Chapter 6

Principal components

1. Introduction

The idea behind the principal components is roughly the following. Suppose
one has a random vector x € R? (or just a finite number of vectors x; € R?,
7 =1,...,n each chosen with the same probability %) and that the mean
of these vectors is 0. Suppose that and one wants to choose project these
vectors on a subspace with smaller dimension e.g. m < d) without loosing
too much information. This is here taken to mean that if P is the projection,
then the variance of Px is as large as possible, which turns out to be the
same as that the variance of x — Px is as small as possible. If we take x to be
a column vector we can write the matrix P as P = QQT where the columns
in Q are an orthonormal basis for the range of P so that QTQ = I. Thus
the (euclidean) length of Px is equal to the length of QTx. The variance
of QTx can be written as E(x'QQTx) or E(trace(QTxx'Q)), where E
denotes the expectation (that is the integral or sum over the probability
space). If we let R = E(xx"') we see that we should choose @ in such a way
that trace (QTRQ) is as large as possible. We have the following result.

Lemma 26. Lel R be a nonnegative definite symmetric d X d matriz with
eigenvalues A\ > Ay > ... > Ag. Then the mazimum value of trace (QTRQ)
where Q is a d X m matriz with QTQ = T is E}”:l A; and it is achieved
when the columns in () form an orthonormal basis of the space spanned by
the eigenvectors associated with A1, ..., Apy.

Another way of looking at this result is to consider the case where one
is given n vectors x;, 7 = 1,...,n such that 2?21 x; = 0. Then on can
form a d X n-matrix A with the vectors x; as columns. If now we form the
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singular value decomposition A = USVT. In this case E(xx!) = %AAT =
%USSTUT From this it follows that ¢ consists of the first m columns of U.

Next we consider the case where the mean value of x; is not zero (or
E(x) # 0). In that case we calculate X = %2?21 x; and consider instead
the vectors x; — X. If we formulate the problem in term of a minimization
problem we have to calculate
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It turns out that we get the same result by calculating
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that is, weget c =Xand y; = QTXJ-—QE. (Clearly ¢ and y; are not uniquely
determined since one can always add a constant to all y; and subtarsct it
from c.) One can even go further and formulate the following minimization
problems:
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where A(k,n) is the set of all functions of the form z € R¥ — Az 4 ¢ € R"

where A is an n X m matrix.

2. Nonlinear principal components and neural
networks

The theory of principal components briefly presented in the previous section
does not really have anything to do neural networks, but every function in
the set A(k,n) can, of course be realized as a neural network with linear
activation function. This gives immediately the possibility of defining several
kinds of "nonlinear principal components” if one gives up the requirement
that the funcions f and ¢ are affine. Clearly, one cannot take arbitrary
functions because then one could, using e.g. a space filling curve make the
expression to be minimized equal to 0 in infinitely quite different ways so
no information could be extracted. Neural networks, however, provide an
easily parametrized class of functions that can be used for this purpose.

Here we just present an example of what one can get in a very simple
case. In the picture below the dots are given data points. We use a neural
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network with dimensions [2,5,1,5,2] and the line drawn in the picture is
the graph of the mapping from level 2 to level 4, that is points in the plane
are "projected” onto the real line and reconstructed from the line with this

mapping.
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