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Preface

This is the electronic version of the lecture course

Mat-5.210 Special Course in Computational Mechanics Autumn 2006:
" A POSTERIORI ANALYSIS FOR PDE’s”
http://math.tkk.fi/teaching/Ime/

that was prepared for students and PhD students of the Department of
Mathematics of Helsinki University of Technology and read in 2006.

In general, it is aimed to give an answer to the question ”How to verify the
accuracy of approximate solutions of partial differential equations computed
by various numerical methods ?” A posteriori error estimates present a tool
able to give an answer to the above question. Nowadays a posteriori
estimates form a basis of many powerful numerical techniques and are
widely used in computational technologies. Therefore, the purpose of the
course is to discuss the main lines in a posteriori analysis and explain their
mathematical foundations.
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First, the ”classical” a posteriori error estimation methods developed for
finite element approximations are considered. However, the major part of
the course is devoted to a new functional approach to a posteriori error
estimation developed in the last decade. Basic ideas of this approach are
first explained on the paradigm of a simple elliptic problem. Further
exposition contains applications to particular classes of problems: diffusion,
linear elasticity, Stokes, biharmonic, variational inequalities, etc.

The material is based on earlier lectures on a posteriori estimates and
adaptive methods that has been read by the author at the University of
Houston, USA (2002); University of Jyvaskyld, Finland (2003), Radon
Institute of Computational and Applied Mathematics (RICAM) in Linz
(2005), and at St.-Petersburg Polytechnical University (2000-2003).
However, in general, the course is new. A special attention is paid on a
posteriori error estimation methods for two important classes of problems
that are now in the focus of numerous researches in numerical analysis,
namely to mized FE approrimations and approximations in the theory of
viscous fluids.
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Full list of references is given at the end of the text, but certain key
publications are also cited in the respective places related to the topic
discussed.

I wish to express my gratitude to Helsinki University of Technology for the
invitation and hospitality. I am grateful to Prof. R. Stenberg for his kind
support and interesting discussions that helped to create the course in the
present form and also to Mr. A. Niemi and Mrs. Tuula—Donskoi for their
help during my visit.

Sergey Repin Espoo, November 2006




Lecture 1

The goal of the lecture is to
provide a background information,
shortly discuss the a priori error estimation methods
and to give a concise overview of
first a posteriori error estimation methods
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Lecture plan

m Error estimation problem in computer simulation;
m A priori approach to the error analysis for PDE’s;
m A posteriori methods developed in 1900-1975:

m Heuristic Runge’s rule;

m Prager and Synge estimate;

m Estimate of Mikhlin;

m Estimates of Ostrowski for contractive mappings;
m Estimates based on monotonicity (Collatz);
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Let us begin with a ”philosophic” question:

WHAT THE NUMBERS COMPUTED
INDEED MEAN?




To convince yourself that the question stated is worth thinking out, please
make
Task 1. "Baby” coupled problem.

Z/-92-10z=0, z=1z2(x), x€]0,8],
Z(O) = ].7 Z/(O) = dN—-1 — aN,

where a is a solution of the system of the dimensionality N

s

2Q2
Ba=f, b= 25i3; /(sin(ig)sin(jg)+sin(i+j2)§) de,
’ +oo i k
ij=1,2,.N,  f=(i+1)4%, si=2<i+1> .

k=0
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The task

For N = 10, 50, 100, 200 find z(8) analytically and compare with numerical
results obtained by computing the sums numerically, finding definite
integrals with help of quadratures formulas, solving the system of linear
simultaneous equations by a numerical method, and integrating the
differential equation by a certain (e.g., Euler) method.
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I. In the vast majority of cases, exact solutions of differential equations

are unknown. We have no other way to use differential equations in the
mathematical modeling other than compute approximate solutions and

analyze computer simulation results.

Il. Approximate solutions contain errors of various nature.

From | and 11, it follows that

I11. Verification of the accuracy of approximate solutions a KEY
QUESTION.




Errors in mathematical modeling

¢1 — error of a mathematical model used

€, — approximation error arising when a
differential model is replaced by a
discrete one;

£3 — numerical errors arising when solving a
discrete problem.
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Let U be a physical value that characterizes some process and u be a
respective value obtained from the mathematical model. Then the quantity

€1 =|U—u|
is an error of the mathematical model.

__________________________________________________________________________|
Mathematical model always presents an " abridged” version of a physical
object.

Therefore, ¢; > 0.




TYPICAL SOURCES OF MODELING ERRORS

(a) "Second order” phenomena are neglected
in a mathematical model.

(b) Problem data are defined with an uncertainty.

(c) Dimension reduction is used to simplify a model.
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Let up be a solution on a mesh of the size h. Then, u, encompasses the
approximation error

€2 =|u— upl|.

Classical error control theory is mainly focused on approximation errors.




Finite—dimensional problems are also solved approximately, so that instead
of u, we obtain u;. The quantity

€3 = |up — up |

shows an error of the numerical algorithm performed with a concrete
computer. This error includes

m roundoff errors,
m errors arising in iteration processes and in numerical integration,

m errors caused by possible defects in computer codes.
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Roundoff errors

Numbers in a computer are presented in a floating point format:
x—+(ii+i—2+ 4—i—k)q(Z is<q
=1 , s .
q q? q-
These numbers form the set Rqx C R.
q is the base of the representation,

L € [¢1,£5] is the power.

|
Rqek is not closed with respect to the operations +, —, * !







Example

k =3, a:<%+0+0>*25, b:<%+0+0>*21

1

b:>(0+7+0)*22:> (0+0+§)*23:>(0+0+0)*24

a+ b =alll

|
Definition. The smallest floating point number which being added to 1
gives a quantity other than 1 is called the machine accuracy.

Mat-5.210 i in Computational Mechani




Numerical integration

n/2 - ~5

/ f(X)dX = Zcif(xi)h = Z Cif(Xi)h + c"/2+1f(x"/2+1)h +...
b i=1

i=1

0.3
0.25
0.2 -
0.15
0.1
0.05




Errors in computer simulation

Un

Physical object/process

U
e — ’ Error of a model ‘
U

Differential model Au=f
I
g — ’Approximation error‘
U

Discrete model Alu, = f,
4
€3 — ’ Computational error‘
I

Numerical solution APui = f, + e




Two principal relations

I. Computations on the basis of a reliable (certified) model. Here ¢; is
assumed to be small and u; gives a desired information on U.

U—uill < e1t]eates) (1)

Il. Verification of a mathematical model. Here physical data U and
numerical data uf are compared to judge on the quality of a mathematical

model
lex]l < U —uill +[e2+ 5] 2)
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Thus, two major problems of mathematical modeling, namely,

m reliable computer simulation,

m verification of mathematical models by comparing physical and
mathematical experiments,

require efficient methods able to provide
COMPUTABLE AND REALISTIC

estimates of .
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What is v and what is || - ||?

If we start a more precise investigation, then it is necessary to answer the
question

What is a solution to a boundary—value problem?

