of commutative C*-algebras. The class of C*-algebras behaves nicely, and the related functional analysis adequately deserves the name "non-commutative topology". **Involutive algebra.** An algebra \mathcal{A} is a *-algebra ("star-algebra" or an involutive algebra) if there is a mapping $(x \mapsto x^*) : \mathcal{A} \to \mathcal{A}$ satisfying $$(\lambda x)^* = \overline{\lambda} x^*, \quad (x+y)^* = x^* + y^*, \quad (xy)^* = y^* x^*, \quad (x^*)^* = x$$ for every $x, y \in \mathcal{A}$ and $\lambda \in \mathbb{C}$; such a mapping is called an *involution*. In other words, an involution is a conjugate-linear anti-multiplicative self-invertible mapping $\mathcal{A} \to \mathcal{A}$. A *-homomorphism $\phi: \mathcal{A} \to \mathcal{B}$ between involutive algebras \mathcal{A} and \mathcal{B} is an algebra homomorphism satisfying $$\phi(x^*) = \phi(x)^*$$ for every $x \in \mathcal{A}$. The set of all *-homomorphisms between *-algebras \mathcal{A} and \mathcal{B} is denoted by $\mathrm{Hom}^*(\mathcal{A}, \mathcal{B})$. C*-algebra. A C^* -algebra \mathcal{A} is an involutive Banach algebra such that $$||x^*x|| = ||x||^2$$ for every $x \in \mathcal{A}$. ## Examples. - 1. The Banach algebra $\mathbb C$ is a C*-algebra with the involution $\lambda \mapsto \lambda^* = \overline{\lambda}$, i.e. the complex conjugation. - 2. If K is a compact space then C(K) is a commutative C*-algebra with the involution $f \mapsto f^*$ by complex conjugation, $f^*(x) := \overline{f(x)}$. - 3. $L^{\infty}([0,1])$ is a C*-algebra, when the involution is as above. - 4. $A(\mathbb{D}(0,1)) = C\left(\overline{\mathbb{D}(0,1)}\right) \cap H(\mathbb{D}(0,1))$ is an involutive Banach algebra with $f^*(z) := \overline{f(\overline{z})}$, but it is not a C*-algebra. - 5. The radical of a commutative C*-algebra is always the trivial $\{0\}$, and thus 0 is the only nilpotent element. Hence for instance the algebra of matrices $\begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix}$ (where $\alpha, \beta \in \mathbb{C}$) cannot be a C*-algebra. - 6. If \mathcal{H} is a Hilbert space then $\mathcal{L}(\mathcal{H})$ is a C*-algebra when the involution is the usual adjunction $A \mapsto A^*$, and clearly any norm-closed involutive subalgebra of $\mathcal{L}(\mathcal{H})$ is also a C*-algebra. Actually, there are no others, but we shall not prove this fact in these lecture notes: Gelfand-Naimark Theorem (1943). If A is a C^* -algebra then there exists a Hilbert space \mathcal{H} and an isometric *-homomorphism onto a closed involutive subalgebra of $\mathcal{L}(\mathcal{H})$ However, we shall characterize the commutative case: the Gelfand transform of a commutative C*-algebra \mathcal{A} will turn out to be an isometric isomorphism $\mathcal{A} \to C(\operatorname{Spec}(\mathcal{A}))$, so that \mathcal{A} "is" the function algebra C(K) for the compact Hausdorff space $K = \operatorname{Spec}(\mathcal{A})$! Before going into this, we prove some related results. **Proposition.** Let \mathcal{A} be a *-algebra. Then $\mathbb{I}^* = \mathbb{I}$, $x \in \mathcal{A}$ is invertible if and only if $x^* \in \mathcal{A}$ is invertible, and $\sigma(x^*) = \overline{\sigma(x)} := \{\overline{\lambda} \mid \lambda \in \sigma(x)\}.$ **Proof.** First, $$\mathbb{I}^* = \mathbb{I}^*\mathbb{I} = \mathbb{I}^*(\mathbb{I}^*)^* = (\mathbb{I}^*\mathbb{I})^* = (\mathbb{I}^*)^* = \mathbb{I};$$ second, $$(x^{-1})^*x^* = (xx^{-1})^* = \mathbb{I}^* = \mathbb{I} = \mathbb{I}^* = (x^{-1}x)^* = x^*(x^{-1})^*;$$ third, $$\overline{\lambda}\mathbb{I} - x^* = (\lambda \mathbb{I}^*)^* - x^* = (\lambda \mathbb{I})^* - x^* = (\lambda \mathbb{I} - x)^*,$$ which concludes the proof **Proposition.