Mat-1.3608 Markov chains. Notation: $s_{\mu}(n)=s\left(\mu P^{n} ; \pi\right)$ where P is a transition matrix and π is a stationary distribution.

VI Exercise 28.2. 2008 Tikanmäki/Valkeila.

1. Show that $s_{\mu}(n) \geq s_{\mu}(n+k)$ for $n \geq 0, k \geq 0$ for any transition matrix P and stationary distribution π.
2. Give and example of P and π such that $s_{\mu}(n)=c$ for all $n \geq 1$, where $c>0$.
3. Let $X=\left(X_{n}\right)_{n \geq 0}$ be a (P, π) Markov chain, where π is the stationary distribution and also the initial distribution. Define Q by $\pi_{i} q_{i j}=\pi_{j} p_{j i}$ and extend X to the negative side as follows:
$\mathbb{P}\left(X_{-1}=s_{i_{1}}, X_{-2}=s_{i_{2}}, \ldots X_{-k}=s_{i_{k}} \mid X_{0}=s_{j}, X_{1}=s_{j_{1}}, \ldots X_{n}=s_{j_{n}}\right)=$ $\mathbb{P}\left(X_{-1}=s_{i_{1}}, X_{-2}=s_{i_{2}}, \ldots X_{-k}=s_{i_{k}} \mid X_{0}=s_{j}\right)=q_{j i_{1}} q_{i_{1} i_{2}} \cdots q_{i_{k-1} i_{k}}$ for all $k \geq 1$ and $n \geq 1$. Show that $\left(X_{n}\right)_{-\infty<n<\infty}$ is a Markov chain with transition matrix P and $\mathbb{P}\left(X_{n}=s_{i}\right)=\pi_{i}$ for all n and $s_{i} \in S$. [This clarifies the proof of Theorem 5.4, p. 223 in Brémaud.]
4. Let α, β be two probability distributions on S, let Y be a random variable with distribution α and Z is a random variable with distribution β. Show that

$$
d_{V}(\alpha, \beta) \leq \mathbb{P}(Y \neq Z)
$$

5. Let α, β be two probability measures on S and define $\nu(\alpha, \beta)$ by

$$
\nu(\alpha, \beta)=\sum_{j} \min \left(\alpha_{j}, \beta_{j}\right)
$$

Show that

$$
d_{V}(\alpha, \beta)=1-\nu(\alpha, \beta)
$$

6. Please go to Opinionsonline and make your comments on the course.