Example.

u  Hu 2
aix%_i_w_yfzm u = ug on 09 .

1

It is not a trivial question, so that about one hundred years passed before
mathematicians have found an appropriate concept for PDE’s.




Without proper understanding of a mathematical model no
real modeling can be performed. Indeed,

|
If we are not sure that a solution u exists then what we
try to approximate numerically?

|
If we do not know to which class of functions v belongs
to, then we cannot properly define the measure for the
accuracy of computed approximations.

Thus, we need to recall a
CONCISE MATHEMATICAL BACKGROUND




Vectors and tensors

R" contains real n—vectors. M"*™ contains n X m matrices and M/J*"
contains n X n symmetric matrices (tensors) with real entries.

n
a-b=>%ab€R, abecR" (scalar product of vectors),
i=1
a®b = {ab;} ¢ M™" (tensor product of vectors),
n
o:e= Y o ER, o,e € M™" (scalar product of tensors).
ij=1

lal :==+a-a, lo| == Vo : o,

Unit matrix is denoted by I. If 7 € M"*", then 7° = 7 — %H is the deviator
of 7.
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Spaces of functions

Let Q be an open bounded domain in R” with Lipschitz continuous
boundary.

C*(RQ) — k times continuously differentiable functions.

C5(R) — k times continuously differentiable functions vanishing at the
boundary 9.

C5°(R2) — k smooth functions with compact supports in .
LP(2) — summable functions with finite norm

1/p

gl = el = / M
Q

For L%(Q) the norm is denoted by | - |.
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If g is a vector (tensor)— valued function, then the respective spaces are
denoted by

C(Q,R") (C*(Q,M"™")),
LP(Q, ") (LP(Q,11™"))
with similar norms.

We say that g is locally integrable in Q and write f € L1'°¢(Q), if g € L}(w)
for any w CC Q. Similarly, one can define the space LP'°¢(RQ) that consists
of functions locally integrable with degree p > 1.




Generalized derivatives

Let f,g € L1°%(Q) and

/gcpdx - —/fgf dx, Ve ecl(Q).
Q Q '

Then g is called a generalized derivative (in the sense of Sobolev) of f with
respect to x; and we write

_of
- 8x;'

g
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Higher order generalized derivatives

If f,g € LY°°(Q) and

/ dx—/f P 4 v c€¥(Q)
J gQO - o 8Xian b (P I

then g is a generalized derivative of f with respect to x; and x;. For
generalized derivatives we keep the classical notation and write
g = Ozf/OXiOXj = f_’ij.

__________________________________________________________________________|
If f is differentiable in the classical sense, then its generalized derivatives
coincide with the classical ones !
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To extend this definition further, we use the multi-index notation and write
Df in place of 9*f/Ox{10x52 ... Oxg™.

Let f,g € L'°¢(Q) and

/ggodx: (—1)“"|/fD°‘cpdx7 Vo ECO:k(Q).
Q Q

Then, g is called a generalized derivative of f of degree
lal =1+ a2 +... +a,

s=o)

and we write
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Sobolev spaces

S. L. Sobolev. Some Applications of Functional Analysis in
Mathematical Physics, 1zdt. Leningrad. Gos. Univ., Leningrad, 1955,
English version: Translation of Mathematical Monographs, Volume
90, American Mathematical Society, Providence, RI, 1991.




The spaces of functions that have integrable generalized derivatives up to a

certain order are called Sobolev spaces. f € W'P(Q) if f € L and all the
generalized derivatives of f of the first order belong to L”, i.e.,

_
f,._axi € L*(Q).

The norm in WP is defined as follows:

1/p

[fllipe = / (P + D[ Fa P)dx
Q i=1




All the other Sobolev spaces are defined quite similarly: f € Wk’P(Q) if all
generalized derivatives up to the order k are integrable with power p and
the quantity
1/p
Ifllpe = > D™ [Pdx

o lal<k

is finite. For the Sobolev spaces W*?(R) we also use a simplified notation
H*(Q).

Sobolev spaces of vector- and tensor-valued functions are introduced by
obvious extensions of the above definitions. We denote them by

W*P(Q R") and W*P(Q, M"*"), respectively.




Embedding Theorems

Relationships between the Sobolev spaces and LP(R) and C*(R) are given
by Embedding Theorems.

1 ——
Ifp,g>1,¢>0and £+ 7 > 7, then W¥AP(Q) is continuously embedded in
L9(2). Moreover, if £ + g > g, then the embedding operator is compact.

|
If ¢ — k> 7, then W*“P(Q) is compactly embedded in C*(Q).
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Traces

The functions in Sobolev spaces have counterparts on 02 called traces.
Thus, there exist some bounded operators mapping the functions defined in
Q to functions defined on the boundary, e.g.,

v HY(Q) — L2(6Q)

is called the trace operator if it satisfies the following conditions:
W =V |agq, W e C'(Q),
[vvll2,00 < cllvlli2.e,

where c is a positive constant independent of v. From these relations, we
observe that such a trace is a natural generalization of the trace defined for
a continuous function.
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It was established that v forms a subset of L?(9R), which is the space
HY/2(dQ). The functions from other Sobolev spaces also are known to have
traces in Sobolev spaces with fractional indices.

_____________________________________________________________________________|
Henceforth, we understand the boundary values of functions in the sense of
traces, so that

u=1 ond

means that the trace yu of a function u defined in Q coincides with a given
function v defined on 0X2.

All the spaces of functions that have zero traces on the boundary are
marked by the symbol o (e.g., W"P(R) and H!(RQ)).
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EGTET AT

1. Friederichs-Steklov inequality.

Iwl| < Cal|Vw|l, vw e H'(Q), 3)
2. Poincaré inequality.
Iw|| < Col|Vw], VYw e HY(Q), (4)

where ITII(Q) is a subset of H* of functions with zero mean.
3. Korn’s inequality.

/(\v|2+|s(v)\2) dx> pa|v|? e, Wv € H (R, (5)
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Generalized solutions

The concept of generalized solutions to PDE’s came from
Petrov-Bubnov-Galerkin method.

B. G. Galerkin. Beams and plates. Series in some questions of elastic
equilibrium of beams and plates (approximate translation of the title
from Russian). Vestnik Ingenerov, St.-Peterburg, 19(1915), 897-908.
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/(Aquf)wdx:O Yw
Q

Integration by parts leads to the so—called generalized formulation of the
problem: find u € H'(R) + up such that

/Vu~dex:/fwdx Yw € ISII(Q)
Q Q

This idea admits wide extensions to many differential equations, see e.g.,
O. A. Ladyzhenskaya, The boundary value problems of mathematical
physics. Springer-Verlag, New York, 1985
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A symmetric form B : V x V — R, where V is a Hilbert space, called
V — elliptic if 3c1 > 0, c2 > 0 such that

B(u,u) > c1||u||2, Yu eV
| B(u,v) [< c2fjuff[|v]|, Yu,veV

General formulation for linear PDE’s is: for a certain linear continuous
functional f (from the space V* topologically
dual to V) find u such that

‘B(u,w):<f.,w> weV.
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Existence of a solution

Usually, existence is proved by

e
Lax-Milgram Lemma For a bilinear form B there exists a linear bounded
operator A € L(V, V) such that

B(u,v) = (Au,v), Yu,veV

It has an inverse A~! € £(V, V), such that ||A| < cp, [A7Y < L

=

We will follow another modus operandi !!l.




