HUT, Institute of mathematics Mat-1.196 Mathematics of neural networks Exercise 7

1. Let $\mathbf{u} \in \mathbb{R}^d$ be such that $|\mathbf{u}| = 1$. Define the Radon-transform $P_{\mathbf{u}}f$ as follows:

$$(P_{\mathbf{u}}f)(t) = \int_{\mathbb{R}^{d-1}} f(t\mathbf{u} + U^{\perp}\mathbf{s}) \,d\mathbf{s},$$

where U^{\perp} is a $d \times (d-1)$ matrix with columns that form an orthonormal basis for the subspace of vectors in \mathbb{R}^d orthogonal to \mathbf{u} . Show that if $f \in L^1(\mathbb{R}^d)$, then $P_{\mathbf{u}} f \in L^1(\mathbb{R})$ and

$$\widehat{P_{\mathbf{u}}f}(\underline{\omega}) = \widehat{f}(\underline{\omega}\mathbf{u}).$$

Solution: Let $Q = [\mathbf{u}, U^{\perp}]$, that is the first column of Q is \mathbf{u} and the remaining columns form an orthonormal basis for the subspace of vectors orthogonal to \mathbf{u} . Thus Q is an orthogonal matrix. If we define the change of variables by $\mathbf{x} = Q\mathbf{t}$ and let $g(\underline{\mathbf{t}}) = f(Q\underline{\mathbf{t}})$, then we see that $g \in L^1(\mathbb{R}^d)$, and

$$(P_{\mathbf{u}}f)(t) = \int_{\mathbb{R}} \dots \int_{\mathbb{R}} g(t, t_2, \dots, t_d) dt_2 dt_3 \dots dt_d,$$

and it follows from Fubini's theorem that $P_{\mathbf{u}} f \in L^1(\mathbb{R})$.

Now

$$\widehat{P_{\mathbf{u}}f}(\omega) = \int_{\mathbb{R}} e^{-i2\pi\omega t} \int_{\mathbb{R}^{d-1}} f(\mathbf{u}t + U^{\perp}\mathbf{s}) \, d\mathbf{s} \, dt
= \int_{\mathbb{R}} \int_{\mathbb{R}^{d-1}} e^{-i2\pi\omega \mathbf{u} \cdot (t\mathbf{u} + U^{\perp}\mathbf{s})} f(\mathbf{u}t + U^{\perp}\mathbf{s}) \, dt \, d\mathbf{s}
\int_{\mathbb{R}^{d}} e^{-i2\pi\omega \mathbf{u} \cdot Q\mathbf{t}} f(Q\mathbf{t}) \, d\mathbf{t} = \int_{\mathbb{R}^{d}} e^{-i2\pi\omega \mathbf{u} \cdot \mathbf{t}} f(\mathbf{t}) \, d\mathbf{t} = \hat{f}(\omega \mathbf{u}).$$

2. Let H be a separable Hilbert space, let $(f_n)_{n=1}^{\infty}$ be a frame in H, and let $Tf = \sum_{n=1}^{\infty} \langle f, f_n \rangle f_n$. Assuming that it has been shown that T is a bounded selfadjoint operator with bounded inverse, show that $(T^{-1}f_n)_{n=1}^{\infty}$ is a frame as well.

Solution: Since T is self-adjoint, so is T^{-1} and hence

$$\sum_{n=1}^{\infty} |\langle f, T^{-1} f_n \rangle|^2 = \sum_{n=1}^{\infty} |\langle T^{-1} f, f_n \rangle|^2.$$

Since $(f_n)_{n=1}^{\infty}$ is a frame in H we have

$$A||T^{-1}f||^2 \le \sum_{n=1}^{\infty} |\langle T^{-1}f, f_n \rangle|^2 \le B||T^{-1}f||^2,$$

and because $||T^{-1}f|| \ge ||T||^{-1}||f||$ and $||T^{-1}f|| \le ||T^{-1}|||f||$ we get

$$\frac{A}{\|T\|^2} \|f\|^2 \le \sum_{n=1}^{\infty} |\langle f, T^{-1} f_n \rangle|^2 \le B \|T^{-1}\|^2 \|f\|^2,$$

and it follows that $(T^{-1}f_n)_{n=1}^{\infty}$ is a frame as well. Note that we then always have

$$f = \sum_{n=1}^{\infty} \langle f, T^{-1} f_n \rangle f_n = \sum_{n=1}^{\infty} \langle f, f_n \rangle T^{-1} f_n.$$

3. Let H be a separable Hilbert space and let $(f_n)_{n=1}^{\infty}$ be a frame in H. Does it follow that

$$\sup_{n\geq 1}||f_n||<\infty?$$

Solution: Since $(f_n)_{n=1}^{\infty}$ is a frame in H it follows for each $j \geq 1$ that

$$||f_j||^4 = |\langle f_j, f_j \rangle|^2 \le \sum_{n=1}^{\infty} |\langle f_j, f_n \rangle|^2 \le B||f_j||^2,$$

and so

$$||f_j||^2 \le B.$$

Thus we conclude that $\sup_{n\geq 1} ||f_n|| \leq \sqrt{B} < \infty$.