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Classification of signals

In this course, we divide signals into two classes:

(A) Analog s : R→ C (continuous time t ∈ R),
(D) Digital s : Z→ C (discrete time t ∈ Z).

Moreover, we split these classes into two parts: a signal can be

either (0) non− periodic
or (1) periodic : s(t + p) = s(t).

We shall study the connections between cases
(A0), (A1), (D0), (D1).
Fourier methods in this course:

Fourier integrals (A0), Fourier coefficients (A1),
Fourier series (D0), DFT or FFT (D1).

Examples: sound, pictures, video; physical measurements;
technology and sciences (1-dimensional signals in these notes).
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Reminder: operations with complex numbers

Identify the point (x , y) ∈ R× R in plane
and the complex number x + iy ∈ C, where i is the imaginary unit.
Interpretation: real number x ∈ R is same as x + i0 ∈ C.

Real part Re(x + iy) := x ∈ R.
Imaginary part Im(x + iy) := y ∈ R.

Complex conjugate (x + iy)∗ = x + iy := x − iy ∈ C.
Absolute value |x + iy | := (x2 + y2)1/2 ∈ R+.

Operations: e.g. −(a + ib) := −a + i(−b) and

(a + ib) + (x + iy) := (a + x) + i(b + y),
(a + ib)(x + iy) := (ax − by) + i(ay + bx),

especially i2 = (0+ i1)2 = (0+ i1)(0+ i1) = −1.
Euler’s formula eit = cos(t) + i sin(t),
and then ei(α+β) = eiαeiβ .
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Analog non-periodic world (A0)

Continuous time (t ∈ R) signal s : R→ C has “energy”

E (s) := ‖s‖2 =

∫
R
|s(t)|2 dt =

∫ ∞
−∞
|s(t)|2 dt. (1)

Denote s ∈ L2(R) if ‖s‖ <∞.
For example, t ∈ R time (or position), and s(t) ∈ C
pressure/temperature/luminosity/position/wave function...
The Fourier (integral) transform of signal s : R→ C is signal
FR(s) = ŝ : R→ C,

ŝ(ν) :=
∫
R

e−i2πt·ν s(t) dt =
∫ +∞

−∞
e−i2πt·ν s(t) dt. (2)

Variable ν ∈ R is called “frequency”.

Notice that |̂s(ν)| ≤
∫
R
|s(t)| dt.
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Example: differentiation and Fourier transform

Fourier transform changes differentiation to polynomial
multiplication (and vice versa), because if r(t) = t s(t) ja r̂ = t̂ s
then

ŝ ′(ν) = −i2π t̂ s (ν), (3)
ŝ ′ (ν) = +i2πν ŝ(ν). (4)

Let us prove the latter formula (assuming s(t)→ 0 as |t| → ∞):

ŝ ′ (ν) =

∫
R
s ′(t) e−i2πt·ν dt

integrate by parts
= −

∫
R
s(t)

d
dt

e−i2πt·ν dt

= −
∫
R
s(t) e−i2πt·ν (−i2πν) dt

= +i2πν ŝ(ν).
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Example: Fourier transform of Gaussian

Gauss’ normal distribution ϕµ,σ
(mean µ ∈ R, standard deviation σ > 0):

ϕµ,σ(t) :=
1√
2π σ

exp

(
−1
2

(
t − µ
σ

)2
)
.

Let s(t) := ϕ0,σ(t), so that

s ′(t) =
−t
σ2 s(t)

previous example
=⇒ i2πν ŝ(ν) =

1
i2πσ2 ŝ ′(ν)

⇐⇒ ŝ ′(ν) = −(2πσ)2ν ŝ(ν)
⇐⇒ ŝ(ν) = ŝ(0) e−2(πσν)2 .

Now we must find ŝ(0)...
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... Gaussian example continues...