Variational approach

If J : K — R is convex, continuous and coercive, i.e.,
J(w) — +o0 as ||w|ly — +oo
and K is a convex closed subset of a reflexive space V, then the problem

inf J(w)

weK

has a minimizer u. If J is strictly convex, then the minimizer is unique.

See, e.g., 1. Ekeland and R. Temam. Convex analysis and variational
problems. North-Holland, Amsterdam, 1976.




(w,w)— < f,w > and let K be a certain subspace. Then

Take J(w) = 1B
1

2

B(w,w) > ci|w|7, [ <fw>] < [If]lv- [[wllv.
We see, that

Jw) > clwll§ = [[fllv- wllv— +oc as [wlv — +o0

|
Since J is strictly convex and continuous we conclude that a minimizer
exists and unique.
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Useful algebraic relation

First we present the algebraic identity
1 1
EB(u—v,u—v):EB(V,V)—<f7v>+ (6)
+ < f,u> —%B(u,u) —B(u,v—u)+ <f,v—u>=
=J(v) = J(u) = B(u,v—u)+ < f,v—u >
From this identity we derive two important results:
m (a) Minimizer u satisfies B(u,w) =< f,w > Vw;

m (b) Error is subject to the difference of functionals.

Mat-5.210
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Let us show (a), i.e., that from (6) it follows the identity
B(u,v—u)=<f,v—u> Y € K,

which is B(u,w) =< f,w > if set w = v — u. Indeed, assume the opposite,
i.e. 3v € K such that

B(u,v—u)— <f,v—u>=4>0 (V#ul)

Set v:=u+ a(Vv—u), o« € R. Then v—u = a(v—u) and

%B(u —v,u—V)+B(u,v—u)— < f,v—u>=

2
- %B(\?—u,\'/—u)—i-aé:J(V)—J(u) >0
However, for arbitrary a such an inequality cannot be true. Denote
a=B(V—u,V—u). Then in the left-hand side we have a function
1/20a% + o, which always attains negative values for certain a. For
example, set o« = —3&/a%. Then, the left-hand side is equal to f%éz/az <0
and we arrive at a contradiction.
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A priori approach to the error control problem




Error estimate

Now, we show (b). From

%B(u—v,u—v) =
=J(v) —J(u) — B(u,v—u)+ < f,v—u >
we obtain the error estimate:
1

EB(u—v,u—v) = J(v) — J(u). (7)

See S. G. Mikhlin. Variational methods in mathematical physics.
Pergamon, Oxford, 1964.
which immediately gives the projection estimate
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Projection estimate

Let up be a minimizer of J on K, C K. Then

%B(u — up,u —up) = J(up) — J(u) < J(vh) — J(u) =

= %B(u —Vh,u—Vp) VYvp € Kp.

and we observe that

B(u—un,u—uy) = inf B(u—vh,u—wy) (8)

vhEK}

Projection type estimates serve a basis for deriving a priori convergence
estimates.
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Interpolation in Sobolev spaces

Two key points: PROJECTION ESTIMATE and

INTERPOLATION IN SOBOLEV SPACES.

Interpolation theory investigates the difference between a function in a
Sobolev space and its piecewise polynomial interpolant. Basic estimate on a
simplex Tp, is

h\™ o
v — Mav|meT, < C(m,n,t) <;> h2=™||v|

2,t, Ty
and on the whole domain

v = M, < Ch* "y

|2,t79h'

Here h is a the element size and p is the inscribed ball diameter.
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Asymptotic convergence estimates

Typical case is m =1 and t = 2. Since
B(u — up,u — up) < B(u — Mpu,u — Myu) < cafju — Myul?
for

B(w,w) = /Vw - Vw dx
Q

we find that

[V(u— un)]| < Chlu

2,2,Q.
provided that

m Exact solution is H? — regular;

m uy, is the Galerkin approximation;

m Elements do not " degenerate” in the refinement process.
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A priori convergence estimates cannot guarantee that the error
monotonically decreases as h — 0.

Besides, in practice we are interested in the error of a concrete
approximation on a particular mesh. Asymptotic estimates could hardly be
helpful in such a context because, in general, the constant C serves for the
whole class of approximate solutions of a particular type. Typically it is
either unknown or highly overestimated.

A priori convergence estimates have mainly a theoretical value: they show
that an approximation method is correct ”in principle.




___________________________________________________________________________|
For these reasons, a quite different approach to error control is rapidly
developing. Nowadays it has already formed a new direction:

A Posteriori Error Control for PDE’s
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A posteriori error estimation methods
developed in 1900-1975




Runge’s rule

At the end of 19th century a heuristic error control method was suggested
by C. Runge who investigated numerical integration methods for ordinary
differential equations.




Heuristic rule of C. Runge

If the difference between two approximate solutions computed on a coarse
mesh 7, with mesh size h and refined mesh 75, _, with mesh size hyes (e.g.,

hief = h/2) has become small, then both uy, and u, are probably close to
the exact solution.

In other words, this rule can be formulated as follows:

‘ If [un — un,] is small then up,, is close to u

where [-] is a certain functional or mesh-dependent norm.

I E——
Also, the quantity [us — un,,] can be viewed (in terms of modern
terminology) as a certain a posteriori error indicator.




Runge’s heuristic rule is simple and was easily accepted by numerical
analysts.

|
However, if we do not properly define the quantity [ -], for which
[up — un,] is small, then the such a principle may be not true.

One can present numerous examples where two subsequent elements of an
approximation sequence are close to each other, but far from a certain joint limit.
For example, such cases often arise in the minimization (maximization) of
functionals with ”saturation” type behavior or with a ”sharp—well” structure.
Also, the rule may lead to a wrong presentation if, e.g., the refinement has not
been properly done, so that new trial functions were added only in subdomains
were an approximation is almost coincide with the true solution. Then two
subsequent approximations may be very close, but at the same time not close to

the exact solution.




___________________________________________________________________________|
Also, in practice, we need to now precisely what the word " close” means,
i.e. we need to have a more concrete presentation on the error. For
example, it would be useful to establish the following rule:

If [un —uner] <& then |u,—u| <d(e),
where the function d(e) is known and computable.

