$\rm HUT$, Institute of mathematics Mat-1.196 Mathematics of neural networks Exercise 2 22--29.1.2002

- 1. Assume that $d \geq 1$ and that $\sigma \in \mathcal{B}^{\infty}_{loc}(\mathbb{R})$ is such that the closure of the set of discontuities of σ has Lebesgue measure 0 and σ is not (almost everywhere equal to) a polynomial. Show that $S_d(\sigma)$ is dense in $L^p_{loc}(\mathbb{R}^d)$ where $1 \leq p < \infty$.
- **2.** Define the operator Δ_h by $(\Delta_h f)(t) = f(t+h) f(t)$ where h > 0. Show that f is a polynomial of degree at most m if and only if $\Delta_h^{m+1} f = 0$ for all h > 0.
- **3.** Define the operator Δ_h by $(\Delta_h f)(t) = f(t+h) f(t)$ where h > 0. Show that if $\varphi * \sigma$ is a polynomial of degree at most m for all infinitely many times differentiable functions that are 0 outside [-1,1], then $\varphi * (\Delta_h^{m+1} \sigma) = 0$ for all such functions φ .
- **4.** Show that if $\varphi * \sigma$ is a polynomial of degree at most m for all infinitely many times differentiable functions that are 0 outside [-1,1] then σ is (almost everywhere equal to) a polynomial of degree at most m

m. Hint: One can use distribution theory for this or one can choose as the function φ the function $\psi_{\lambda}(\underline{t}) = \lambda \psi(\lambda \underline{t})$ where $\lambda \geq 1$ and $\psi(t) = 0$ when $|t| \geq 1$, then let $\lambda \to \infty$ and use the exercises above.