ŝ(0) =

∫
R
s(t) dt

=

[∫
R

∫
R
s(t) s(u) dt du

]1/2

=

[∫
R

∫
R

1
2πσ2 e−(t

2+u2)/(2σ2) dt du
]1/2

polar coordinates
=

[∫ ∞
0

∫ 2π

0

1
2πσ2 e−r2/(2σ2) rdθ dr

]1/2

=

[∫ ∞
0

r
σ2 e−r2/(2σ2) dr

]1/2

= 1,

where we changed to the polar coordinates (r , θ), where
(t, u) = (r cos(θ), r sin(θ)). Thus

ϕ̂0,σ (ν) = e−2(πσν)2 . (5)
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Normal distribution and point values of signal

We calculated

ϕ0,σ(t) :=
1√
2π σ

e−(t/σ)
2/2 =⇒ ϕ̂0,σ(ν) = e−2(πσν)2 ,

so that for a “nice enough” s : R→ C, we have

s(t) = lim
0<σ→0

∫
R
s(u) ϕ0,σ(u − t) du

= lim
0<σ→0

∫
R
s(u)

∫
R

e−i2π(u−t)·ν e−2(πσν)2 dν du

= lim
0<σ→0

∫
R

e−2(πσν)2
∫
R
s(u) e−i2π(u−t)·ν du dν

= lim
0<σ→0

∫
R

e−2(πσν)2 ŝ(ν) e+i2πt·ν dν

=

∫
R
ŝ(ν) e+i2πt·ν dν.
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Inverse Fourier transform

We just found that the Fourier transform

ŝ(ν) =
∫
R
s(t) e−i2πt·ν dν. (6)

has Fourier inverse transform

s(t) =
∫
R
ŝ(ν) e+i2πt·ν dν. (7)

By these formulas, we can present signals
as well in time t as in frequency ν,
whatever is most convenient!
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Vector space of signals

Given signals r , s : R→ C and scalar λ ∈ C,
we obtain new signals r + s, λ s : R→ C by

(r + s)(t) = r(t) + s(t),
(λ s)(t) = λ s(t).

The space of “all signals” is a vector space,
with inner product

〈r , s〉 =
∫
R
r(t) s(t) dt ∈ C,

and norm

‖s‖ =
√
〈s, s〉 =

(∫
R
|s(t)|2 dt

)1/2

∈ R+.

Remember: energy is ‖s‖2 = 〈s, s〉.
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Fourier transform preserves energy

Inner product between signals r , s : R→ C is

〈r , s〉 :=
∫
R
r(t) s(t) dt ∈ C.

Fourier transform preserves this inner product, because

〈r̂ , ŝ〉 =

∫
R
r̂(ν) ŝ(ν) dν

=

∫
R
r̂(ν)

∫
R

e−i2πt·ν s(t) dt dν

=

∫
R

∫
R

e+i2πt·ν r̂(ν) dν s(t) dt

=

∫
R
r(t) s(t) dt = 〈r , s〉.

Putting r = s, we see that Fourier transform preserves energy:

‖ŝ‖2 = ‖s‖2. (8)
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Symmetries of time and frequency

Time translation of signal s : R→ C by time-lag p ∈ R is signal
Tps : R→ C, where

Tps(t) := s(t − p). (9)

Frequency modulation of s : R→ C by frequency-lag α ∈ R is
signal Mαs : R→ C, where

Mαs(t) := e+i2πt·αs(t). (10)

After Fourier transforms: M̂αs = Tαŝ and T̂ps = M−p ŝ, that is

M̂αs(ν) = Tαŝ(ν),

T̂ps(ν) = M−p ŝ(ν).
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Integral operators

We want to transform input signal s : R→ C
to output signal Ls = L(s) : R→ C.
Suppose L is linear, i.e.

L(r + s) = L(r) + L(s) and
L(λs) = λ L(s)

for all signals r , s : R→ C and constants λ ∈ C.
Linear transform L presented as an integral operator:

Ls(t) =
∫
R
KL(t, u) s(u) du, (11)

where KL is the kernel of L.
Remark: integral operator L has “essentially unique” kernel KL!
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Time-invariant operators

Let operator L be time-invariant: TpL = LTp for all p ∈ R, i.e.

TpLs(t) = LTps(t) (12)

for all signals s : R→ C and for all times t, p ∈ R;
in other words, L = T−pLTp, which means∫

R
KL(t, u) s(u) du = Ls(t) = T−pLTps(t) = LTps(t + p)

=

∫
R
KL(t + p, u) Tps(u) du

=

∫
R
KL(t + p, u) s(u − p) du

=

∫
R
KL(t + p, u + p) s(u) du.

Thus KL(t, u) = KL(t + p, u + p) for all p, t, u ∈ R, especially
KL(t, u) = KL(t − u, 0) = r(t − u) for some signal r : R→ C...
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Convolution

Convolution of signals r , s : R→ C is signal r ∗ s : R→ C given by

r ∗ s(t) :=
∫
R
r(t − u) s(u) du. (13)

Remark: time-invariant operator L is of form Ls(t) = r ∗ s(t),
where its kernel satisfies KL(t, u) = r(t − u).
Exercise: show that

r̂ ∗ s = r̂ ŝ, (14)

that is
r̂ ∗ s(ν) = r̂(ν) ŝ(ν).