In subsequent lectures we will see that for a wide class of boundary—value
problems it is indeed possible to derive such type generalizations of the
Runge’s rule.
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Prager and Synge estimates

W. Prager and J. L. Synge. Approximation in elasticity based on the
concept of function spaces, Quart. Appl. Math. 5(1947)
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Prager and Synge derived an estimate on the basis of purely geometrical
grounds. In modern terms, there result for the problem

Au+f=0, in Q,
u=20, on 02

reads as follows:
IV =)+ [[Vu— 7] = |Vv — 7|7,

where 7 is a function satisfying the equation divr + f = 0.
We can easily prove it by the orthogonality relation

/V(U7V)‘(VU7T)dX:O (div(Vu—7)=101).
Q




Estimate of Mikhlin

S. G. Mikhlin. Variational methods in mathematical physics. Pergamon,
Oxford, 1964.

A similar estimate was derived by variational arguments (see Lecture 1). It
is as follows:

LIV = w2 < 3(v) — infy,
where

J(v) ::%HVsz—(f,v), inf) ;= inf J(v).
veH; (@)
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Dual problem

Since

infJ = sup {71||1'||2}7
TEQf 2
where
Qs = TGLz(Q,Rd)|/T‘deX:/deX VWEIC:I1 ,
Q

Q

we find that

1 1
SIV@=vIP 3w+ 57, vreQn
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Since
1 2 1 2 1 2
V) + 37l = FIVvl® = [ fvdx+ S|i7]]" =
Q

_1 2 1 2
7§||Vv|| 7/7'~Vvdx+§||7'\| =
Q

= Jlwv |

we arrive at the estimate

1 1
SIVu=vP <5 Ivv—r?,  vrear (9)




Difficulties

Estimates of Prager and Synge and of Mikhlin are valid for any v € Hy (),
so that, formally, that they can be applied to any conforming
approximation of the problem. However, from the practical viewpoint these
estimates have an essential drawback:

they use a function 7 in the set Q¢ defined by the differential
relation,

which may be difficult to satisfy exactly. Probably by this reason further
development of a posteriori error estimates for Finite Element Methods
(especially in 80’-90’) was mainly based on different grounds.

Mat-5.210 Special Course in Computational Mechanics, Autumn 2006,




Fixed point theorem

Consider a Banach space (X,d) and a continuous operator

T:X—- X

A point xg is called a fixed point of ¥ if
X = ‘IX@ . (10)

Approximations of a fixed point are usually constructed by the iteration

sequence
Xi = ‘IXFl i 5 . (]. ].)




Contractive mappings

Two basic tasks:

(a) find the conditions that guarantee convergence of x; to xg,

(b) find computable estimates of the error e; = d(xi, xg ).

Definition
An operator T : X — X is called g-contractive on a set S C X if there exists a
positive real number g such that the inequality

d(%x,Ty) < qd(x,y) (12)

holds for any elements x and y of the set S.

Mat:




2 3 a 1] 3 || 11
Theorem (S. Banach)

Let ¥ be a q-contractive mapping of a closed nonempty set S C X to itself
with q < 1. Then, ¥ has a unique fixed point in S and the sequence x;
obtained by (11) converges to this point.




Proof. It is easy to see that
d(xi11,%) = d(Txi, Txi—1) < qd(xi, xi—1) < ... < q'd(x1, X0).

Therefore, for any m > 1 we have

d(Xi+m7xi) S
< d(Xizm, Xizm—1) + d(Xirm—1, Xirm—2) + ... + d(Xi11, %) <
<q(@" ' +q" 2+ ..+ 1)d(x1, %0) . (13)




Since

m—1
qk S ].L )
k=0 -9
(13) implies the estimate

d(xim,x) < 7o 4d0c1,%0). (14)

Let i — oo, then the right-hand side of (14) tends to zero, so that {x;} is a
Cauchy sequence. It has a limit in y € X.




Then, d(x;,y) — 0 and
d(%Txi, Ty) < qd(xi,y) — 0

so that d(¥x;, Ty) — 0 and Tx; — Ty. Pass to the limit in (11) as
i — 400. We observe that
Ty =y.

Hence, any limit of such a sequence is a fixed point.




It is easy to prove that a fixed point is unique.
Assume that there are two different fixed points X%D and xé, ie.

‘Ix'é:x'é, k=1,2.
Therefore,

d(xg,xé) = d(‘ngD,‘Ixé) < qd(xl@7 xé)

But q < 1, and thus such an inequality cannot be true.




A priori convergence estimate

Let ej = d(xj,x@ ) denote the error on the j-th step. Then
e = d(Txj—1, Txe) < gej_1 < qu().
and

e < d'ep. (15)

This estimate gives a certain presentation on that how the error decreases.
However, this a priori upper bound may be rather coarse.




A posteriori estimates

The proposition below furnishes upper and lower estimates of ej, which are
easy to compute provided, that the number q (or a good estimate of it) is
known.

A. Ostrowski. Les estimations des erreurs a posteriori dans les
procédés itératifs, C.R. Acad.Sci. Paris Sér. A-B, 275(1972),
A275-A278.
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Theorem (A. Ostrowski)

Let {x;}2y be a sequence obtained by the iteration process
Xi = ¥Xi—1 i= 1,2,

with a mapping T satisfying the condition || Z|| = q < 1. Then, for any x;,
j > 1, the following estimate holds:

Mje = 7qd(Xj+1,Xj) < €; < |V|j Z*id(Xj,Xj_l). (16)
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Proof. The upper estimate in (16) follows from (14)). Indeed, put
i =1 in this relation. We have

q
d(x14m, x1) < 7=—d(x1,%0).
—q
Since X14m — X@ as m — 400, we pass to the limit with respect to m
and obtain

q
d(xm,x1) < ——d(x1,Xp) .
(x@; 1)_1_q (x1,%0)
We may view xj_1 as the starting point of the sequence. Then, in the
above relation xp = xj—1 and x; = x; and we arrive at the following
upper bound of the error:
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The lower bound of the error follows from the relation
d(xj, xji-1) < d(xj, ) + d(xi-1,%) < (1 + a)d(xj-1,xe),
which shows that

d(xj-1,x9) > d(x;, xj-1) -

1+q
Note that

M;:@ _al+a)d(xx-1)  1+q
M 1-q d(x:1,%) ~ 1-q’

we see that that the efficiency of the upper and lower bounds given by (16)
deteriorates as q — 1.




Remark. If X is a normed space, then
d(xj+1a xj) = HR(XJ)” )
where
R(Xj) = 'IXJ' — Xj

is the residual of the basic equation (10). Thus, the upper and lower
estimates of errors are expressed in terms of the residuals of the respective
iteration equation computed for two neighbor steps:

1

q
< = <
itq IR < & =d(xj,x0) < 37— q IR(xj-1)Il -
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Corollaries

In the iteration methods, it is often easier to analyze the operator
T=T"=TT..T
——
n times
where T is a certain mapping.
Proposition (1)

Let T:S — S be a continuous mapping such that ¥ is a q-contractive
mapping with q € (0,1). Then, the equations

x=Tx and X = X

have one and the same fixed point, which is unique and can be found by
the above described iteration procedure.




