Mat-1.3608 Markov chains. We use the notation from Nummelin's paper. The chain moves according to the kernel $P(x, A)$, where

$$
P(x, A):=\mathbb{P}\left(X_{n} \in A \mid X_{n-1}=x\right)=\int_{A} p(x, y) d y+r(x) \delta_{x}(A),
$$

where $r(x)$ is the probability $r(x)=\mathbb{P}\left(X_{n+1}=x \mid X_{n}=x\right)$.

III Exercise 7.2. 2008 Tikanmäki/Valkeila.

1. Let P be the tarnsition kernel and let λ be the intitial distribution. Write the probability of the event

$$
\mathbb{P}\left(X_{0} \in A_{0}, \ldots, X_{n} \in A_{n}\right)
$$

using the kernel P and initial distribution.
2. Let X be a Markov chain, and let $k<n<m$. Then

$$
\mathbb{P}\left(X_{k} \in A, X_{m} \in C \mid X_{n} \in B\right)=\mathbb{P}\left(X_{k} \in A \mid X_{n} \in B\right) \mathbb{P}\left(X_{m} \in C \mid X_{n} \in B\right)
$$

["The past and future are independent given the present."]
3. [Metropolis-Hastings algorithm] Check that the M-H algorithm, described in Nummelin Example 1, is reversible and hence π is its invariant distribution.
4. Let $Y_{n}, n \geq 1$ be independent identically distributed real random variables, and let $\mathbb{P}\left(Y_{n} \in A\right)=\int_{A} g(z) d z$. Let X_{0} be a random variable, independent on $Y_{n}, n \geq 1$, and $\mathbb{P}\left(X_{0} \in A\right)=\int_{A} \lambda(x) d x$. Show that random walk

$$
X_{n}=X_{0}+\sum_{k=1}^{n} Y_{k}
$$

is a Markov chain, describe the transition kernel P, and the densities $p(x, y)$ and $r(x)$.
5. [Continuation] Assume that $X_{0} \geq 0$ and define the reflected random walk by

$$
W_{0}=X_{0} \quad \text { and } \quad W_{n}=\max \left(W_{n-1}+Y_{n}, 0\right) .
$$

Show that W is a Markov chain and find its P.
6. [Application of the strong Markov property] Let X be an irreducible Markov chain in finite state space S. Assume that we observe the chain only when it moves. More formally, let $\tau_{0}=0$ and τ_{m+1} is given by

$$
\tau_{m+1}=\inf \left\{n \geq \tau_{m} \mid X_{n} \neq X_{\tau_{m}}\right\},
$$

and put $Z_{m}=X_{\tau_{m}}$. Show that Z is a Markov chain with the transition marix $\tilde{p}_{i j}=\frac{p_{i j}}{\sum_{k \neq i} p_{i k}}$.