Thus “convolution in time” is “multiplication in frequency”.
This is one of the most important properties in Fourier analysis!
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Convolution smoothing

r ∗ s is smooth if r is smooth:

(r ∗ s)′ = r ′ ∗ s, (15)

because

(r∗s)′(t) = d
dt

∫
R
r(t−u) s(u) du =

∫
R
r ′(t−u) s(u) du = r ′∗s(t).

Example:

ϕσ(t) :=
1√
2π σ

e−(t/σ)
2/2 =⇒ ϕ̂σ(ν) = e−2(πσν)2

=⇒ ϕ̂σ ∗ s(t) = ϕ̂σ(ν) ŝ(ν)

= e−2(πσν)2 ŝ(ν)
0<σ→0−→ ŝ(ν).
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Dirac delta signal δp at time p ∈ R satisfies∫
R
s(t) δp(t) dt = s(p) (16)

for all continuous signals s : R→ C.
Interpretation: Dirac delta δp is the sudden unit impulse at time p,

δp = lim
0<σ→0

ϕp,σ.

Fourier transform of Dirac delta:

δ̂p(ν) =

∫
R

e−i2πt·ν δp(t) dt = e−i2πp·ν .

Remark: Energy

‖δp‖2 = ‖δ̂p‖2 =

∫
R
|e−i2πp·ν |2 dν =

∫
R
1 dν =∞.

δp cannot be a function in any ordinary sense! We may think that
δp(t) = 0 if t 6= p, but writing δp(p) =∞ would be dubious! Such
a weird entity δp is called a (tempered) distribution.
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Fourier meets Dirac:

s(t) =

∫
R

e+i2πt·ν ŝ(ν) dν

=

∫
R

∫
R

ei2π(t−u)·ν s(u) du dν

=

∫
R

[∫
R

ei2π(t−u)·ν dν
]
s(u) du

=

∫
R
δ0(t − u) s(u) du

= δ0 ∗ s(t),

as it should be. More generally, δp ∗ s = Tps:

δp ∗ s(t) =

∫
R
δp(t − u) s(u) du

= s(t − p) = Tps(t).
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Fourier integral in dimension d ∈ Z+ = {1, 2, 3, 4, 5, · · · }
Fourier transform ŝ : Rd → C for signal s : Rd → C is given by

ŝ(ν) :=
∫
Rd

e−i2πt·ν s(t) dt, (17)

where t = (t1, · · · , td ) ∈ Rd , ν = (ν1, · · · , νd ) ∈ Rd ,
t · ν =

∑d
k=1 tk · νk = t1ν1 + · · ·+ tdνd ∈ R,∫

Rd
· · · dt =

∫
R
· · ·
∫
R
· · · dt1 · · · dtd .

Energy ‖s‖2 :=
∫
Rd |s(t)|2 dt, and for example

s(t) =

∫
Rd

e+i2πt·ν ŝ(ν) dν,

‖s‖2 = ‖ŝ‖2,

r ∗ s(t) :=

∫
Rd

r(t − u) s(u) du,

r̂ ∗ s(ν) = r̂(ν) ŝ(ν).
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Analog periodic world (A1)

Signal s : R→ C is p-periodic if Tps = s, meaning s(t − p) = s(t)
for all t ∈ R: in this case, we denote s : R/pZ→ C. Without losing
generality, we deal with 1-periodic signals

s : R/Z→ C

for which s(t − 1) = s(t) for all t ∈ R; then the Fourier
coefficient transform FR/Zs = ŝ : Z→ C is defined by

ŝ(ν) :=
∫
R/Z

e−i2πt·ν s(t) dt =
∫ 1

0
e−i2πt·ν s(t) dt. (18)

Exercise: show that ŝ(ν) = cν ∈ C, when s : R/Z→ C is given by

s(t) :=
∑
k∈Z

ck ei2πt·k =
∞∑

k=−∞
ck ei2πt·k

(naturally, provided that signal s is “nice enough”).
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For periodic signal s : R/Z→ C, Fourier coefficients

ŝ(ν) =
∫
R/Z

e−i2πt·νs(t) dt ∈ C.

