Chapter 5

Wavelet transforms
and frames

1. The continuous wavelet transform

In this section we study a version of the so-called continuous wavelet trans-
form applied to the ridge functions appearing in a neural network with one
hidden layer.

If now v is a given function, then we define

1 u-x—>ob
¢u,a,b(x) = \/_E’¢ (T) s |11| = 1, a > 0, b e R.

We have the following result.

Theorem 18. Let d > 1 and let b and ¢ € L'(R) be such that

/W w)llAw d < oo and E’¢7¢:e/ |w|d dw;éO

]

If f € LY(R?) is such that f € L*(R?), then

1 [o's]
f(X) — Brd/,(p /Sd—l /0 /E<f7 ¢u,a,b> (Pu,a,b(x) dbda du.

where (-,-) denotes the inner product in L*(R?).

Observe that if ¢ and ¢ are real-valued functions, then K , is real-
valued as well. From the proof we see that we have

/Sd—l /OOO /]R<fﬂ/1u,a,b> Cuap(x)db

daedu < o0,
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and that the integral f]R (f, Yuab) Puap(x)dbis the convolution of L*-functions,
and hence well-defined. If b = ¢, then it is not difficult to show that the
triple integral converges absolutely as well.

Proof. Let u € R? be such that |u| = 1. We define the Radon-transform
Py f as follows:

(P = [ Fous Us)as,

where U+ is a d x (d — 1) matrix with columns that form an orthonormal
basis for the subspace of vectors in R? orthogonal to u. It is not difficult to
show that Py f € L*(R) and that

(54) Puf(w) = f(wn).

Furthermore, we let, abusing our notation somewhat,

1 it
wau):ﬁw(;) and Gu(t) = Pa(—0), a>0 LER.

We observe that
(55) <f7 ¢u,a,b> = (f&a * Puf)(b)
We let

and observe that

/ qbaw wi= l/oogb(a)idda
0 a

_ wd—l/ ¢(’|7)€|il(’7) dn = Wd_le,w w> 0.
n

The same calculation shows, of course, that there is a constant C' such that
o0
1
(56) / |p(aw)| — da < Cw®=' w>o0.
0 a

If we now let x € R? be arbitrary and define

(57) def /d ) / / el2monx g aw)f(wu)id da dw du,

then it follows from (56) and our assumptions on f that this integral con-
verges absolutely, and we have in fact

(58) g(x) = Ky, / d / 27X fou)w®1 dw du
§4-1 Jo
= Koo [ SR dy = Ko ),
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By Fubini’s theorem and the fact that $! is invariant under the mapping
u— —u we get

= [ ] (gt e

+ e_l%“’“'xzb(—aw)g&(—aw)f(wu)) 1 dwdadu

=[] et fon) o do da du.

Next we note from (54) that the Fourier transform of the function z}a *

Py @q is at(aw)@(aw) f(wu), and therefore we get by the Fourier inversion
formula

(60) g(x) = /Sd—l /0 (1/;,1 * Py f * @q)(u- X)adlﬁ da du.

(By the results above we know that [y fooo|(1za*Puf*99a)(u-x)| —rdadu <
00.) Now by (55)

(o Puf s )(wx) = [ (Bus Pul)(B)pat - x = 0)
= [ U bua) st a0
R

When this result is combined with (58) and (60) we get the claim of the
theorem. U

2. Riesz bases and frames

Let H be a separable Hilbert space with inner product (-,-). Then a sequence
(e,)02, C H is an orthonormal basis of H if for all n, m > 1 we have

(€n,em) =0if n # m and ||e,|| = 1, and the span of the sequence is dense
in H.

Theorem 19. Let H be a separable Hilbert space with inner product (-,-)
and let (e,)n=100 C H. Then the following properties are equivalent.

1. (en)n=1 is an orthonormal basis of H.

2. span{e,}>2, = H and

k
D lenl* =
n=1

for all numbers c1,...,cp, k> 1.
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3. |len]| =1, n>1 and
D KLen) =17 fed.
n=1

Next we consider so called Riesz bases, but note that there are many
other ways of characterizing such bases than the ones given below.

Theorem 20. Let H be a separable Hilbert space with inner product (-,-)
and let (f,)72, C H. Then the following properties are equivalent (and if
they hold, the sequence is said to be a Riesz basis):

(i) There is an orthonormal basis (e,)>2, of H and a bounded linear
operator T : H — H with bounded inverse such that f, = Te, for
eachn > 1.

(ii) span{f,}>2, = H and there are positive constants a and b such that
and

k
§ Crn€n

k 2 k
@) leal* < <bY leal?,
n=1 n=1 n=1

for all numbers c1,...,cp, k> 1.

