Chapter 3

Kolmogorov’s theorem
on the representation
of functions

1. Statement of the theorem

The purpose of this chapter is to prove a theorem due to Kolmogorov et
al. which says that the continuous function of several variables can be given
as compositions of continuous functions of one variable and addition. In
other words, as long as one restricts onself to continuous functions, the only
“genuine” function of two variables is (z,y) — z + y.

Theorem 12. Let d > 1 and let K be a compact subset of R?. Then there
exist d numbers A\; € (0,1), j = 1,2,...,d and 2d + 1 strictly increasing
functions ¢, € C(R), k =1,2,...,2d+1 such that for each f € C(R?) there
is a function g € C(R) such that

2d+1 d

(4) f(-Tl,.”EQ,...,(Ed): Zg ZA]Qbk(x]) ) (-T17$27---7-Td)€](-
k=1 =1

In fact we will prove much more, namely that the only restriction on the
numbers A; is that they are rationally independent, and the functions ¢y,
can (once the A; have been chosen) be taken from a countable intersection
of open sets in the space of nondecreasing function.

For completeness let us recall the definition of rational independence.
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Definition 13. A set A C R is rationally independent if it follows from

n

z riA; =0,

7=1
where \; € A, X\; # A, and r; € Q when j,k=1,2,...n that

rm=rg=...=71,=0.

2. Proof of Theorem 12

We let GG denote the set on nondecreasing functions in C(R) and G™ is the
product of m copies of G with the metric

d((él, e 7¢m)7(¢17 s 7’(r/)m)) = max d(¢ﬁ¢])

1<j<m
First we state and prove an “approximative” version of the theorem.

Lemma 14. Assume that d > 1, K C R? is compact, \i,..., g € (0,1)
are rationally independent, f € C(R?) and let m = 2d + 1. Define T'(f) to
be the set of all (¢1,...,¢m) € G™ for which there is a function h € C(R)
such that

1
(5) 12llgoe(m) < —I[fll5o(r)

m

< (M= g llsrey o [ #0,

k=1 Beo (K)

d
(7) Dy (z1,...,24) = Zwk(xj), (z1,...,2q) € RL

Then the set I'( f) is open and dense in G™.
This lemma is the difficult part of the proof.

Proof of Lemma 14. Since the inequality in (6) is strict, it follows that
I'(f) is open. (If f = 0 then I'(f) = G™.) In order to show that I'(f) is
dense we let (¢1,...,%,) € G™ and € > 0 be arbitrary, and we shall show
that there is an element (¢1, ¢2,...,¢n) € I'(f) such that d(¢g, ¥r) < € for
k=1,....m

Let a < b be some numbers such that
K C [a,b]".
(© G. Gripenberg 21.2.2002



2. Proof of Theorem 12 9

Next we choose a number § € (0,1) such that

(8) f(er, o 2) = s vl < gl sy

(3317 s 7$d)7(y17 s 7yd) € Br7 lrél]agxk|xj - ?J]| < ’méy
and

€
he(z) — 4 - — y| < mé.
(9) 1rsr}cag>;%|wk(w) Ur(y)| < 5 ©YE [a,b], |z —y|<md

Define the intervals Ix(¢) by

Li(i) = (k—1)6—|—mi6,(k—1)(5+mi(5—|—(m—1)6), k=1,2,...,m, icZ.

Thus we see that each interval of this form has length (m — 1)é and there is
a gap of size § between I(7) and I(i + 1). If 2 € R there is thus for each k&
at most one ¢ such that « € I;(¢). Moreover

z

(10) xeuiEZIk(i)@(m—kH) mod m € {0,1,...,m— 2},

and there are m — 1 numbers k for which this is the case and one for which
it is not.

Furthermore we define the cubes
Ck(l) = Ik(il) X Ik(ig) X Ik(id), 1= (il,ig, .. Zd)

Ifx=(z1,...,2q) € R? then clearly there is at most one d-tuple of indices
i=(i1,...,4q) such that x € Ci(i). By (10) we see that x € U;c;aCy(i) if
and only if([%ﬁj —k+1) mod me{0,1,...,m—2},foreach j=1,...,d.

Since L%J mod m can only obtain d different values and m = d+ 1+ d

there must be d 4+ 1 values of k& so that m — 1 is not among the numbers
r

([#] —%k+1) mod m forall j=1,...,d. In other words, if x € K and

(11)
Qx ={k|1<k<m, x¢€ Uiezdck(i)} and Q;c ={L,...,m}\ Qx,

then
(12) #Qx > d+1 and #Q) <d.
Let
(13) Se=A{i=(1,....,0) | Ct())NF#0}, k=1,...,m.
If £ € {1, m} then we define
(14) U, = {1 € Z | there is some (iy,...,iq) € S with i = i;,1 < j < d}.