It turns out that “nice enough” s : R/Z→ C can be recovered from
its Fourier coefficients by Fourier series

s(t) =
∑
ν∈Z

e+i2πt·ν ŝ(ν) =
+∞∑

ν=−∞
e+i2πt·ν ŝ(ν). (19)

Thus periodic analog signal s : R/Z→ C has the same
information content as non-periodic digital signal ŝ : Z→ C;
using the signal classification presented in the beginning of the
course, this means that classes (A1) and (D0) are dual to each
other by Fourier transform, so that properties in (A1) have
corresponding “mirrored” properties in (D0), and vice versa.

Ville Turunen Fourier analysis (MS-C1420)



(A1) Where do Fourier series come from?

Poisson kernel ϕr , for which 0 < ϕr (t) <∞ and
∫ 1

0
ϕr (t) dt = 1:

ϕr (t) :=
∑
ν∈Z

r |ν| ei2πt·ν =
1− r2

1+ r2 − 2r cos(2πt)
, (20)

where 0 < r < 1. Then for smooth s : R/Z→ C we have

s(t) = lim
r→1−

∫ 1

0
s(u) ϕr (t − u) du

= lim
r→1−

∫ 1

0
s(u)

∑
ν∈Z

r |ν| ei2π(t−u)·ν du

= lim
r→1−

∑
ν∈Z

ŝ(ν) r |ν| ei2πt·ν

=
∑
ν∈Z

ŝ(ν) ei2πt·ν .
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Energy conservation in Fourier coefficients and series

Let r , s : R/Z→ C, so that r̂ , ŝ : Z→ C. Then

〈r̂ , ŝ〉 :=
∑
ν∈Z

r̂(ν) ŝ(ν)

=
∑
ν∈Z

r̂(ν)
∫
R/Z

e−i2πt·ν s(t) dt dν

=

∫
R/Z

∑
ν∈Z

e+i2πt·ν r̂(ν) s(t) dt

=

∫
R/Z

r(t) s(t) dt =: 〈r , s〉.

We see that Fourier coefficient/series transform preserves energy

‖s‖2 := 〈s, s〉 = 〈ŝ, ŝ〉 =: ‖ŝ‖2. (21)
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(A1) Convolution of periodic signals

Convolution r ∗ s : R/Z→ C of periodic signals r , s : R/Z→ C is
defined by

r ∗ s(t) :=
∫
R/Z

r(t − u) s(u) du. (22)

By easy computation, we see that r̂ ∗ s = r̂ ŝ:

r̂ ∗ s(ν) = r̂(ν) ŝ(ν).

Naturally, periodic convolution has smoothing properties:

(r ∗ s)′(t) = r ′ ∗ s(t).

Thus, convolution works in similar manner for both periodic and
non-periodic signals!
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Periodization and Poisson summation formula

Periodization of signal s : R→ C is Ps : R/Z→ C, where

Ps(t) :=
∑
k∈Z

s(t − k).

Their Fourier transforms ŝ : R→ C and P̂s : Z→ C satisfy

P̂s(ν) =

∫ 1

0
e−i2πt·ν

∑
k∈Z

s(t − k) dt

=
∑
k∈Z

∫ 1

0
e−i2π(t−k)·ν s(t − k) dt

=

∫ +∞

−∞
e−i2πt·ν s(t) dt = ŝ(ν).

Result P̂s(ν) = ŝ(ν) yields Poisson summation formula∑
ν∈Z

ŝ(ν) =
Exercise· · · =

∑
k∈Z

s(k).
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Digital non-periodic world (D0), or DTFT

Fourier transform of digital signal s : Z→ C is periodic signal
FZ(s) = ŝ : R/Z→ C defined by

ŝ(ν) :=
∑
t∈Z

e−i2πt·ν s(t). (23)

This is called Discrete Time Fourier Transform (DTFT).
Remark: this is essentially similar to the previous Fourier series
case (apart from the sign of the imaginary unit i).
For digital signals r , s : Z→ C, we define the convolution
r ∗ s : Z→ C by

r ∗ s(t) :=
∑
u∈Z

r(t − u) s(u). (24)

The reader may check that r̂ ∗ s = r̂ ŝ, that is

r̂ ∗ s(ν) = r̂(ν) ŝ(ν).
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Inverse transform to DTFT

For s : Z→ C we have DTFT ŝ : R/Z→ C, where

ŝ(ν) :=
∑
t∈Z

e−i2πt·ν s(t).