** Let \mathcal{A} be a C^* -algebra, and $x = x^* \in \mathcal{A}$. Then $\sigma(x) \subset \mathbb{R}$. **Proof.** Assume that $\lambda \in \sigma(x) \setminus \mathbb{R}$, i.e. $\lambda = \lambda_1 + i\lambda_2$ for some $\lambda_j \in \mathbb{R}$ with $\lambda_2 \neq 0$. Hence we may define $y := (x - \lambda_1 \mathbb{I})/\lambda_2 \in \mathcal{A}$. Now $y^* = y$. Moreover, $i \in \sigma(y)$, because $$i\mathbb{I} - y = \frac{\lambda \mathbb{I} - x}{\lambda_2}.$$ Take $t \in \mathbb{R}$. Then $t + 1 \in \sigma(t\mathbb{I} - iy)$, because $$(t+1)\mathbb{I} - (t\mathbb{I} - iy) = -i(i\mathbb{I} - y).$$ Thereby so that $2t + 1 \le ||y||$ for every $t \in \mathbb{R}$; a **contradiction** **Corollary.** Let \mathcal{A} a C^* -algebra, $\phi : \mathcal{A} \to \mathbb{C}$ a homomorphism, and $x \in \mathcal{A}$. Then $\phi(x^*) = \overline{\phi(x)}$, i.e. ϕ is a *-homomorphism. **Proof.** Define the "real part" and the "imaginary part" of x by $$u := \frac{x + x^*}{2}, \quad v := \frac{x - x^*}{2i}.$$ Then x = u + iv, $u^* = u$, $v^* = v$, and $x^* = u - iv$. Since a homomorphism maps invertibles to invertibles, we have $\phi(u) \in \sigma(u)$; we know that $\sigma(u) \subset \mathbb{R}$, because $u^* = u$. Similarly we obtain $\phi(v) \in \mathbb{R}$. Thereby $$\phi(x^*) = \phi(u - iv) = \phi(u) - i\phi(v) = \overline{\phi(u) + i\phi(v)} = \overline{\phi(u + iv)} = \overline{\phi(x)};$$ this means that $\operatorname{Hom}^*(\mathcal{A}, \mathbb{C}) = \operatorname{Hom}(\mathcal{A}, \mathbb{C})$ **Exercise.** Let \mathcal{A} be a Banach algebra, \mathcal{B} its closed subalgebra, and $x \in \mathcal{B}$. Prove the following facts: - (a) $G(\mathcal{B})$ is open and closed in $G(\mathcal{A}) \cap \mathcal{B}$. - (b) $\sigma_{\mathcal{A}}(x) \subset \sigma_{\mathcal{B}}(x)$ and $\partial \sigma_{\mathcal{B}}(x) \subset \partial \sigma_{\mathcal{A}}(x)$. - (c) If $\mathbb{C} \setminus \sigma_{\mathcal{A}}(x)$ is connected then $\sigma_{\mathcal{A}}(x) = \sigma_{\mathcal{B}}(x)$. Using the results of the exercise above, the reader can prove the following important fact on the invariance of spectrum in C*-algebras: **Exercise*.** Let \mathcal{A} be a C*-algebra and \mathcal{B} its C*-subalgebra. Show that $\sigma_{\mathcal{B}}(x) = \sigma_{\mathcal{A}}(x)$ for every $x \in \mathcal{B}$. **Lemma.** Let \mathcal{A} be a C^* -algebra. Then $||x||^2 = \rho(x^*x)$ for every $x \in \mathcal{A}$. **Proof.** Now $$\|(x^*x)^2\| = \|(x^*x)(x^*x)\| = \|(x^*x)^*(x^*x)\| \stackrel{\mathrm{C}^*}{=} \|x^*x\|^2$$ so that by induction $$\|(x^*x)^{2^n}\| = \|x^*x\|^{2^n}$$ for every $n \in \mathbb{N}$. Therefore applying the Spectral Radius Formula, we get $$\rho(x^*x) = \lim_{n \to \infty} \|(x^*x)^{2^n}\|^{1/2^n} = \lim_{n \to \infty} \|x^*x\|^{2^n/2^n} = \|x^*x\|,$$ the result we wanted **Exercise*.** Let \mathcal{A} be a C*-algebra. Show that there can be at most one C*-algebra norm on an involutive Banach algebra. Moreover, prove that if \mathcal{A} , \mathcal{B} are C*-algebras then $\phi \in \operatorname{Hom}^*(\mathcal{A}, \mathcal{B})$ is continuous and has a norm $\|\phi\| = 1$. Commutative Gelfand–Naimark. Let \mathcal{A} be a commutative C^* -algebra. Then the Gelfand transform $(x \mapsto \widehat{x}) : \mathcal{A} \to C(\operatorname{Spec}(\mathcal{A}))$ is an isometric *-isomorphism. **Proof.