HELSINKI UNIVERSITY OF TECHNOLOGY Institute of Mathematics Mat-1.500 Martingale Theory, Spring 2003

1	Exercise	E12.2	on	nage	236

2. Exercise E12.1 on page 235.

- 3. Let $\{Y_n\}_{n=1}^{\infty}$ be a sequence of nonnegative independent random variables such that $\mathbb{E}(Y_n)=1$. Let $\mathcal{F}_0=\{\emptyset,\Omega\},\ \mathcal{F}_n=\sigma(Y_1,\ldots,Y_n)$. Define $X_0=1,\ X_n=\prod_{k=1}^nY_k$.
 - a) Show that $X_n^{1/2}$ is a supermartingale.
 - b) Assume $\Pi_{k=1}^{\infty} \mathbb{E}(\sqrt{Y_k}) = 0$. Study the convergence and limit of $\{\sqrt{X_n}\}_{n=0}^{\infty}$, and of $\{X_n\}_{n=0}^{\infty}$. Is it true that $X_n = \mathbb{E}(X|\mathcal{F}_n)$ for some $X \in L^1$, $\forall n$?
 - c) Assume $\prod_{k=1}^{\infty} \mathbb{E}(\sqrt{Y_k}) > 0$. Show that $\{\sqrt{X_n}\}_{n=0}^{\infty}$ is a Cauchy-sequence in L^2 .
- 4. Let $\{X_n\}_{n=0}^{\infty}$ be a supermartingale such that $\mathbb{E}(X_n)$ is constant. Show that X_n is a martingale.
- 5. Exercise E10.2 on page 232.