The inverse transform is verified by a direct calculation:∫
R/Z

e+i2πt·ν ŝ(ν) dν =

∫
R/Z

e+i2πt·ν
∑
u∈Z

e−i2πu·νs(u) dν

=
∑
u∈Z

s(u)
∫ 1

0
ei2π(t−u)·ν dν

= s(t).

Well, no wonder: this is just because signal classes (A0) and (D1)
are dual to each other by Fourier transform! Thus, no need to
check conservation of energy again.
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From Poisson summation to sampling

Poisson summation formula
∑
ν∈Z

ŝ(ν) =
∑
k∈Z

s(k) is equivalent to

∑
α∈Z

ŝ(ν − α) =
∑
k∈Z

s(k) e−i2πk·ν . (25)

Now suppose that ŝ1(ν) = 0 whenever |ν| ≥ 1/2: then

ŝ1(ν) = 1]−1/2,+1/2[(ν)
∑
α∈Z

ŝ1(ν − α)

(25)
= 1]−1/2,+1/2[(ν)

∑
k∈Z

s1(k) e−i2πk·ν

=
∑
k∈Z

s1(k) e−i2πk·ν 1]−1/2,+1/2[(ν),

leading to normalized Whittaker–Shannon sampling formula

s1(t) =
∑
k∈Z

s1(k) sinc(t − k). (26)
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Nyquist–Shannon sampling theorem

... From this, we get Whittaker–Shannon sampling formula

s(t) =
∑
k∈Z

s(
k
2B

) sinc(2Bt − k), (27)

which is valid if ŝ(ν) = 0 whenever |ν| ≥ B .
Related to this formula, Nyquist–Shannon sampling theorem
says: If analog signal s : R→ C is band-limited (meaning
ŝ(ν) = 0 whenever |ν| ≥ B), then we are able to reconstruct it
from its equispaced sampled values, i.e. from the corresponding
digital signal r : Z→ C, where

r(k) := s(k/(2B)).

In other words, Whittaker–Shannon formula builds a bridge between
non-periodic analog signals and non-periodic digital signals!
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Digital periodic world (D1), or DFT

N-periodic digital signal s : Z→ C satisfies s(t − N) = s(t) for all
t ∈ Z: then we denote

s : Z/NZ→ C. (28)

Its discrete Fourier transform (DFT) ŝ : Z/NZ→ C is defined by

ŝ(ν) :=
N∑

t=1

e−i2πt·ν/N s(t). (29)

Notice that in the exponential we have t · ν/N instead of t · ν.
Exercise: show that the inverse ŝ 7→ s of DFT is given by

s(t) =
1
N

N∑
ν=1

e+i2πt·ν/N ŝ(ν). (30)

Notice the factor 1
N in this formula!
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Energy and convolution

Exercise: defining here energy ‖s‖2 :=
n∑

t=1

|s(t)|2, find constant cN

such that for all signals s : Z/NZ→ C

‖s‖2 = cN ‖ŝ‖2. (31)

Hence “energy is conserved up to a constant”.
For digital signals r , s : Z/NZ→ C, we define the discrete
convolution r ∗ s : Z/NZ→ C by

r ∗ s(t) :=
N∑

u=1

r(t − u) s(u). (32)

The reader may check that r̂ ∗ s = r̂ ŝ, that is

r̂ ∗ s(ν) = r̂(ν) ŝ(ν).
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DFT related to DTFT (D1 vs. D0)

For “nice” non-periodic s : Z→ C, define sN : Z/NZ→ C by

sN(t) :=
∑
k∈Z

s(t − kN).

Then ŝN : Z/NZ→ C is naturally related to ŝ : R/Z→ C:

ŝN(ν) =
N∑

t=1

e−i2πt·ν/N sN(t)

=
N∑

t=1

e−i2πt·ν/N
∑
k∈Z

s(t − kN)

=
∑
u∈Z

e−i2πu·ν/N s(u) = ŝ(ν/N).

Hence ŝN(ν) = ŝ(ν/N) for all ν.
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DFT related to Fourier series/coefficients (D1 vs. A1)

For “nice” periodic s : R/Z→ C, define sN : Z/NZ→ C by

sN(t) := s(t/N).