(i) span{f,}°2, = H and there are positive constants a and B such that

k k
@Y leal <Y enenll®,
n=1 n=1
for all numbers c1,...,ck, k> 1, and

SR < BISIE, fed.

n=1

(iv) span{f,}22, = H and there is a sequence (g,)°>, such that
span{g,}>2, = H and for all m, n > 1 we have (f,,gm) = 0 if
n#m and (f,,g,) = 1, and there is a constant B such that

S UL £ < B
n=t feH.

> 1(f,90)17 < BIISII,

n=1

(v) There is a sequence (g,)°2, such that for all m, n > 1 we have
(fr'gm) = 0 if n # m and (f.,g9,) = 1, and there are constants
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0< A<B<x

AP <Y I 117 < BS1%
n=t feH.

AILFIP <Y I 9001 < BISI,

n=1

Proof. (i)=-(ii): Since f, = Te, for all n we have

k k k k
Z cnfn="T (Z cnen> and 77! Z Cnfn = (Z cnen>
n=1

n=1 n=1 n=1
so that
k 2 k 2 n
oenkal| <N enen| =TI leal®,
n=1 n=1 k=1
and
k 2 k 2 n
S enkal| 2T enenf| = 17772 lenl®
n=1 n=1 k=1
(ii)«(iii): Suppose (ii) holds. If ¢,, n = 1,...,k are arbitrary numbers
we have
k 2 k 2 k 2 k
S enlf f)| = ‘<f,zm> WIS wmh] <ol S el
n=1 n=1 n=1 n=1

If we now choose ¢, = (f, f,,) and let k¥ — oo, then we get the missing claim.

For the converse we let f = 27]2:1 ¢nfn. Then

2

171" =[5 D1 =

> ke (S, fn)
n=1

k k k
< len® IS )P < BIAPD leal®.
n=1 n=1 n=1

When we divide by || f]|* we get the desired result.
(iii)=(iv): The first inequality implies that for each m > 1

k

zcnfn_fm >a>0.
n=1

n#m

Thus f,, ¢ span{ f, | n > 1,n # m } and therefore there exists an element
gm € H such that (f,,gm) =0if n # m and 1if n = m.
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If f= Ei:l ¢nfn we must therefore have ¢,, = (f, g,). Thus we have

- 1
n=1

for f in a dense subset of H, and by continuity for all f € H. In order
to prove that span{g,}°°, = H it suffices to recall that (iii) implies (ii)
because then we can conclude that if for some f € H we have (f,g,) =0
for all n > 1 then f = 0.

(iv)=(i): Let (e,)22,; be an arbitrary orthonormal basis for H. fur-
thermore, Let f = 27]2:1 cnfn and g = 27]2:1 d,g,. By the biorthogonality
assumption we have ¢, = (f, ¢,) and d,, = (g, f,.). If we now define

k
Sf= cuen,
n=1

Ug= zz: kden,
n=1

then we conclude that
k

k
ISP =D leal> = Y KL 9a)l* < BIJIP.

n=1 n=1
A similar inequality can be derived for U so that we conclude, since § and
U are densely defined that they can be extended to bounded continuous
operators on H with norms at most v/B. The biorthogonality combined
with the continuous extension implies that

(5f,Ug)=(f.9), [fg€H.

Thus we conclude that

AP = {f:9) = (SLUL) < WSANUA < ISAVBILIL
Since the range of 5 is dense in H we conclude that S has a bounded inverse
and the proof is completed.

(iv)<(v): Assume first that (iv) holds. Since we know that (iv) is equiv-
alent to (i) there is an operator T such that (T7!f,)°%, is an orthonormal
basis. Then

STUALI =S HATT ) = Y (T T )| = 1T 12 >
n=1 n=1

n=1

1
WIUIIQ-

Since (g,)°2, satisfies the same assumptions as ()52, we get the second

conclusion as well.

Suppose next that (v) holds. Then we have only to show that span{f,}°°; =
H and span{g,}°2; = H and these claims follow directly because by (v)

n=1 —
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there cannot be a nonzero vector orthogonal to all vectors f, or to all vectors
In- O

By dropping part of the requirements in some of the characterizations
one gets so called Bessel sequences and Riesz-Fisher sequences. But it turns
out to be very fruitful to formulate a new condition as well.