Proof. By the Banach Theorem, we observe that the operator ¥ has a
unique fixed point £ .
Let us show that £ is a fixed point of T, we note that

Téo = T(T) =TT, = ...
=TT, =THe, =T"Te,. (17)
Denote xo = T€. By (17) we conclude that for any i

Téo = Txo (18)

Passing to the limit on the right-hand side in (18], we arrive at the relation
T¢o = &5, which means that £ is a fixed point of the operator T.




Let xg be a fixed point of T. Then,
X5 =Txg =..= T"xg = Txp
and we observe that xg is a fixed point of T. Since the saddle point of T
exists and is unique, we conclude that
Xp = X@-

Remark. This assertion may be practically useful if it is not possible to
prove that T is g—contractive, but this fact can be established for a certain
power of T.
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Iteration methods for bounded linear operators

Consider a bounded linear operator £ : X — X, where X is a Banach space.
Given b € X, the iteration process is defined by the relation

Xj = ﬁXj_l + b. (19)

Let xo be a fixed point of (19) and
____________________________________________________________________________|

Icl =a< 1.
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By applying the Banach Theorem it is easy to show that

{xi} = xo.
Indeed, let Xj = xj — xg. Then
X = Lxj_1+ b —xg = L(xj-1 — xe) = LXj-1. (20)
Since
Ox = L 0x,

we note that the zero element Ox is a unique fixed point of the operator L.
By the Banach theorem X; — Ox and, therefore, {xj} — xo.
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Therefore, we have an a priori estimate
% —xollx = [1% — Ox|lx <
q . - q
S T [[X1 — Xo = —|R X0 21
T R =Rl = 1 IRGa)lx ()

and the a posteriori one

q
X —xollx < g IR(xj-1)lIx » (22)

where R(z) = £z + b — z is the residual of the functional equation
considered.




By applying the general theory, we also obtain a lower bound of the error

1
Ik =xillx = 7= IRCGIx - (23)

- >
I —xollx > —

1
1+q
Hence, we arrive at the following estimates for the error in the linear
operator equation:

1-q

g i xellx < IIR(-1)lix < (1 +a) lxi-1 = xollx-
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Iteration methods in linear algebra

Important applications of the above results are associated with systems of
linear simultaneous equations and other algebraic problems. Set X = R"
and assume that £ is defined by a nondegenerate matrix A € M"*"
decomposed into three matrixes

A:A£+Ad+Ar7

where Ag, A,, and A4 are certain lower, upper, and diagonal matrices,
respectively.
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Iteration methods for systems of linear simultaneous equations
associated with A are often represented in the form
Xi — X

oA Ax g =f. (24)
.

B

In (24), the matrix B and the parameter 7 may be taken in various
ways (depending on the properties of A). We consider three
frequently encountered cases:

(a) B:Ad7
(b) B=Aq+ Ay,
(c) B=Ag+whAg 7=w.

For 7 =1, (a) and (b) lead to the methods of Jacobi and Zeidel,
respectively. In (c), the parameter w must be in the interval (0, 2). If
w > 1, we have the so-called ”upper relaxation method”, and w < 1
corresponds to the ”lower relaxation method”.
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The method (24)) is reduced to (19) if we set
L=T-7B7'A  and b=7B'f, (25)

where I is the unit matrix. It is known that x; converges to xe that is a
solution of the system

Axp =f (26)

if an only if all the eigenvalues of £ are less than one.
Obviously, B and 7 should be taken in such a way that they guarantee the
fulfillment of this condition.




Assume that ||£|| < q < 1. In view of (21)-(23), the quantities

M = a(l- a) " IR(xi-1)ll. (27)
M% = d(1-a) " [Rx)I, (28)
M5 = (1+a)7" [R(x)| (29)

furnish upper and lower bounds of the error for the vector x;.
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Remark. It is worth noting that from the practical viewpoint finding an
upper bound for ||£|| and proving that it is less than 1 presents a special
and often not easy task.

If q is very close to 1, then the convergence of an iteration process may be
very slow. As we have seen, in this case, the quality of error estimates is
also degraded. A well-accepted way for accelerating the convergence
consists of using a modified system obtained from the original one by means
of a suitable preconditioner
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Consider the problem

Ax =f
for a symmetric matrix A with coefficients
a;=~r/ij ifi#j), k=01
ajj — i.
Solved the system by the iteration method
xis1 = (I— 7B 'A)x; + 7B'F

with B = Ap and xo = {0,0,...0}, determine g and define two-sided error
bounds.
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Applications to integral equations

Many problems in science and engineering can be stated in terms of
integral equations. One of the most typical cases is to find a function
x@(t) € Cla, b] such that

b
xo () = A / K(t,s) xo (s) ds + F(t), (30)
where A > 0, K (the kernel) is a continuous function for
(x,t) eQ:={a<s<b,a<t<b}
and
|K(t,s)| < M, v(t,s) € Q.

Also, we assume that f € C[a, b].
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Let us define the operator ¥ as follows:

y(t) :== Tx(t) == A/h K(t,x)x(s) ds + f(t) (31)

and show that ¥ maps continuous functions to continuous ones. Let tg and
to + At belong to [a,b]. Then,

ly(to + At) — y(to)| <
<\ /b IK(to + At, s) — K(to, s)|[x(s)] ds+

+ |f(to + At) — f(to)|.

Since K and f are continuous on the compact sets Q and [a, b], respectively,
they are uniformly continuous on these sets.




Therefore, for any given € one can find a small number § such that
[f(to + At) — f(to)| < e

and

|K(to + At,s) — K(to,s)| < &,
provided that |At| < 4.
Thus, we have

(to + A) — y(t0)| < (1AlIb — al max [x(s)| + 1) = Ce.

and, consequently, y(to + At) tends to y(to) as |At| — 0.




% : Cla,b] — CJa, b] is a contractive mapping. Indeed,
d(Tx, Ty) = fax. |Tx(t) — Ty(t)| =

b
A / K(t, 5)(x(s) — y(s)) ds| <
< IAIM(b — ) max (x(s) ~ y(s)| = [AM(b — a)d(x,y),

so that ¥ is a g-contractive operator with

q=[AIM(b —a), (32)
provided that
1
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Numerical procedure

An approximate solution of (30) can be found by the iteration method

xira(t) = A / K(t, s)xi(s) ds + (t). (34)

If (33) holds, then from the Banach theorem it follows that the sequence
{xi} converges to the exact solution.