Then ŝN : Z/NZ→ C is naturally related to ŝ : Z→ C:

ŝN(ν) =
N∑

t=1

e−i2πt·ν/N s(t/N)

=
N∑

t=1

e−i2πt·ν/N
∑
α∈Z

ŝ(α) e+i2π(t/N)·α

=
∑
α∈Z

ŝ(α)
N∑

t=1

ei2πt·(α−ν)/N = N
∑
k∈Z

ŝ(ν − kN).

Hence ŝN(ν) = N
∑
k∈Z

ŝ(ν − kN) for all ν ∈ Z.
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FFT (Fast Fourier Transform)...

FFT (Fast Fourier Transform) is a fast method for computing DFT.
It is a divide-and-conquer algorithm, one of the most important
tools in engineering and applied mathematics. Idea: Given signal
s : Z/NZ→ C, we want to find FNs = ŝ : Z/NZ→ C, where
N = 2k . Split computation into two smaller size DFTs:

FNs(ν) =
N∑

t=1

e−i2πt·ν/N s(t)

=
∑

t∈{1,3,5,··· ,N−1}

e−i2πt·ν/N s(t) +
∑

t∈{2,4,6,··· ,N}

e−i2πt·ν/N s(t)

=

N/2∑
t=1

e−i2π(2t−1)·ν/Ns(2t − 1) +
N/2∑
t=1

e−i2π(2t)·ν/Ns(2t)

= e+i2πν/N FN/2sOdd(ν) + FN/2sEven(ν).

Hence we just need to calculate FN/2sOdd and FN/2sEven...
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Why FFT requires only about N log(N) time units?

We say that the complexity of algorithm FN is the “essential
number” MN of multiplications needed in computation. Obviously

FNs(ν) =
N∑

t=1

e−i2πt·ν/N s(t)

yields M1 = 1 and MN ≤ N2. However,

FNs(ν) = e+i2πν/N FN/2sOdd(ν) + FN/2sEven(ν) (33)

implies recursively

MN
(33)
≤ N + 2MN/2

(33)
≤ N + 2(N/2+ 2MN/4) = 2N + 4MN/4

(33)
≤ 2N + 4(N/4+ 2MN/8) = 3N + 8MN/8

· · ·
(33)
≤ log2(N)N + N MN/N = N log(N) + N ≈ N log(N).
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Fast convolution via FFT

Direct calculation of discrete convolution r ∗ s : Z/NZ→ C of
signals r , s : Z/NZ→ C would require N2 multiplications, as

r ∗ s(t) =
N∑

u=1

r(t − u) s(u).

However,
r̂ ∗ s(ν) = r̂(ν) ŝ(ν),

where finding r̂ ŝ takes only N multiplications. Computing each of

r 7→ r̂ , s 7→ ŝ, r̂ ŝ 7→ r ∗ s

takes only about N log(N) multiplications by FFT. Thus,
computation (r , s) 7→ r ∗ s has essential complexity N log(N), too!
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Matlab computing FFT

Matlab command fft (Fast Fourier Transform) works as follows:
vector X = fft(x) for vector x = [x(1) x(2) . . . x(N)] is given by

X(m) =
N∑

k=1

e−i2π(k−1)(m−1)/N x(k), (34)

instead of our more natural definition

x̂(m) :=
N∑

k=1

e−i2πk·m/N x(k). (35)

That is, Matlab shifts both time and frequency by 1 always, and
such a weird definition does not match well e.g. with convolution!
So, you have been warned!!!
Otherwise, Matlab is fine for computational Fourier analysis.
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Time-frequency analysis

Next we try to understand behavior of signals simultaneously in
both time and frequency. Applications of such time-frequency
analysis include audio signal processing (phonetics, treating speech
defects, speech synthesis, analyzing animal sounds, music), medical
visualizations of EEG and ECG (ElectroEncephaloGraphy and
ElectroCardioGraphy), sonar and radar imaging, seismology,
quantum physics etc.
A time-frequency distribution for signal s : R→ C is typically

As : R× R→ C,

where As(t, ν) is “intensity of s at time-frequency (t, ν)”.
There are many different time-frequency distributions to choose
from, notably members of Leon Cohen’s class, which includes e.g.
all spectrograms and so-called Born–Jordan distribution.
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Windowed Fourier Transform
(STFT, Short-Time Fourier Transform)

For signals s,w : R→ C, w-windowed Fourier transform
(STFT, Short-Time Fourier Transform) F (s,w) : R× R→ C is

F (s,w)(t, ν) := ŝ wt(ν), (36)

where wt(u) = w(u − t). That is,

F (s,w)(t, ν) =
∫
R
s(u) w(u − t) e−i2πu·ν du.