(© G. Gripenberg 21.2.2002
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Let pr be the number of elements in Ug. Assume that » € 1,...,m and
that for 1 <k < n—1 we have chosen numbers y;;, ¢ € U, such that all the
numbers

d
(15) ak,i:z’\jykﬂ']? i€ Sy, kE{l,...,n—l}

i=1
are different, such that yi; <y if i, ¢ € Uy and 7 < 4', and such that
€

(16) el (k = 1)6 + mid) = gl < 5

Now we claim that we can choose ¥, ;, ¢ € U, so that these statements
hold for all £ < n. Let p be the number of elements in U,,. First we observe
that each equation

An,i = Ak’ k< n, Y € Sk7
is a hyperplane in RP. Next we observe that each equation
Anpi = ap i/

is either the equation of a hyperplane in R? or an identity. We claim that
it cannot be an identity unless i = i'. Suppose that i # i’ and let j, €
{1,...,d} be an index such that i;, # ;. Let V.= {j | i; = 7;, } and
Vi={j |4 =1 }. I we have an identity, then we must have

D= Ai=o.

]E‘/ ]'IE“//

But this is impossible since the numbers A; are rationally independent and
J« € V\ V', Thus we conclude that all the numbers a;; are different for
k=1,...,n provided the points (y, ;)icr;,, do not belong to the union of a
finite number of hyperplanes in R”. But since the complement of a finite
union of hyperplanes is dense, we can choose the numbers y, ; so that the
remaining conditions are satisfied as well. Thus the induction argument
works and we get the conclusion for n = m as well.

Now for k = 1,...,m we define ¢, to be yi; on the interval I;(¢)if i € Uy
and extend it so that it is nondecreasing and sup;cg|@r(t) — ¥r(t)| < €. By
(9) and (16) this is possible.

If now £ € {1,...,m} and 1 € 5% then we choose some point xj; €

F N Ck(i) and define

(17) (i) = - f(o0).

For all remaining points we define h by linear interpolation, so that it is

clear that (5) holds.
(© G. Gripenberg 21.2.2002
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By our definitions of ¢4 and h and by the requirement (8) it follows that
if x € Ci(i) N F then

(18) 100 = M) < S e

Suppose now that x € K is arbitrary and recall the definition of @x and
ppP y
Q'%. We have by (8), (12), (17) and (18)

<\ zh
k=1

kEQx
< gy + (m—d = 1) (infngoo(m " ||h<<1>k||5m<m)
2m?2 m
2(m—d—1)
m

sy < (1 - —) 1l

< | il rc) +
~ 2m? B (K) 2m

Because x was arbitrary, we get the desired claim. O

Proof of Theorem 12. We let m = 2d + 1 and take A\q,...,Aq € (0,1)
to be rationally independent. Let F' be a countable dense subset of C(K).
(This can be taken as the restriction to K of a countably dense subset of
C(R?) since every function in C(K') can be extended to a function in C(R?).)
Furthermore, for j € {1,...,m} and r,¢q € Q with r < ¢ we let ¥(j,7,q) be
the set of functions (¢1,...,¢n) € G™ such that ¢;(q) > ¢;(r). This set is
open and dense in G™.

Choose
(61, 0m) € () TN [ ¥GT0)
fxeF 1<j<m
r,q€Q,r<q

This is possible since the intersection of countably many dense open subsets
of a complete metric space is nonempty by Baire’s theorem.

Let f € C(K) be arbitary and define fy = f. Now we claim that there
are functions h;, and f;, 1 = 1,2,3,... such that

iy < (1= ) 7 1 lls=x)

1 fillgoo ey < (1 — ) 1S 1l 5 (5

fi=fiea - Zhi(q)k)a
k=1

where we use the notation in (7). Suppose that we have constructed these
functions for ¢ = 1,...,n. If n = 0 this is an empty statement.

(© G. Gripenberg 21.2.2002
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If f, = 0 we take h,4+1 = 0 and otherwise we choose a function f, € F
such that

1
(20) || fellgo () S W fullgo(xy and || fs = fullgeo(xy < I fallBoe ()

~ 4m
Since (¢1,...,0¢,) € I'(fi) there is by Lemma 14 a function h,4q such that
(21) At llseo(ry < [[fsllBe=(x)
and
(22) Fo= ) (%) < (1= gl fellsee o) -
k=1 Boo(]{)

If we let

fn+1 = fn - Zhn+1(¢k)7

k=1
then inequalities (20), (21), and (22) imply that

|l farillzoo iy < (1= 50) 1fellzoo (1) + g 1 fnllBoe iy < (1 = )1 full oo (i)

and

nsillBos ) < [ fnllBoe(k)-
It follows that an induction argument works.

As a consequence we have lim;_, ., f; = 0 and if we define the function g

by
g=> hi
=1

then the series converges. Thus we also get
0=fo— > g(®s),
i=1

which is what we wanted to prove since f = fj. O
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