Definition 21. Let H be a separable Hilbert space. A sequence () of
elements in H is a frame if there are positive constants A and B (the bounds
for the frame) such that

AP <> WL F)P < BISIIP, [ e H.

n=1

Theorem 22. If (f,)22, is a frame then the formula

(61) Tf= Z (f, o) ]

n=1
defines a bounded, selfadjoint, invertible, linear operator with ||T|| < B and
T~ < A=, Moreover, if f € H, then

f:Zanfn where an:<T_1f,fn>:<f,T_1fn>, n>1,

n=1

and if f =3, _1bnfn, then

00 00 00 00

2
D_bnl* = 3 lanl* + 3 fan = bl 2 ) lanl?.
n=1 n=1 n=1 n=1

Proof. First we have to show that T is well defined. Let

T f = Afs ) fu-

n=k
Observe that
2

1 Tem f1I* = U Tk fs Tem SN = Y (Fs fn) (s T )

n=1
< Z| I 1)) Z (s T D)* < B2 SN T S1I*.

Thus we conclude that
Tk, [l < B f]];
and
[T fII* < BY IS fa)l?
n=k
© G. Gripenberg 3.5.2002
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From this we conclude that 77 ,, f converges as m — oo to an element 7' f
where T is a linear operator satisfying

1] < B.

Next we observe that

(TF 1)y =Y WF L) > Al f)2

n=1

From this we first conclude that ||7'f|| > Al f|| which implies that the range
of T is closed. If this range is not H there is a nonzero vector h € H
orthogonal to it, but this is impossible because (Th,h) > A||h||? > 0.

Next we show that T is self-adjoint. Let f and g € H be arbitrary. Then

(Tf,9) =3 AL, 1) (Fur9) = DAL Fu) (i 9)

_ <f,§:<fmg>fn> = (. Tq).

n=1
By the definition of T' we have
F=1@ = T ) fo =Y (FT7 s f), -
n=1 n=1
O

Theorem 23. Let H be a separable Hilbert space and let ( f,)S2, be a frame
in H. Let g, = T~ f,, where T is the operator T f = 3"" ([, fu} fn. Then
either (f,)22 is a Riesz basis for H (with (fu,gm) =0 if n # m and 1 if
n = m) or there is a number k > 1 such that (f,)°, is a frame.

n#k

Proof. If for all m and n > 1 we have

0, if n# m,

1, if n =m,

<fnvgm> = {
then (f,,)72, is a Riesz basis by Theorem 20.(v).

Suppose that for some k > 1 either (fx, gx) # 1 or (fx, gm) # 0 for some
m # k. Since (f,)52, is a frame we have write

fk = Z <fkvgn>fn-
n=1
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If now (fi,gr) = 1 then we have

o0

0= (fk:9n) fn

n=1

n#k

On the other hand we have

0="> 0/fn,
n=1
and by Theorem 22 we must therefore have

Thus we may assume that ag def (fk,9%) # 1. Then we have

1 o0
fk = 1—ax Z <fk7gn> fna
ntk
and in particular
1 o~ ——
(S Fo))? = M=o ; (frr 9n) {f5 fn)
n#k

1 o0 o0
< = a? z|<fkvgn>|2 Z|<f7 Ja)l2.

= n=1
n#k n#k

Thus we conclude that

S UL P < A,

n=1

where C' =1+ m S0z [k, gn)|?. Tt follows that
n#k

A o0
Gl < DA A1 < BISIP,

n;:ék

and we conclude that (f,)2, is a frame. This completes the proof.

n#k
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32 5. Wavelet transforms and frames 3.5.2002

3. A frame of wavelets or ridgelets

Let a > 1, for example @ = 2 and let Qg = [—%,%]d

that on gets a frame for the space L%(Q)4) in the form Yy i glas Where

wwagzﬁg(ﬂgfiy

Here A; is a set of vectors approximately uniformly distributed on the unit
sphere, such that the number of vectors in A; is of the order a~i(d=1)
j — —oo. It is not difficult to show that one can get a similar frame for

L?(K) where K is any bounded measurable set.

. Here we shall show

when

Theorem 24. Assume that d > 1, a > 1, 8 > 0, and that ¥ € LY(R) is
such that for some 6 > 0

(62) WPW(MLHMJ*%)<W’

wt0 jw] T+

and
Jo

inf (19(adw)P? Tw)) > 0.

(63) (it D (o) + [d(—a’w)?) > 0
j=—o0

Let j, be such that a=7*t1d < z— = arcsm(22 —2(13_%)) and let j1 = jo+ J«-
Define the sets A; as follows: A] = U;lszp where
v|ver, vl =[ai*),

1

(64) Bj={
! v

min

u€A;

If B is sufficiently small, then the functions

u—

J&bu,oﬂ,ﬁkoﬂ}(ijo,ueAJ,kEZ)v
form a frame for L*(Q).

