HUT , Institute of mathematics Mat-1.196 Mathematics of neural networks Exercise 1 15–22.1.2002

1. Why is it reasonable to call the function $\sigma(\mathbf{w} \cdot \mathbf{x} - \tau)$ a ridge function? Is this the case in dimension 1 as well?

Solution: If $\mathbf{x} = s\mathbf{v} + \mathbf{u}$ where $\mathbf{v} \perp \mathbf{w}$, then $\sigma(\mathbf{w} \cdot \mathbf{x} - \tau) = \sigma(\mathbf{w} \cdot \mathbf{u} - \tau)$, that is, this function is a constant on lines perpendicular to \mathbf{w} , and drawing the graph of the function $\sigma(\mathbf{w} \cdot \mathbf{x} - \tau)$ in the case where the dimension is 2 one gets a picture looking like a ridge, provided, of course, σ is increasing on $(-\infty, a)$ and decreasing on (a, ∞) for some a. In dimension 1 there are no directions perpendicular to \mathbf{w} (except 0), so one does not really get a ridge in this case.

2. Show that the polynomials (of one variable) of degree at most k are not dense in the spaces $\mathcal{C}([a,b])$ (continuous functions on [a,b]).

Solution: Suppose that this is not the case, so that the polynomials of degree at most k are dense in $\mathcal{C}([a,b])$. Let $x_j=a+j\frac{b-a}{k+1},\ j=0,1,\ldots,k+1$. Let $f(x_j)=(-1)^j$ for $j=0,1,\ldots,k+1$ and define f(x) by piecewise linear interpolation at all other points of [a,b]. Then $f\in\mathcal{C}([a,b])$ and if the polynomials of degree at most k are dense in $\mathcal{C}([a,b])$ then there is a polynomial P_k so that $\sup_{x\in[a,b]}|P_k(x)-f(x)|<\frac{1}{2}$. But then $(-1)^jP_k(x_j)>0$ for $j=0,1,\ldots,x_{k+1}$ and it follows from the intermediate value theorem that P_k has at least k+1 different zeros. But this is impossible and from this contradiction the claim follows.

3. Show that if $d \geq 1$ and σ is a polynomial, then $S_d(\sigma)$ is not dense in $\mathcal{C}(\mathbb{R}^d)$ when $S_d(\sigma) = \operatorname{span}\{\mathbf{x} \in \mathbb{R}^d \mapsto \sigma(\mathbf{w} \cdot \mathbf{x} - \tau) \mid \mathbf{w} \in \mathbb{R}^d, \quad \tau \in \mathbb{R}\}.$

Solution: If σ is a polynomial of degree at most k, then the function $x \mapsto \sigma(\mathbf{w} \cdot (x,0,\ldots,0)-\tau)$ is also a polynomial of degree at most k. Thus we see that if $f \in S_d(\sigma)$, then the function $g(x) = f((x,0,\ldots,0))$ is a polynomial of degree at most k and since these polynomials are not dense in $\mathcal{C}(\mathbb{R})$ it follows that $S_d(\sigma)$ cannot be dense in $\mathcal{C}(\mathbb{R}^d)$.

4. Show that

$$d(f,g) = \sum_{j=1}^{\infty} 2^{-j} \frac{\|f - g\|_{\mathcal{B}^{\infty}(B_{j}(0))}}{1 + \|f - g\|_{\mathcal{B}^{\infty}(B_{j}(0))}},$$

is a metric in the space $\mathcal{C}(\mathbb{R}^d)$ where $B_j(0) = \{ \mathbf{x} \in \mathbb{R}^d \mid |x| < j \}$ and $||f||_{\mathcal{B}^{\infty}(K)} = \sup_{\mathbf{x} \in K} |f(\mathbf{x})|$.

Solution: It is clear that $0 \leq d(f,g) = d(g,f) < \infty$ for all f and $g \in \mathcal{C}(\mathbb{R}^d)$ and that d(f,g) = 0 if and only if f = g. Thus is remains to prove the triangle inequality. If f, g, and $h \in \mathcal{C}(\mathbb{R}^d)$ and $j \geq 1$, then we clearly have

$$||f - g||_{\mathcal{B}^{\infty}(B_j(0))} \le ||f - h||_{\mathcal{B}^{\infty}(B_j(0))} + ||h - g||_{\mathcal{B}^{\infty}(B_j(0))}.$$

Thus it suffices to show that if $a \leq b + c$ where a, b and c are nonnegative numbers, then

$$\frac{a}{1+a} \le \frac{b}{1+b} + \frac{c}{1+c}.$$

Since the function $t \mapsto \frac{t}{1+t}$ is increasing, we have have

$$\frac{a}{1+a} \le \frac{b+c}{1+b+c},$$

and since a straightforward calculation shows that

$$\frac{b}{1+b} + \frac{c}{1+c} - \frac{b+c}{1+b+c} = \frac{(2+b+c)bc}{(1+a)(1+b)(1+b+c)} \ge 0,$$

the claim follows.