We apply the theory exposed above and find that the accuracy of x; is
subject to the estimate

1

1+q /ab K(t,s)(xi+1(s) — xi(s)) ds <

< max |xi(t) — xo(t)] < %/a K(t,s)(xi(s) — xi_1(s)) ds. (35)

a<t<b
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Applications to Volterra type equations

Consider the fixed point problem

xp(t) = )\/t K(t,s) xg(s)ds + f(t), (36)
where
IK(t,s)| < M, V(t,s) €Q

and f € Cla, b].
Define the operator T as follows:

t
Tx(t) = A / K(t,s) x(s) ds + £(t).
a
Similarly, to the previous case we establish that

d(Tx, Ty) < |AIM(t — a)d(x,y).
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By the same arguments we find that

d(T"x, T"y) < \A\"M"@d(x, y),

n!
Thus, the operator ¥ := T" is g-contractive with a certain q < 1, provided
that n is large enough.
In view of Proposition 1, we conclude that the iteration method converges
to x@ and the errors are controlled by the two—sided error estimates.
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Applications to ordinary differential equations

Let u be a solution of the simplest initial boundary-value problem

du
Qe u), u(w)=a (37)
where the solution u(t) is to be found on the interval [to,t1]. Assume that
the function ¢(t, p) is continuous on the set
Q={tw<t<t,a—A<p<a+A}

and
lp(t, p1) — o(t, p2)| < Llp1 —p2|, V(t,p) €Q. (38)
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Problem (37) can be reduced to the integral equation

u(t) = / (s, u(s)) ds + a (39)

to
and it is natural to solve the latter problem by the iteration method
t
ui(t) = / (s, ui_1(s)) ds + a. (40)
to
To justify this procedure, we must verify that the operator
t
Tu = / ©(s,u(s))ds +a
to

is g-contractive with respect to the norm

Jul == max [u(t)| (41)




We have
t
|2~ Tyl = max / (45, 2(5)) — (s, y(5)) ds| <
tefto,ta]
max / 12(s) — y(s)|ds < L/ 12(s) — y(s)|ds <
t€[tu t1]
< L(t1 —to) max [z(s) —y(s)| = L(t1 — to)[lz—y||-
s€[to,t1]
We see that if
ty <to+L7%, (42)

then the operator ¥ is g-contractive with




Therefore, if the interval [to, t1] is small enough (i.e., it satisfies the
condition [42), then the existence and uniqueness of a continuous solution
u(t) follows from the Banach theorem. In this case, the solution can be
found by the iteration procedure whose accuracy is explicitly controlled by
the two-sided error estimates.

For a more detailed investigation of the fixed point methods for integral
and differential equations see

A. N. Kolmogorov and S. V. Fomin. Introductory real analysis. Dover
Publications, Inc., New York, 1975.

E. Zeidler. Nonlinear functional analysis and its applications. |.
Fixed-point theorems. Springer-Verlag, New York, 1986.




A posteriori estimates based on monotonicity.

The theory of monotone operators gives another way of constructing a
posteriori estimates.

Monotone operators are defined on the so—called ordered (or partially
ordered) spaces that introduce the relation x <'y for all (or almost all)
elements x,y of the space.

Definition

An operator ¥ is called monotone if x <y implies Tx < Ty.




Consider the fixed point problem
Xp = Txp +f
on an ordered (partially ordered) space X. Assume that
T=TFg + %o,

T g is monotone,
T is antitone: x <y implies Tx > Ty,
T and T have a common set of images D which is a convex subset of X.
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Next, let x50, Xo1, X@0, Xp1 € D be such elements that

xo0 < xg1 < Xg1 < Xgo,
xo1 = Taxso + Toxgo + f,
xp1 = TpXpo + Toxgo + 1,

Then, we observe that

x02 = Tapxo1 + FToxe1 +f > Taxco + Toxeo +f =x01
X@p2 :‘I@X@l +‘:eX@1+f < ‘Z@X@0+‘29X@0+f:x®1.




By continuing the iterations we obtain elements such that
Xok < Xg(k+l) < X (t1) < Xk

Then x — Tx + f maps D to itself. If D is compact, then by the Schauder
fixed point theorem xg € D exists. Moreover, it is bounded from below and
above by the sequences {xo«} and {xg«}.
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Applications of this method are mainly oriented towards systems of linear
simultaneous equations and integral equations

(see L. Collatz. Funktionanalysis und numerische mathematik,
Springer-Verlag, Berlin, 1964). For example, consider a system of linear
simultaneous equations

x=Ax+f
that is supposed to have a unique solution xg. Assume that
A=Ag —Ag, Ae—{a}EM"X"
Ag ={aj} e M"™", aj >0, aj >0.

We may partially order the space R"” by saying that x <y if and only if
xi <y for i =1,2,...n. Compute the vectors

Xsk+1) = ApXok + Acxgk +f,  Xgk+1) = ApXek + Acxek +f.

If xs0 <xg1 < xp < xg1 < Xgo, then for all the components of xg we
obtain two-sided estimates

x (M) <O < 5O O
kS XS 01) SXo < X i) < Xgeo  1=1,2,..n,




Apply the above method for finding two—sided bounds of the Euclid error
norm and componentwise errors for a system of linear simultaneous
equations

Ax =f

where
ay = (-1)Mk/ij ifi#j, ~=01
ai =i.

For the ith component of the solution determine the lower and upper
bounds as follows:
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It should be remarked that convergence of x(ei)k and xgk to xg (and the
convergence rate) requires a special investigation, which must use specific
features of a particular problem.

In principle, a posteriori error estimates based on monotonicity can
provide the most informative POINTWISE a posteriori error estimates.
Regrettably, the respective theory has not been yet properly investigated.
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Lecture 2

The goal of Lecture 2 to give an overview of a posteriori error estimation
methods developed for Finite Element approximations in 70th—80th.




m Mathematical background;

m Residual type error estimates;

Basic idea;
Estimates in 1D case;
Estimates in 2D case;
= Comments;

m Methods based on post—processing;

m Methods using adjoint problems;
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Sobolev spaces with negative indices

Linear functionals defined on the functions of the space (O,‘O"(Q) are called
distributions. They form the space D'(Q)

Value of a distribution g on a function ¢ is (g, ¢).
Distributions possess an important property:

they have derivatives of any order
Let g € D'(RQ), then the quantity —(g, g—?) is another linear functional on
D(Q). It is viewed as a generalized partial derivative of g taken over the
i-th variable.
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Derivatives of L9—functions

Any function g from the space LI(Q2) (g > 1) defines a certain distribution
as

(8, ) = Q/gsodx

and, therefore, has generalized derivatives of any order. The sets of
distributions, which are derivatives of g-integrable functions, are called
Sobolev spaces with negative indices.
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The space W~%9(Q) is the space of distributions g € D’'(Q) such that

g= > D%,

lee|<e

where g, € L9(Q).




Spaces W~1P(Q)

W~1P(Q) contains distributions that can be viewed as generalized
derivatives of L7-functions. The functional

<8x. > /gzdx fely(Q)

is linear and continuous not only for ¢ eé"o(Q) but, also, for ¢ € WP(Q),
where 1/p+1/q = 1 (density property). Hence, first generalized derivatives

of f lie in the space dual to WP(Q) denoted by W~1?(Q).

For W1%(Q) = H!(Q), the respective dual space
is denoted by H ().




