- 1. Why is it reasonable to call the function $\sigma(\mathbf{w} \cdot \mathbf{x} \tau)$ a ridge function? Is this the case in dimension 1 as well?
- **2.** Show that the polynomials (of one variable) of degree at most k are not dense in the spaces $\mathcal{C}([a,b])$ (continuous functions on [a,b]).
- **3.** Show that if $d \geq 1$ and σ is a polynomial, then $S_d(\sigma)$ is not dense in $\mathcal{C}(\mathbb{R}^d)$ when $S_d(\sigma) = \operatorname{span}\{\mathbf{x} \in \mathbb{R}^d \mapsto \sigma(\mathbf{w} \cdot \mathbf{x} \tau) \mid \mathbf{w} \in \mathbb{R}^d, \quad \tau \in \mathbb{R}\}.$
- 4. Show that

$$d(f,g) = \sum_{j=1}^{\infty} 2^{-j} \frac{\|f - g\|_{\mathcal{B}^{\infty}(B_j(0))}}{1 + \|f - g\|_{\mathcal{B}^{\infty}(B_j(0))}},$$

is a metric in the space $C(\mathbb{R}^d)$ where $B_j(0) = \{ \mathbf{x} \in \mathbb{R}^d \mid |x| < j \}$ and $||f||_{\mathcal{B}^{\infty}(K)} = \sup_{\mathbf{x} \in K} |f(\mathbf{x})|$.