** Let $K = \operatorname{Spec}(\mathcal{A})$. We already know that the Gelfand transform is a Banach algebra homomorphism $\mathcal{A} \to C(K)$. Let $x \in \mathcal{A}$ and $\phi \in K$. Since ϕ is actually a *-homomorphism, we get $$\widehat{x}^*(\phi) = \phi(x^*) = \overline{\phi(x)} = \overline{\widehat{x}(\phi)} = \widehat{x}^*(\phi);$$ the Gelfand transform is a *-homomorphism. Now we have proven that $\widehat{\mathcal{A}} \subset C(K)$ is an involutive subalgebra separating the points of K. Stone–Weierstrass Theorem thus says that $\widehat{\mathcal{A}}$ is dense in C(K). If we can show that the Gelfand transform $\mathcal{A} \to \widehat{\mathcal{A}}$ is an isometry then we must have $\widehat{\mathcal{A}} = C(K)$: Take $x \in \mathcal{A}$. Then $$\|\widehat{x}\|^2 = \|\widehat{x}^*\widehat{x}\| = \|\widehat{x}^*\widehat{x}\| \stackrel{\text{Gelfand}}{=} \rho(x^*x) \stackrel{\text{Lemma}}{=} \|x\|^2,$$ i.e. $$\|\hat{x}\| = \|x\|$$ **Exercise*.** Show that an injective *-homomorphism between C*-algebras is an isometry. (Hint: Gelfand transform.) **Exercise*.** A linear functional f on a C*-algebra \mathcal{A} is called *positive* if $f(x^*x) \geq 0$ for every $x \in \mathcal{A}$. Show that the positive functionals separate the points of \mathcal{A} . **Exercise*.** Prove that the involution of a C*-algebra cannot be altered without destroying the C*-property $||x^*x|| = ||x||^2$. An element x of a C*-algebra is called *normal* if $x^*x = xx^*$. We use the commutative Gelfand–Naimark Theorem to create the so called continuous functional calculus at a normal element — a non-commutative C*-algebra admits some commutative studies: **Theorem.** Let \mathcal{A} be a C^* -algebra, and $x \in \mathcal{A}$ be a normal element. Let $\iota = (\lambda \mapsto \lambda) : \sigma(x) \to \mathbb{C}$. Then there exists a unique isometric *-homomorphism $\phi : C(\sigma(x)) \to \mathcal{A}$ such that $\phi(\iota) = x$ and $\phi(C(\sigma(x)))$ is the C^* -algebra generated by x, i.e. the smallest C^* -algebra containing $\{x\}$. **Proof.** Let \mathcal{B} be the C*-algebra generated by x. Since x is normal, \mathcal{B} is commutative. Let $\text{Gel} = (y \mapsto \widehat{y}) : \mathcal{B} \to C(\text{Spec}(\mathcal{B}))$ be the Gelfand transform of \mathcal{B} . The reader may easily verify that $$\widehat{x}: \operatorname{Spec}(\mathcal{B}) \to \sigma(x)$$ is a continuous bijection from a compact space to a Hausdorff space; hence it is a homeomorphism. Let us define the mapping $$C_{\widehat{x}}: C(\sigma(x)) \to C(\operatorname{Spec}(\mathcal{B})), \quad (C_{\widehat{x}}f)(h) := f(\widehat{x}(h)) = f(h(x));$$ $C_{\widehat{x}}$ can be thought as a "transpose" of \widehat{x} . Let us define $$\phi = \operatorname{Gel}^{-1} \circ C_{\widehat{x}} : C(\sigma(x)) \to \mathcal{B} \subset \mathcal{A}.$$ Then $\phi: C(\sigma(x) \to \mathcal{A}$ is obviously an isometric *-homomorphism. Furthermore, $$\phi(\iota) = \operatorname{Gel}^{-1}(C_{\widehat{x}}(\iota)) = \operatorname{Gel}^{-1}(\widehat{x}) = \operatorname{Gel}^{-1}(\operatorname{Gel}(x)) = x.$$ Due to the Stone-Weierstrass Theorem, the *-algebra generated by $\iota \in C(\sigma(x))$ is dense in $C(\sigma(x))$; since the *-homomorphism ϕ maps the generator ι to the generator x, the uniqueness of ϕ follows **Remark.** The *-homomorphism $\phi: C(\sigma(x)) \to \mathcal{A}$ in above is called the (continuous) functional calculus at the normal element $\phi(\iota) = x \in \mathcal{A}$. If $p = (z \mapsto \sum_{j=1}^n a_j z^j) : \mathbb{C} \to \mathbb{C}$ is a polynomial then it is natural to define $p(x) := \sum_{j=1}^n a_j x^j$. Then actually $$p(x) = \phi(p);$$ hence it is natural to define $f(x) := \phi(f)$ for every $f \in C(\sigma(x))$. It is easy to check that if $f \in C(\sigma(x))$ and $h \in \operatorname{Spec}(\mathcal{B})$ then f(h(x)) = h(f(x)). **Exercise.** Let \mathcal{A} be a C*-algebra, $x \in \mathcal{A}$ normal, $f \in C(\sigma(x))$, and $g \in C(f(\sigma(x)))$. Show that $\sigma(f(x)) = f(\sigma(x))$ and that $(g \circ f)(x) = g(f(x))$.