Norms in "negative spaces”

For g € H7}(Q) we may introduce two equivalent "negative norms”.

llgll(=1),@ :== sup M < +o0o
el lell2.0
_ l{g #)|
lel:= s oo <+
peH(Q)

From the definitions, it follows that

(g, ) < llgll-1.ellrlize
(g.¢) < Igl [Vela
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Errors and Residuals. First glance

If an analyst is not sure in the quality of an approximate solution computed,
then the very first idea that comes to his mind is to substitute the
approximate solution into the equation and look at the equation residual.




We begin by recalling basic relations between residuals and errors that hold
for systems of linear simultaneous equations. Let A € M"*", det A # 0,
consider the system

Au+f=0.
For any v we have the simplest residual type estimate
-1
Av—u)=Av+ £ = e < [A ]

where e = v —u and r = Av + f.
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Define the quantities

Amin = mMin HAyH and Amax = max HA H
yer™ ||y er” ||y
y7#0 y#O
Since Ae = r, we see that
Ae
Ao < LA rll 3 AT el < el < AZA L

lell el

Since u is a solution, we have

[ Aul] _ [If]

[lufl Jlul]

)\min <

Thus,
>\mm liell

Amac [IF]]

< Amax = AmaIFl] < JJull < A ]l




Key "residual—error” relation

Since

)\max
)\min

we arrive at the basic relation where the matrix condition number serves as

= Cond 4,

an important factor

(Cond A)™* Il < llell < CondAM. (43)

Thus, the relative error is controlled by the relative value of the
residual. However, the bounds deteriorates when the
conditional number is large.
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In principle, the above consideration can extended to a wider set of linear
problems, where
Ae L(X,Y)

is a coercive linear operator acting from a Banach space X to another space
Y and f is a given element of Y.

|
However, if A is related to a boundary-value problem, then one should
properly define the spaces X and Y and find a practically meaningful analog
of the estimate (43).
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Elliptic equations

Let A: X — Y be a linear elliptic operator. Consider the boundary-value
problem

Au+f=0 in Q, u=ug on 0.

Assume that v € X is an approximation of u. Then, we should measure the
error in X and the residual in Y, so that the principal form of the estimate is

v —ullx < CJlAv +fllv, (44)

where the constant C is independent of v. The key question is as follows:

|
Which spaces X and Y should we choose for a particular boundary-value
problem ?
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Consider the problem
Au+f=0 inQ, u=0 onoQ,

with f € L2(R). The generalized solution satisfies the relation
/ Vu-Vwdx = / fwdx VYw € Vo := H(Q),
Q Q

which implies the energy estimate

[Vull2,e < Callf|

2,Q-

Here Cgq is a constant in the Friederichs-Steklov inequality. Assume that an
approximation v € Vg and Av € L%(R2). Then,

/V(u—v)-dex:/(f+Av)wdx, Yw € V.
Q Q




Setting w = u — v, we obtain the estimate

[V(u—=v)l20 < Collf + Av]

2,9, (45)

whose right-hand side of (45) is formed by the L?-norm of the residual.
However, usually a sequence of approximations {vkx} converges to u only in
the energy space, i.e.,

{w}—u in HI(Q),

so that ||Avk + f|| may not converge to zero !

|
This means that the consistency (the key property of any practically
meaningful estimate) is lost.
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|
Which norm of the residual leads to a consistent estimate of the error in
the energy norm?

To find it, we should consider A not as H> — L2 mapping, but as
H! — H™! mapping. For this purpose we use the integral identity

/ Vu-Vwdx = (f,w), VweVg:= ﬁl(ﬂ).
Q

Here, Vu € L2, so that it has derivatives in H™! and we consider the above
as equivalence of two distributions on all trial functions w € V.
By (f,w) < [ f [||[Vw]|2,e, we obtain another "energy estimate”

([Vull2,e < TFI.
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Consistent residual estimate

Let v € Vg be an approximation of u. We have

/V(u—v)~dex :/(fw—Vv~Vw)dx:
Q

=(Av+fw), f+AveH ' (Q).

By setting w = v — u, we obtain

IVu—=v)l2e < [f+Av]. (46)
where
[f+Av] = sup [{f+Av,p) | =
o IVell
EH(Q)
| JoV(u—v)-Vop| [V(u—=v)[l[Vel

sup < sup ———= o < [[V(u—v)
5 Vel o Vel

p€EHL(Q) pEHY(Q)




__________________________________________________________________________|
Thus, for the problem considered

[V(u—v)|

20=[f+Av] (47)

From (47), it readily follows that

[f+Aw] — 0 as {w} — uinH.

We observe that the estimate (47)) is consistent.




Diffusion equation

Similar estimates can be derived for
Au+f=0, inQ, u=0o0n 09,

where

) Ou
Au =divAVu = E I (aij(x I >,
i j

=
a;(x) = aji(x) € L™(Q),

Amin|]? < a;i(x)mim; < Amax|n2, V¥ ER", x € Q,
>\max Z >\min 2 O
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Let v € Vg be an approximation of u. Then,
/ AV(u—v)-Vwdx = /(fw — AVv-Vw)dx, Yw € V.
Q Q

Again, the right-hand side of this relation is a bounded linear functional on
Vo, i.e.,

f+div(AVv) e H.
Hence, we have the relation

/ AV(u—v)-Vwdx = (f + div(AVv),w), Vw € V,.
Q

Setting w = u — v, we derive the estimate

IV (u = )ll2.0 < Agin, T+ div (AVY) [ (48)
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Next,

[f+div(AVv) [ = sup | (f + div (AVV), ) | _

efil@) IVel2.a
AV(u —v) - Vedx
= sup | Jo AV ) Vx| < Amax||[V(u = v)|l2,2.  (49)
o Vell2,a
peH(Q) ’
Combining (48) and (49) we obtain
Amax TR(W) T < IV (u = v)ll2.2 < A IRV 1, (50)

where R(v) = f + div (AVv) € H71(R). We see that upper and lower
bounds of the error can be evaluated in terms of the negative norm of R(v).
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Main goal

e
We observe that to find guaranteed bounds of the error
reliable estimates of [R(v)] are required.

In essence, a posteriori error estimates derived in 70-90’ for Finite Element
Methods (FEM) offer several approaches to the evaluation of [R(v)].

We consider them starting with the so—called explicit residual method
where such estimates are obtained with help of two key points:

m Galerkin orthogonality property;

s H — V}, interpolation estimates by Clément.




Explicit residual method in 1D case

Take the simplest model
(au’) +f =0, u(0) = u(1).

Let 1:=(0,1), f € L%(1), a(x) € C(I) > g > 0. Divide | into a number of
subintervals l; = (xi, xi+1), where xo = 0, xn+1 = 1, and |xit1 — xi| = h;.

o
Assume that v € H(I) and it is smooth on any interval /;.

