10 C*-algebras

Now we are finally in the position to abstractly characterize algebras C'(X)
among Banach algebras: according to Gelfand and Naimark, the category of
compact Hausdorff spaces is equivalent to the category of commutative C*-
algebras. The class of C*-algebras behaves nicely, and the related functional
analysis adequately deserves the name “non-commutative topology”.

Involutive algebra. An algebra A is a x-algebra (“star-algebra” or an
involutive algebra) if there is a mapping (z — z*) : A — A satisfying

(\x)* = Az*, (x+y) =2"4+y", (xy)" =y'z*, (") ==z

for every z,y € Aand A € C; such a mapping is called an involution. In other
words, an involution is a conjugate-linear anti-multiplicative self-invertible
mapping A — A.

A x-homomorphism ¢ : A — B between involutive algebras A and B is
an algebra homomorphism satisfying

for every x € A. The set of all x-homomorphisms between x-algebras A and
B is denoted by Hom™(A, B).

C*-algebra. A (*-algebra A is an involutive Banach algebra such that
lz*z|| = [|=]*

for every z € A.

Examples.

1. The Banach algebra C is a C*-algebra with the involution A — \* = X,
i.e. the complex conjugation.

2. If K is a compact space then C'(K) is a commutative C*-algebra with

the involution f — f* by complex conjugation, f*(z) := f(z).

3. L>(]0,1]) is a C*-algebra, when the involution is as above.

4. A(D(0,1)) =C (]D)(O, 1)) N H(ID(0,1)) is an involutive Banach algebra

with f*(z) := f(%), but it is not a C*-algebra.

98



5. The radical of a commutative C*-algebra is always the trivial {0}, and
thus 0 is the only nilpotent element. Hence for instance the algebra of

matrices (g g ) (where «, 8 € C) cannot be a C*-algebra.

6. If A is a Hilbert space then £(#) is a C*-algebra when the involution
is the usual adjunction A — A*, and clearly any norm-closed involutive
subalgebra of £(#) is also a C*-algebra. Actually, there are no others,
but we shall not prove this fact in these lecture notes:

Gelfand—Naimark Theorem (1943). If A is a C*-algebra then there
exists a Hilbert space H and an isometric x-homomorphism onto a closed
involutive subalgebra of L(H) O

However, we shall characterize the commutative case: the Gelfand trans-
form of a commutative C*-algebra A will turn out to be an isometric iso-
morphism A — C(Spec(A)), so that A “is” the function algebra C'(K) for
the compact Hausdorff space K = Spec(.A)! Before going into this, we prove
some related results.

Proposition. Let A be a x-algebra. Then I* = Ize A is invertible if and
only if * € A is invertible, and o(z*) = o(x) :={\ | A € o(2)}.

Proof. First,

second,
()2 =z ) =T"=1=0"= (z '2)* = 2"z 1)*
third, B
Al—z* = (A\I")" — 2" = (A)* — 2% = (Al — z)*",
which concludes the proof O

Proposition. Let A be a C*-algebra, and x = z* € A. Then o(z) C R.

Proof. Assume that A € o(z) \ R, i.e. A = A; 4+ i), for some A; € R with

A2 # 0. Hence we may define y := (z — A1)/ As € A. Now y* = y. Moreover,

i € o(y), because

ANl -z
A2

il—y=

99



Take ¢t € R. Then ¢t + 1 € o(tI — iy), because

(t+ 1)L — (I — iy) = —i(il — y).

Thereby
t+1)? < p(tI—iy)?
< |41 — iy ||?
c* N )
= || = dy)" (L — iyl
LT @+ i) (- i) = [P+
< 2+l
so that 2t + 1 < ||y|| for every ¢t € R; a contradiction d

Corollary. Let A a C*-algebra, ¢ : A — C a homomorphism, and x € A.
Then ¢(z*) = ¢(x), i.e. ¢ is a x-homomorphism.

Proof. Define the “real part” and the “imaginary part” of = by

xr + x* r —x*
= V= .
2 7 21

Then z = u + v, u* = u, v* = v, and z* = u — iw. Since a homomorphism
maps invertibles to invertibles, we have ¢(u) € o(u); we know that o(u) C R,
because u* = u. Similarly we obtain ¢(v) € R. Thereby

¢(2%) = ¢(u — iv) = ¢(u) — i(v) = ¢(u) + ip(v) = ¢(u+ ) = ¢(z);
this means that Hom" (A, C) = Hom(A4, C) O

Exercise. Let A be a Banach algebra, B its closed subalgebra, and =z € B.
Prove the following facts:

(a) G(B) is open and closed in G(A) N B.

(b) o4(x) C op(z) and dog(x) C do4(x).