Idea: Fourier transform ŝ(ν) measures “content” of s at frequency
ν ∈ R over all times. F (s,w)(t, ν) measures “content” of s at
time-frequency (t, ν) ∈ R×R (when viewing s through window w).
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Spectrogram (Sonogram)

Spectrogram related to the w -windowed Fourier transform is

|F (s,w)|2 : R× R→ R+. (37)

Idea: |F (s,w)(t, ν)|2 ≥ 0 is the “energy intensity” of signal
s : R→ C at time-frequency (t, ν) ∈ R× R
(when viewing s through window w).
For signal s : R→ C, choosing window w influences heavily
the corresponding w -STFT and w -spectrogram!
In Matlab, try experimenting:

help spectrogram

Or, program your own spectrogram as in Exercises, implementing

|F (s,w)(t, ν)|2 =

∣∣∣∣∫
R
s(u) w(u − t) e−i2πu·ν du

∣∣∣∣2 .
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Born–Jordan time-frequency distribution

For signals r , s : R→ C, the Born–Jordan transform
Q(r , s) : R× R→ C is defined by

Q(r , s)(t, ν) :=

∫
R

e−i2πu·ν 1
u

∫ t+u/2

t−u/2
r(z + u/2) s(z − u/2) dz du

=

∫
R

e−i2πu·ν 1
u

∫ t+u

t
r(z) s(z − u) dz du.

The Born–Jordan distribution of s : R→ C is

Qs = Q(s) := Q(s, s) : R× R→ R. (38)

Interpretation: Qs(t, ν) ∈ R is the “energy intensity” of s : R→ C
at time-frequency (t, ν) ∈ R× R.

Ville Turunen Fourier analysis (MS-C1420)



Properties of Born–Jordan distribution

Marginals:
∫
R
Qs(t, ν) dt = |̂s(ν)|2,

∫
R
Qs(t, ν) dν = |s(t)|2.

Thus energy
∫
R

∫
R
Qs(t, ν) dt dν = ‖s‖2.

Natural Fourier symmetries: Qŝ(ν, t) = Qs(−t, ν).
If r(t) := s(t − t0) and q(t) := ei2πt·ν0 s(t) then

Qr(t, ν) = Qs(t − t0, ν),
Qq(t, ν) = Qs(t, ν − ν0).

Qδt0(t, ν) = δt0(t).
Qeν0(t, ν) = δν0(ν), where eν0(t) := ei2πt·ν0 .
For α < β: Q(λeα + µeβ)(t, ν) =

|λ|2δα(ν) + |µ|2δβ(ν) + 2 Re (λµ eα−β(t))
1[α,β](ν)
β − α

.
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Born–Jordan filter design...

A time-frequency symbol is function σ : R× R→ C. Now we
design an integral operator Lσ such that we get a “best possible
Born–Jordan approximation”

Q(Lσs)(t, ν) ≈ σ(t, ν)Qs(t, ν)

for all signals s : R→ C and for all (t, ν) ∈ R× R. Namely,

〈r , Lσs〉 = 〈Q(r , s), σ〉 (39)

for all signals r , s : R→ C: here 〈r , Lσs〉 = 〈Q(r , s), σ〉 =

=

∫
R

∫
R
Q(r , s)(z , ν) σ(z , ν) dz dν

=

∫
R

∫
R

∫
R

e−i2πw ·ν 1
w

∫ z+w
2

z−w
2

r(t̃ +
w
2
)s(t̃ − w

2
) dt̃ dw σ(z , ν) dz dν

=

∫
R
r(t)

[∫
R

∫
R

ei2π(t−u)·νs(u)
1

u − t

∫ u

t
σ(z , ν) dz du dν

]∗
dt.
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... Born–Jordan filter design

... Hence

Lσs(t) =
∫
R

∫
R

ei2π(t−u)·νs(u) a(t, u, ν) du dν, (40)

where a(t, t, ν) = σ(t, ν), and for t 6= u we have amplitude

a(t, u, ν) =
1

u − t

∫ u

t
σ(z , ν) dz . (41)

