HUT , Institute of mathematics Mat-1.196 Mathematics of neural networks Exercise 8 5.3–15.3.2002

1. Let H be a separable Hilbert space, let $(f_n)_{n=1}^{\infty}$ be a frame H, and let W be a closed subspace of H. Construct a frame in W using $(f_n)_{n=1}^{\infty}$ and the orthogonal projection of H onto W.

Solution: Denote the orthogonal projection $H \to W$ by P. Now we have to show that $(Pf_n)_{n]1}^{\infty}$ is a frame in W. Let $f \in W$ be arbitrary. Since $(f_n)_{n=1}^{\infty}$ is a frame in H and $f \in H$ (because $W \subset H$) we have

$$A||f||^2 \le \sum_{n=1}^{\infty} |\langle f_n, f \rangle|^2 \le B||f||^2.$$

But now f = Pf and so that $\langle f_n, f \rangle = \langle f_n, Pf \rangle = \langle Pf_n, f \rangle$, and it follows immediately that $(Pf_n)_{n=1}^{\infty}$ is a frame in W.

2. Why is it not possible to construct a frame in $L^2(\mathbb{R}^d)$ of functions of the form $\frac{1}{\sqrt{a}}\varphi(\frac{\mathbf{u}\cdot\underline{\mathbf{x}}-b}{a})$ when d>1.

Solution: Suppose that there are numbers $\delta > 0$ and $c \in \mathbb{R}$ such that $|\varphi(t)| \geq \delta$ when $|t-c| \leq \delta$. For fixed numbers a and b the set $\{\mathbf{x} \in \mathbb{R}^d \mid |\frac{\mathbf{u} \cdot \mathbf{x} - b}{a} - c| \leq \delta\}$ has infinite measure when d > 1 and it follows that the function $\frac{1}{\sqrt{a}}\varphi(\frac{\mathbf{u} \cdot \mathbf{x} - b}{a})$ does not belong to $L^2(\mathbb{R}^d)$.

3. Suppose we are given m functions φ_j , $j=1,\ldots,m$ and n points (\mathbf{x}_i,y_i) with m>n. How can one, using Lagrange multipliers find numbers c_j , $j=1,2,\ldots,m$ such that $\sum_{j=1}^m c_j \varphi_j(\mathbf{x}_i) = y_i$ for all $i=1,\ldots,n$ and $\sum_{j=1}^m c_j^2$ is as small as possible?

Solution: Using Lagrange multipliers we see that we have to find the critical points of the function

$$F(c_1,\ldots,c_m,\lambda_1,\ldots,\lambda_n) = \frac{1}{2} \sum_{i=1}^m c_i^2 - \sum_{i=1}^n \lambda_i \left(\sum_{i=1}^m c_i \varphi_i(x_i) - y_i \right).$$

Differentiating with respect to c_i we get the equation

$$c_j - \sum_{i=1}^n \lambda_i \varphi_j(x_i), \quad j = 1, \dots, m.$$

Let $A(j,k) = \varphi_j(x_k)$ and denote by Y, C and Λ the column vectors with elements y_i , c_j and λ_i , respectively. Thus we can write the equation above in the form

$$C = A\Lambda$$
.

On the other hand, the equations $\sum_{j=1}^{m} c_j \varphi_j(x_i) = y_i$ can be writen in the form

$$A^{\mathrm{T}}C = Y$$

and hence we get

$$A^{\mathrm{T}}A\Lambda = Y$$
 and so $\Lambda = (A^{\mathrm{T}}A)^{-1}Y$,

so that

$$C = A(A^{\mathrm{T}}A)^{-1}Y.$$

C1. Write a matlab function fferr such that [f,fp]=fferr(w,aux) calculates the error and the derivative with respect to the weights and thresholds of a feed-forward neural network with dimensions, inputs, and outputs given in the vector aux.