1 Informal introduction

These lecture notes present a fundamental relationship between topology,
measure theory and algebra. Briefly, if we want to study properties of a space
X, we may alternatively examine some algebra of functions on X. With suit-
able topological restrictions, there will be a bijective correspondence between
spaces and algebras (equivalence of categories, if you insist). Topology and
measure theory of X can then be stated in the terms of a topological function
algebra. And it will turn out that the tools that are developed for the study
of function algebras work as well for non-commutative algebras.

Let us begin with a trivial example. Let X be a finite set. Let A = F(X)
be the set of the complex-valued functions f : X — C. Then A is naturally
a C-vector space:

(f +9)(@) = f(x) +9(x), (Af)(z):=Af(z)

for every f,g € A and A\ € C. Moreover, A is an algebra when endowed with
the product

(fg)(z) == f(z) g(x)

and with the unit element I = I 4, which is the constant function I(z) = 1.
Let Hom(A, C) denote the set of algebra homomorphisms A — C. When
x € X, the evaluation mapping

(f—= fx): A—>C

is a homomorphism. Hence we may think that X is a subset of Hom(A, C).
Actually, it turns out that the evaluation mappings are the only homomor-
phisms A — C. Therefore we may even claim

X = Hom(A, C).

It can be proven that every isomorphism A — A arises from a bijection
X — X. And if 0 # I C X, it is easy to see that

IT:={feA|Vzel: f(x)=0}

is an ideal of the algebra A, and that there are no other ideals; thus the
non-empty subsets of X are in bijective correspondence with the ideals of A.
Any ) : X — C defines a linear functional A : A — C by

A=) @) Ma),
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which can be thought as an integral with respect to the A-weighted counting
measure on X; conversely, any linear functional on A arises this way.

From analysis point of view, the discrete topology is the most reason-
able topology for a finite set X, and the counting measure is the natural
choice for measure theory. We should not endow an infinite set with the
discrete topology nor with the counting measure. Instead, non-trivial topol-
ogy and measure theory will be necessary. The framework is the theory of
commutative C*-algebras (“C-star-algebra”), an extremely beautiful branch
of functional analysis. In essence, this theory boils down to the following:

Theorem. Compact Hausdorff spaces X and Y are homeomorphic if and
only if the function algebras C(X) and C(Y) of complez-valued continuous
functions are isomorphic.

Thus the topological and measure theoretic information of some topolog-
ical space X is equivalent to the topologic-algebraic information of C'(X).
The same phenomenon occurs also for differentiability properties. We may
study directly the geometry of a space, but as well we may study algebras
of functions on it! This is called “commutative geometry”, as function
algebras are commutative. Now this remark almost forces us to generalize:
We may study certain non-commutative algebras using similar tools as in the
commutative case. Hence the name “non-commutative geometry”.

The reader may wonder why these themes should be relevant. We have
already expressed the nice connections between different branches of math-
ematics. Let us go back in the history: In 1925, Werner Heisenberg (1901-
1976) and Erwin Schrodinger (1887-1961) initiated the quantum mechanics.
Heisenberg applied matrix algebras, while Schrodinger practically studied
Fourier analysis, but their theories were essentially equivalent. However, a
precise mathematical foundation for quantum physics was lacking. This was
the main reason for Janos von Neumann (1903-1957) to develop the Hilbert
spaces and the spectral theory of normal operators in 1929-1930. In this
context, a quantum mechanical system is presented as a partial differential
equation (Schrddinger equation) on a Hilbert space #H, where unit vectors
¢ € H (|]|¢]] = 1) are states of the system. The measurable quantities, or
observables, of the system are the self-adjoint linear operators (A* = A) on
‘H. Also the unbounded operators are interesting, for instance the location
and momentum operators on L?(R"). When we measure a quantity, the re-
sult is not the full information about the observable but merely a value from
the spectrum of the operator (e.g. try to locate a particle in the space). The
interesting thing is then to find a spectral decomposition of an observable,



analogous to the diagonalization of a Hermitian matrix.

Well, this is not a physical Theory of Everything. Anyhow, L£(H) is the
natural first stage in developing the operator algebras. In 1936, the next
ingenious step was the theory of von Neumann algebras, capturing some
measure theoretic properties of classical L*™°-type spaces. These algebras
were a special case of C*-algebras, whose theory emerged in the early of
1940s mainly by Israil Gelfand (1913-).

Practical definition. A C*-algebra A is a norm closed involutive subal-
gebra of L(H) for some Hilbert space H.

Equivalent abstract definition. A C*-algebra A is a Banach space and
a C-algebra with involution x — x* such that

eyl < llzll lyll, Tl =1, =¥zl = |l2]?
for every x,y € A.

Gelfand’s idea was to look at a “mirror reflection” of a commutative
algebra. Actually, this approach can be dated back at least to Hilbert’s
Nullstellensatz in algebraic geometry, in 1893. Let A be a commutative C*-
algebra. Let X = Hom(A, C) be the set of algebra homomorphisms .4 — C.
The Gelfand transform of an element f € A is the function f : X — C
defined by

f(z) = a(f),

where x € X = Hom(A,C). This seems astonishingly simple, but is fun-
damental. Now Gelfand proved that X is a compact Hausdorff space in
the natural topology inherited from the weak*-topology of the dual space
A" = L(A,C). Moreover:

Gelfand—Naimark Theorem (1943). Any commutative C*-algebra is
isometrically isomorphic to the algebra C(X) for some compact Hausdorff
space X .

Gelfand-Naimark Theorem is the starting point of the non-commutative
geometry, which was initiated by Alain Connes in the 1980s. By now, this
huge subject contains such topics as Hopf algebras and quantum groups, K-
theory for operator algebras, non-commutative integrodifferential calculus,
non-commutative manifolds, and so on. This machinery has been applied
e.g. in particle physics, quantum field theory and string theory.



However, within the limited time we have, we only present some of the
early fundamental results of topology and operator algebras. This hopefully
provides a solid background for the reader to investigate non-commutative
geometry further.

To distill some of the essential results that will be obtained in these
lecture notes, we present a “dictionary” relating topology, measure theory
and algebra; here X is a compact Hausdorff space:

Topology / Measure theory < Algebra
C(X) < commutative C*-algebra A
homeomorphism X — X < isomorphism A — A
point € X <> maximal ideal € A or

homomorphism A — C
closed ideal C A or
quotient algebra 4 /ideal
spectrum of an element € A
A separable

3feA: P=f0£F#1
bounded linear

functional A — C

positive linear

functional A — C

T

non-empty closed subset C X

range of f € C(X)

X metrizable

X disconnected
complex measure on X
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positive measure on X
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