We obtained
Lσs(t) =

∫
R
KLσ(t, u) s(u) du,

where kernel KLσ : R× R→ C of integral operator Lσ is given by

KLσ(t, t) =
∫
R
σ(t, ν) dν, and for t 6= u by

KLσ(t, u) =
1

u − t

∫ u

t

∫
R

ei2π(t−u)·ν σ(z , ν) dν dz . (42)
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Filtering examples

On previous page, suppose time-invariance σ(t, ν) = ψ̂(ν) for all
(t, ν) ∈ R× R. Naturally, then Lσs = ψ ∗ s, because

Lσs(t) =

∫
R

∫
R

ei2π(t−u)·ν s(u)
1

u − t

∫ u

t
ψ̂(ν) dz du dν

=

∫
R

∫
R

ei2π(t−u)·ν s(u) ψ̂(ν) du dν

=

∫
R

ei2πt·ν ŝ(ν) ψ̂(ν) dν = ψ ∗ s(t).

On previous page, suppose frequency-invariance σ(t, ν) = ϕ(t) for
all (t, ν) ∈ R× R. Then a(t, u, ν) = b(t, u) so that Lσs = ϕ s:

Lσs(t) =

∫
R

∫
R

ei2π(t−u)·ν s(u) b(t, u) du dν

= s(t) b(t, t) = ϕ(t) s(t).
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Time-limited signal which is band-limited, too?

Let ‖s‖2 <∞, where s : R→ C is limited in time-frequency:

s(t) = 0 = ŝ(ν)

whenever |t| > M and |ν| > M for some constant M <∞.
Then define analytic function h : C→ C by

h(z) :=
∫ M

−M
e−i2πt·z s(t) dt.

Due to analyticity, for any a ∈ C we have power series

h(z) =
∞∑

k=0

1
k!

h(k)(a) (z − a)k .

If M < a ∈ R then h(a) = ŝ(a) = 0, yielding h(z) ≡ 0 for all z ∈ C.
But here ŝ(ν) = h(ν) ≡ 0 for all ν ∈ R, so s(t) ≡ 0 for all t ∈ R.
[Remark: Schwartz test functions s ∈ S(R) ⊂ C∞(R)
(e.g. Gaussian signals) are “almost time- and frequency-limited”,
because s(t), ŝ(t)→ 0 rapidly as |t| → ∞.]
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Heat flow: historical origin of Fourier analysis

Let u : R× R+ → R satisfy so-called heat equation

∂

∂t
u(x , t) = α

(
∂

∂x

)2

u(x , t), (43)

with initial condition u(x , 0) = f (x), where α > 0 is the thermal
diffusivity constant. Here ut(x) = u(x , t) is “temperature at point x
at time t”. Taking Fourier transform in the x-variable, we get

∂

∂t
ût(ξ) = −(2πξ)2α ût(ξ) and û0(ξ) = f̂ (ξ),

so that

ût(ξ) = e−(2πξ)
2αt f̂ (ξ),

u(x , t) =

∫
R

ei2πx ·ξ e−(2πξ)
2αt f̂ (ξ) dξ.

Fourier found this reasoning for periodic x case in 1807, but already
Daniel Bernoulli and Leonhard Euler considered vibrating strings as
trigonometric series in 1753; and Gauss invented FFT in 1805.
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Review: how are different Fourier transforms related?

Time space G (continuous R and R/Z; discrete Z and Z/NZ).
Frequency space Ĝ is dual to the time space G .
Signal s : G → C has Fourier transform ŝ : Ĝ → C,

ŝ(ν) =

∫
G

e−i〈t,ν〉 s(t) dt,

s(t) =

∫
Ĝ

e+i〈t,ν〉 ŝ(ν) dν,

“energy conservation” E (ŝ) = E (s) (except for DFT), where

E (s) = ‖s‖2 =

∫
G
|s(t)|2 dt

(for DFT, energy conservation needed a constant...).
Convolution r ∗ s : G → C of signals r , s : G → C,

r ∗ s(t) =
∫

G
r(t − u) s(u) du,

which can be in finite case computed efficiently by FFT.
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Review problems and questions

In your field of science/engineering, find examples of signals

s : R→ C, s : R/Z→ C,
s : Z→ C, s : Z/NZ→ C.

In each of these cases:
I How is Fourier transform defined? Which kind of signal is it?
I How is energy defined? Interpretation of energy?
I How does the inverse Fourier transform look like?
I How is convolution defined? Applications to signal processing?

How are these different Fourier transforms related to each other?
Why is FFT fast?
What do time-frequency distributions tell us?
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