The set A; as defined above is unnecessary large, and it is not difficult
to construct much smaller sets A; without loosing the frame-property.

We have the following result, which is a multidimensional version of the
so-called Kadec’s %—Theorem.

Theorem 25. Letd > 1. Suppose that for each k € Z we have |wy —k|s <
L. IfL <1 then

S 1 f@)l? < 2 - cos(rL) 4 sin(w L)X fliag,) | € LH(Q).

kezd
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andif L < $—1 arcsin(Q% —2(%_%)), (so that is (2—cos(m L) +sin(rL))? < 2)
then

(66)
(2 (2~ cos(rL) 4 sin(r L)) [ Fl3agq, < S0 @)% 1 € 17(Qa).
kezd
In particular
(67) Yo sw [f@) <8 flleg,: [ ELHQa)

kezd |Z_k|OOS§_

and when L < 1+ — 1 arcsin(?é — 2(5_%)),

ks

(68) Z inf |f(z)]* > <2 — (2 —cos(wL) + Sill(ﬂ'L))d>2 ||f||%2(Qd)

e

Jor every f € L*(Q).

Proof of Theorem 25. Let
A = (2 —cos(mL) 4 sin(7L))* — 1.

If we can prove that

(69) Z K (ei27rk~§ _ ei27rwk~§) < Ay E |Ck|27
kezd 12(Qq) kez?

then it follows from Plancherel’s theorem that if T'(el?™%8) = l2™“k'S then
[|T]| < Aq + 1. If furthermore Ay < 1, then it follows from [8, Thm. 1.10],
that the sequence (e™x#), 4 is a Riesz basis in L*(Q) and ||[T7!|| < ﬁ.
From these inequalities the first two claims follow, so it remains to prove
(68).

We use induction and note that if d = 1, then the claim is Kadec’s %—
Theorem, see [8][Thm 1.14]. If d > 1, k € Z¢, and s € @4, then we write
k = (m,n) where m € Z9! and n € Z, s = (t,u) where t € Q41 and
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= [_%’ %]7 and wk = (ftm, 7). With this notation we have

(70) Z Cx (eiQWk-g B ei27rwk-§)

d
keZ 1.2 (Qd)
< E E Cmmei?ﬂmi(ei%rng _ ei27r77ny)
mezd~! n€l L2(Qa)
+ § § Cmn <e127TlTl'£ _ el?ﬂ'um ~£) el?ﬂng
mez- neZ £2(Qu)

+ Z E Cm (ei27rm~L _ ei2mm1) (eiQﬂny _ ei%”"ﬁ)
1

mezd~! n€l L2(Qa)

Now we have, since we know the claim holds when d = 1,

2

§ § Cmmel?ﬂm!(eﬂﬂny _ el?ﬂnny)

mezd~! n€l L2(Qa)

S/\% Z Z cmmei%m't dt

Qa1 7 | mezd—1

:/\%Z/ Z cmmei%m't dt

nez” Q-1 | ;e zd-

—Y Y Jemal? =22 Y Jel®

n€ZL meZd—1 kez®
In the same way we get
2
§ § Cmon <e127rm~£ _ el?ﬂum~§) el?ﬂny S Aﬁ—l E |Ck|27
mez4=1 n€l 12(Qa) ke
and
2
§ § Cmon (ei27rm~£ _ ei27rp,m~£) (ei27rng . ei27r77ng)
meZzd—1 n€l L2(Qq)
242 2
< AT E |ex|”
kez®
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Combining these inequalities with (69) we get our claim by an easy calcula-
tion.

g

Proof of Theorem 24. Let
#i(t) = a”F(-a7iL).
It follows that
(71) Filw) = a? d(w).
It is easy to check that
(fs Vs phai) = (Pu* ©;)(kBa?).

We use the notation

Fi(t) = [(Pa*25) ()]

Now if t € R and 7 > 0 we have
t-l-
/ / F’ )drds

1 1 1 2 t—i—%
—/ Fi(r )/ dsdr — —/ F;(r)/ ds dr
T Ji-Z t—Z T Jt t

1z
< _/ IR d.
i—3

-2

Now we choose ¢ = kfa’ for some k € Z and 7 = o’ so that

1 [=3)8
< —/ |Fi(s)] ds.
2 Jir=14)800

(k= $)pe0
Fi(kpod) - i/ T ) ds

Bad Jk-1)gas

Summing over k € Z gives

: 1
(72) %Fj(kﬁoﬂ)— W/RFj(s)ds
<3| Fy(had) - - /““"W

keZ pa k—3)Ba

1
<5 [IF) s
2 /e
By Plancherel’s theorem, (54), and (70) we have

[ B@as =l [leuieo)f d.