(c) If C\ 04(x) is connected then o4(z) = og(z).

Using the results of the exercise above, the reader can prove the following
important fact on the invariance of spectrum in C*-algebras:

Exercise*. Let A be a C*-algebra and B its C*-subalgebra. Show that
og(x) = o4(x) for every z € B.
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Lemma. Let A be a C*-algebra. Then ||z||> = p(z*z) for every x € A.

Proof. Now
* * * * * * C* *
|(z*2)?|| = [|(z*z) (z*2)|| = [|(z*z)* (z"z) || = [|z*z]?,

so that by induction
I(&*2)* || = [la"z|*

for every n € N. Therefore applying the Spectral Radius Formula, we get

2”“1/2" 2n j2m

* 1 * 1 * _ *
plaz) = Tim [|(@*2)?" V%" = Tim [la*c]"/*" = a*]),

the result we wanted O

Exercise*. Let A be a C*-algebra. Show that there can be at most one
C*-algebra norm on an involutive Banach algebra. Moreover, prove that if
A, B are C*-algebras then ¢ € Hom*(A, B) is continuous and has a norm

o]l =1.

Commutative Gelfand—Naimark. Let A be a commutative C*-algebra.
Then the Gelfand transform (x — z) : A — C(Spec(A)) is an isometric
x-1somorphism.

Proof. Let K = Spec(A). We already know that the Gelfand transform is
a Banach algebra homomorphism A — C(K). Let z € A and ¢ € K. Since
¢ is actually a *-homomorphism, we get

7*(9) = ¢(z*) = ¢(x) = T(¢) =T*(¢9);

the Gelfand transform is a *-homomorphism.

Now we have proven that Acc (K) is an involutive subalgebra separat-
ing the points of K. Stone-Weierstrass Theorem thus says that A is dense
in C(K). If we can show that the Gelfand transform A — A is an isometry
then we must have A = C(K): Take z € A. Then

1711? = 17| = ||z7z]| “B™ p(z*z) "= |a?,

ie. [[Z]| = [l| 0

Exercise*. Show that an injective x-homomorphism between C*-algebras
is an isometry. (Hint: Gelfand transform.)
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Exercise*. A linear functional f on a C*-algebra A is called positive if
f(z*z) > 0 for every x € A. Show that the positive functionals separate the
points of A.

Exercise*. Prove that the involution of a C*-algebra cannot be altered
without destroying the C*-property ||z*z|| = ||z||?.

An element z of a C*-algebra is called normal if x*z = xz*. We use the
commutative Gelfand—Naimark Theorem to create the so called continuous
functional calculus at a normal element — a non-commutative C*-algebra
admits some commutative studies:

Theorem. Let A be a C*-algebra, and x € A be a normal element. Let 1 =

(A= A) 1 o(z) = C. Then there exists a unique isometric x-homomorphism
¢ : C(o(xz)) — A such that ¢(v) = x and ¢(C(o(x))) is the C*-algebra
generated by x, i.e. the smallest C*-algebra containing {x}.

Proof. Let B be the C*-algebra generated by x. Since z is normal, B
is commutative. Let Gel = (y — ¥) : B — C(Spec(B)) be the Gelfand
transform of B. The reader may easily verify that

Z : Spec(B) — o(x)

is a continuous bijection from a compact space to a Hausdorff space; hence
it is a homeomorphism. Let us define the mapping

Cs : C(o(x)) = C(Spec(B)), (Czf)(h) := f(@(h)) = f(h(2));
C5 can be thought as a “transpose” of Z. Let us define
¢=Gel ' oCs:Clo(z)) = BC A.

Then ¢ : C(o(x) — A is obviously an isometric *-homomorphism. Further-
more,

B(1) = Gel H(C5(1)) = Gel () = Gel ™ (Gel(z)) = .

Due to the Stone-Weierstrass Theorem, the x-algebra generated by ¢ €
C(o(z)) is dense in C(o(x)); since the *-homomorphism ¢ maps the gen-
erator ¢ to the generator z, the uniqueness of ¢ follows O
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Remark. The x-homomorphism ¢ : C(o(z)) — A in above is called the
(continuous) functional calculus at the normal element ¢(1) = z € A. If
p= (235, a;z7) : C — C is a polynomial then it is natural to define
p(z) == Y7, a;jz’. Then actually

p(x) = ¢(p);

hence it is natural to define f(x) := ¢(f) for every f € C(o(z)). It is easy
to check that if f € C(o(z)) and h € Spec(B) then f(h(z)) = h(f(z)).

Exercise. Let A be a C*-algebra, z € A normal, f € C(o(z)), and g €
O(f(o())). Show that o(f(x)) = f(o(z)) and that (g0 f)(z) = g(f(z))
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