Mat-1.3608 Markov chains. For the exercises 1, 2 see the paper of Nummelin (a copy in the library) for definitions.

IV Exercise 14.2. 2008 Tikanmäki/Valkeila.

1. Check the details in the following identity:
$\mathbb{E}_{\nu} \zeta_{0}(f)=\mathbb{E}_{\nu} \sum_{n=0}^{\tau-1} f\left(X_{n}\right)=\sum_{n=0}^{\infty} \int\left(\nu Q^{n}\right)(x) f(x) d x=\int \mu(x) f(x) d x$.
2. Prove the formula

$$
\mathbb{P}\left(\tau_{i}<\infty \mid X_{0}=x\right)=\mathbb{P}\left(\tau<\infty \mid X_{0}=x\right)
$$

3. Let Y_{n} be a sequence of random variables with the property that

$$
Y_{n} \rightarrow c \quad \text { a.s. } \quad \text { as } \quad n \rightarrow \infty
$$

Let $N(n)$ be a sequence of random variables such that $N(n) \rightarrow$ $\infty \quad$ a.s. Check that $Y_{N(n)} \rightarrow c$ a.s, as $n \rightarrow \infty$. [The purpose of this exercise is to clarify some discussions from the lecture on Friday. Here $Y_{n} \rightarrow c$ a.s. means the following: $\mathbb{P}\left(\omega: Y_{n}(\omega) \rightarrow c\right)=1$.]
4. Let π be the stationary distribution of a Markov chain with transition matrix P Let $A \subset S$, and define the truncation Q of P to A by $q_{i j}=p_{i j}$, if $s_{i}, s_{j} \in A$ and $i \neq j$, and when $i=j$ define

$$
q_{i i}=p_{i i}+\sum_{k \in A^{c}} p_{i k}
$$

Show that if (P, π) is reversible, then also $\left(Q, \frac{\pi}{\pi(A)}\right)$ is reversible.
5. Let X be a Markov chain with transition matrix P. Define $\tau_{0}=0$ and for $k \geq 0$ define $\tau_{k+1}=\min \left\{n \geq \tau_{k}+1: X_{n} \neq X_{\tau_{k}}\right\}$. Check that τ_{k} are stopping times and define $Y_{n}=X_{\tau_{k}}$ for all $n \geq 0$, where we put $X_{\tau_{n}}=\partial \notin S$, if $\tau_{n}=\infty$. Show that Y is a Markov chain and give its transition matrix.
6. Show that the Markov chain for the hard core model is irreducible and aperiodic [for more details, see Häggström, problem 7.1 and Chapter 7].