Now clearly

[F5(s)| < 2[(Puf * ) ()| (Puf * £5)(s)],
© G. Gripenberg 3.5.2002
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so that we get

L fimonas< (firareearas)” (firareearas)’

—oma ([ |f<wu>|2|¢(afw>|2dw)% ([1iwreriieor )

1
2
Finally we sum over u and j with the result that

E Z Zl(fv ¢u7al7ﬁkaj>|2

Jj=—00 u€A; k€’

- Sy [l iteaas)

J=—00 UEA;

(73)

B>

J=—00 UEA;

< 503 2ol ([ temPlioiopas)

Jj=—00 u€A;

X (/RV(WU)PWIQW(Q%)P dw) 1

S b i) % /}R Fow)P(aiw)? du

keZ

(SIS

<27 ( > D / f(wuw(af'w)?dw)

Jj=—occu€d; "

1
J R ' o 2
Y [1ewPlaedai)a |
j=—coue4; 'R
Next we have to show that there is a positive constant ¢ such that

(74) > Y [l d < g,

Jj=—00 u€A; "

N
@) 3 Y [feullwelie)? d < i,

J=—co u€A; ">

(76) > % [liniee)f o> L,

Jj=—co u€A; ">

© G. Gripenberg 3.5.2002



3. A frame of wavelets or ridgelets 37

If this is the case, then it follows from (72) that

J1
EERTITNES S op s TX

j=—o00 u€A, kel
< (27rc + %)) ||f||%2(Qd)7

which completes the proof since we may choose g < C%

Let ¢p(w) = |d(w)? + |[d(—w)|?. Since each set A; is symmetric with
respect to the mapping u — —u we conclude that

% /}R FewPlbeo)d = 3 Y / i) Pé(ade) do.

J=—00 UEA; Jj=—00 u€A;

By the definition of the sets A; we get

> X [CliewPolao)d

J=—00 UEA;
A 5N

=D 3D 3 MDDl IV ENLIERR T

j=—00 p=j u€Bp k=—c0

-y v ¥/

aktl
ak
k=—o0c0 p=—0o0 u€By

f(wu)]? Z qﬁ(ajw) dw.

i=—o0

Let L = do=/**! so that L < 1 — %arcsin(Q% — 2(%_%)) and choose

ko = —j. so that a0 < L. Let ¢ be a positive constant such that

Z Palw) > es.

i=—o0

Since kg + 71 = jo we have

IO D ALENEECUSIEFED DD DEPY NNV N

J=—00 UEA; k=ko u€A;, g

Now our construction of the sets A; and our choice of ky guarantees that
there is a positive constant ¢4 so that for each k € Z% there exists a k > ko
and a vector u € Aj,_j, such that the measure of the set {w € [aF, af*1] |
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|wu — k| < L} is at least ¢4. It follows that

- > [ fn Pl dw>c304z|z b )l

J=—00 UEA;

By (67) we get the desired lower bound (75).
In order to establish the upper bounds (73) and (74) we let ¢(w) =
|ew| <|1@(g)|2 + |@7)(—g)|2) and proceed as above to get

5% [ ent (e + @it ds

Jj=—00 UEA;
+

S Yy [ e Y e

k=—co p=—0c0o u€B, J=—o00

It follows from our assumptions in (62) on 4 that 3°%__ #alw) < e5 < o0
for all w > 0. But we also have another constant ¢g such that

Z o( a] ) < cga k"'p)(d_l"'%), E+p<0, w<aftt,

]_—OO

Since supzemd|f( )2 < ||f||L2 Qa7 Ve conclude that

> Z 2. / Fowl Y oleo)do < erl g,

k=—o0c0 p=—0o0 ueBb, J=—o00

On the other hand we have
>y oy [
k=0p=—0c0 u€By
< Z Z Z / C5 dw

k=0 p=—k+1 ueBp

+Z Z 3 / w)[2egalk+n)E-1+28) g,

k=0p=—0c0 u€By
okt

—6Y Y / | flow) de

k=0u€B_j4; "%
k+1

e Y Y [, o pati g,

k=0p=—0o0 ueBb,
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From the definition of the the sets A; it follows that there is a constant cg
such that

ak+1

> o[ ewtasa Y s i@

1
uEB_k+1 o kezd |Z_k|0055

ok < k| <okt
This takes care of the first term. Furthermore, we see that we can choose
cg so that we also have

b+l
> [0 et S qa DSy [f@)

HEBP o kezd |Z_k|OOS%
ak<|k|<ak+l

Using this inequality we get the desired inequalities (73) and (74) and the
proof is completed. O
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