HUT , Institute of mathematics Mat-1.196 Mathematics of neural networks Exercise 11 26.3–12.4.2002

1. A radial-basis function network calculates the function

$$F(\mathbf{x}) = \sum_{i=1}^{m} c_i \varphi(|\mathbf{x} - \mathbf{x}_i|).$$

Show how such a function can be realized as a multilayer perceptron network.

- 2. Construct a multilayer perceptron network such that when it is given the input \mathbf{x} its output is $c\mathbf{x}$ where $\frac{1}{c} = \sum_{j=0}^{d_0} \mathbf{x}(j)$ assuming that all components of \mathbf{x} are positive.
- **3.** Suppose one is given a sequence of vectors \mathbf{x}_n such that $\mathbf{x}_{n+k} = \mathbf{x}_n$ for some k > 1. Suppose the vectors \mathbf{y}_n are calculated by the formula

$$\mathbf{y}_{n+1} = \mathbf{y}_n + \gamma(\mathbf{x}_n - \mathbf{y}_n),$$

where $0 < \gamma < 1$. What can one say about

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \mathbf{y}_{j}?$$