HUT , Institute of mathematicsMat-1.196 Mathematics of neural networksExercise 222-29.1.2002

1. Assume that $d \geq 1$ and that $\sigma \in \mathcal{B}^{\infty}_{loc}(\mathbb{R})$ is such that the closure of the set of discontuities of σ has Lebesgue measure 0 and σ is not (almost everywhere equal to) a polynomial. Show that $S_d(\sigma)$ is dense in $L^p_{loc}(\mathbb{R}^d)$ where $1 \leq p < \infty$.

Solution: Under the given assumptions the set $S_d(\sigma)$ is dense in $\mathcal{C}(\mathbb{R}^d)$ and since $\mathcal{C}(\mathbb{R}^d)$ is dense in $L^p_{loc}(\mathbb{R}^d)$ the claim follows.

2. Define the operator Δ_h by $(\Delta_h f)(t) = f(t+h) - f(t)$ where h > 0 and assume that f is an integrable function on every bounded interval. Show that f is a polynomial of degree at most m if and only if $\Delta_h^{m+1} f = 0$ for all h > 0.

Solution: Let $f(t) = \sum_{j=0}^{m} a_j t^j$. Then

$$(\Delta_h f)(t) = \sum_{j=0}^m a_j ((t+h)^j - t^j),$$

and because

$$(t+h)^{j} - t^{j} = \sum_{k=1}^{j} {j \choose k} t^{j-k} h^{k},$$

which is a polynomial of degree j-1 we conclude that $(\Delta_h f)$ is a polynomial of degree at most m-1. Thus $(\Delta_h^n f)$ is a polynomial of degree at most m-n and we get one part of the claim by taking n=m+1.

It is clear that if $\Delta_h f = 0$ for all h > 0, then f is a constant (and for this part no integrability assumptions are needed).

Assume for the moment that f is continuous. Suppose that we have already shown that if $\Delta_h^m f = 0$ for all h > 0 then f is a polynomial of degree at most m-1. Suppose now that $\Delta_h^{m+1} f = 0$ for all h > 0. Denote be E_h the operator $(E_h f)(t) = f(t+h)$. It follows that $\Delta_h = E_h - I$. Since $\Delta_h^{m+1} f(t) = 0$ for all t and h we have $E_h \Delta_h^m f(t) = \Delta_h^m f(t)$ and hence $E_{jh} \Delta_h^m f(t) = \Delta_h^m f(t)$ for all t, h, and j. Because $\Delta_{kh} = \left(\sum_{j=0}^{k-1} E_{jh}\right) \Delta_h$ we conclude that

$$\Delta_{kh}^m f(t) = k^m \Delta_h f(t), \quad t \in \mathbb{R}, \quad h > 0, \quad k \ge 1.$$

Now define

$$g(h,t) = |(\Delta_h^m f)(t)|^{\frac{1}{m}},$$

so that g(kh,t) = kg(h,t) when $t \in \mathbb{R}$ and h > 0. It follows immediately that g(rh,t) = rg(h,t) for all rational positive r, and by continuity for all r > 0. Thus we conclude that

$$\left| (\Delta_h^m f)(t) \right| = h^m \left| (\Delta_1^m f)(t) \right|,$$

and since $(\Delta_h^m f)(t+h) = (E_h \Delta_h^m f)(t) = (\Delta_h^m f)(t)$ we conclude that $|(\Delta_1^m f)(t+h)| = |(\Delta_1^m f)(t)|$. Since h is arbitrary we see that $|(\Delta_1^m f)(t)|$ is a constant, and then we can, again by continuity conclude that there is a constant c susch that $(\Delta_h^m f)(t) = ch^m$. But then it follows that $\Delta_h^m (f - \frac{ct^m}{m!}) = 0$ and the claim follows from the induction assumption.

If f is not apriori continuous we apply the argument above to the function $g(t) = \int_0^t f(s) \, \mathrm{d}s$ and we note that $\Delta_h^{j+1} g(t) = \int_t^{t+h} \Delta_h^j f(s) \, \mathrm{d}s$ when $j \geq 1$.

3. Define the operator Δ_h by $(\Delta_h f)(t) = f(t+h) - f(t)$ where h > 0. Show that if $\varphi * \sigma$ is a polynomial of degree at most m for all infinitely many times differentiable functions that are 0 outside [-1,1], then $\varphi * (\Delta_h^{m+1}\sigma) = 0$ for all such functions φ .

$$(\varphi * (\Delta_h \sigma))(t) = \int_{\mathbb{R}} \varphi(t-s)(\sigma(s+h) - \sigma(s)) \, \mathrm{d}s$$

$$= \int_{\mathbb{R}} \varphi(t+h-(s+h))\sigma(s+h) \, \mathrm{d}s - \int_{\mathbb{R}} \varphi(t-s)\sigma(s) \, \mathrm{d}s$$

$$= \int_{\mathbb{R}} \sigma(t+h-s)\sigma(s) \, \mathrm{d}s - \int_{\mathbb{R}} \varphi(t-s)\sigma(s) \, \mathrm{d}s = (\Delta_h(\varphi * \sigma))(t),$$

we see that we also have

Solution: Since

$$\Delta_h^{m+1}(\varphi * \sigma) = \varphi * (\Delta_h^{m+1}\sigma).$$

If now $\varphi * \sigma$ is a polynomial of degree at most m we know that $\Delta_h^{m+1}(\varphi * \sigma) = 0$ and the claim follows immediately.

4. Show that if $\varphi * \sigma$ is a polynomial of degree at most m for all infinitely many times differentiable functions that are 0 outside [-1,1] then σ is (almost everywhere equal to) a polynomial of degree at most m.

Hint: One can use distribution theory for this or one can choose as the function φ the function $\psi_{\lambda}(\underline{t}) = \lambda \psi(\lambda \underline{t})$ where $\lambda \geq 1$ and $\psi(t) = 0$ when $|t| \geq 1$, then let $\lambda \to \infty$ and use the exercises above.

Solution: If $\varphi * \sigma$ is a polynomial of degree at most m, then $\varphi * (\Delta_h^{m+1}\sigma) = 0$ and by choosing φ to be the function $\psi_{\lambda}(\underline{t}) = \lambda \psi(\lambda \underline{t})$ we conclude when $\lambda \to \infty$ that $\Delta_h^{m+1}\sigma = 0$ almost everywhere. But since this is true for arbitrary h, we conclude that σ must be (almost everywhere equal to) a polynomial of degree at most m.