S EEEEEEE

Xi i+1
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In this case,

1 ror
—av'w’ + fw)dx
[RW[= sup JolTovw riwdx
weVy(l), w#0 HW ||27|
— N fli(—av'w' + fw)dx _
wEIC-)il(I) w0 ||W/||27|
Soito S, r(v)wdx + 350 a(x)w(x)i(v' (xi))
= sup ,
weVg(l), w0 [w’|2,1

where j(¢(x)) := ¢(x + 0) — ¢(x — 0) is the ”jump—function” and
ri(v) = (av’)’ + f is the residual on /.
For arbitrary v we can hardly get an upper bound for this supremum.




Use Galerkin orthogonality

Assume that v = up, i.e., it is the Galerkin approximation obtained on a
finite—-dimensional subspace Von formed by piecewise polynomial continuous
functions. Since

/auf,w{, dx — /fwh dx =0 VYwp, € Vqp.
I I

we may add the left-hand side with any wj, to the numerator what gives

fol(fau{,(w — maw)’ + f(w — mpw)) dx

[R(un) [ = sup

wev(h) [[w’ ’

2,1

where 7y, : Vo — Vop is the interpolation operator defined by the conditions
7wV € Von, mpv(0) = wpv(1) = 0 and

mav(xi) = v(xi), Vxi, i=1,2,...,N.
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Integrating by parts

Now, we have

[Rw)[ = sup

weVg(1) [w|2,1

{ ZiN:o fli ri(up)(w — mpw) dx

Jr

llw’[l2,1

Sty () (w(x) — mw ()i (uh (x1) } _
Since w(x;) — whw(x;) = 0, the second sum vanishes. For first one we have

Z/fi(uh)(w — 7nw) dx < Y [[ri(un) |21 W — 7wow (2,
i=0 /i i=0
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Since for w € Ifll(h)

[w—mawllz; <

sl

we obtain for the numerator of the above quotient

1/2
(Zc (o) ||2.) il

zN: / ri(un)(w — wpw) dx < zN:CiHri
i=0 /i —

which implies the desired upper bound

N 1/2
IR < (Zcﬂ\n(uh)né,h) . (51)
i=0

This bound is the sum of local residuals ri(un) with weights given by the
interpolation constants c;.
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Interpolation constants

For piecewise affine approximations, the interpolation constants c; are easy
to find. Indeed, let «; be a constant that satisfies the condition

O
qa W — w3, "
weHL(I) hWil2,1;

Then, for all w € ISII(Ii)7 we have

lw — w2, < 7;71/2‘|W/||27'i

—1/2
and one can set ¢; = 7, / .
i

I —
Let us estimate ~,.
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Note that
Xi+1 Xi+1
/ |w'|2dx:/ |(w — 7nw)’ + (maw)’|? dx,
Xj X
where (mnw)’ is constant on (xi, xi+1). Therefore,
Xi+1 , ,
/ (w — mhw) (whw) dx = 0

and

Xi+1 2 Xi+1 2 Xi+1 2
/ w| dx:/ (w — maw)| dx+/ |(enw)'|? dx >




Thus, we have

. St (w — maw)'|? dx
in . > ~
el () j::'“ |w — wpw|2 dx weRil(n) fx’:'“ |w — whw|2 dx

Jo ' 2 dx

Xi

f:‘“ |w’|? dx c
! in

> inf X 5 . — 1o
S dx T w2

o
neH1(y;

so that i = ‘n'z/hi2 and ¢ = hj/7.
Remark. To prove the very last relation we note that
. fgh |77,‘2 dx o
g I
nert(om) Jo I dx

is attained on the eigenfunction siny x, of the problem ¢" + ¢ =0on (0, h).
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Solve a boundary—value problem

(av') =,
v(0)=a, v(l)=b
with certain a(x) > 0, f, a, and b by the finite element method with

uniform elements (i.e., h =1/N). Apply the residual method and compare
the errors computed with the true error distribution.
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Residual method in 2D case

Let Q be represented as a union 7} of simplexes T;. For the sake of
simplicity, assume that Q = UY,T; and Vg, consists of piecewise affine
continuous functions. Then the Galerkin approximation up satisfies the
relation

/ AVu, - Vwpdx = / fwhdx, VYw, € Vo,
Q Q

where

Von = {wn € Vo | wy € PY(T), Ti € 7).
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Mat:

In this case, negative norm of the residual is

Jo(fw — AVuy, - Vw) dx
R(u =5 Q
IR el [Vwll2.0

o
Let 7 : H' — Vp;, be a continuous interpolation operator. Then, for the
Galerkin approximation

B Jo(f(w — mhw) — AVuy, - V(w — 7pw)) dx
[ROT= 2 [Vlka |

For finite element approximations such a type projection operators has
been constructed. One of the most known was suggested in

Ph. Clément. Approximations by finite element functions using local
regularization, RAIRO Anal. Numér., 9(1975).

and is often called the Clement’s interpolation operator. Its properties play
an important role in the a posteriori error estimation method considered.
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Clement's Interpolation operator

Let Ejj denote the common edge of the simplexes T; and T;. If s is an inner
node of the triangulation Fy, then ws denotes the set of all simplexes having
this node.

For any s, we find a polynomial ps(x) € P!(ws) such that

/ (v—ps)gdx =0 Vq e P'(w,).

Now, the interpolation operator 7y is defined by setting
mhV(xs) = p(xs), Vxs € Q,
mv(xs) =0, Vxs € 0.

It is a linear and continuous mapping of HI(Q) to the space of piecewise
affine continuous functions.
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Interpolation estimates in 2D

Moreover, it is subject to the relations

v — mnvll2., < ¢ diam (Ti)[|V]l1.2,00(T): (52)

1/2
|2,Eij < ci‘;;'Eij‘ / Ivll1,2,we(m)s (53)

where wN(Ti) is the union of all simplexes having at least one common node
with T;i and we(T;) is the union of all simplexes having a common edge with
T;.

|
Interpolation constants c; and ci';? are LOCAL and depend on the shape of
patches wn(Ti) and we(T).

v — 7hv
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Quotient relations for the constants

Evaluation of ¢ and cﬁ requires finding exact lower bounds of the following
variational problems:

T Wlzwy

v = W|2\1;0|‘Widlam(T)
and
H |12wE(T) 1/2
v = wlg\{;oHW7| Ejjl

|
Certainly, we can replace Vo be H'(wn(T:)) and H!(we(T:)), respectively,
but, anyway finding the constants amounts solving functional eigenvalue
type problems !
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Let on = AVup. Then,

_ Jo(f(w — 7tpw) — o4 - V(W — mpw)) dx
[ROnT= 2 [Vwlza '

If vy is the unit outward normal to Ej, then

/ oh-V(w—mhw)dx =
T

= Z (oh-v)(w—mhw)ds — / divon(w — whw) dx,
EyCoT; ” i i

Since on the boundary w — wpw = 0, we obtain

{ ZIN:I J7,(divo, + f)(w — maw) dx N

IVwl2.0

[ R(un) I = sup

weVy

Yty Yioi Je, d(on-vi) (w — maw) ds
[Vw]
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First term in sup

/ (divon + f)(w — wpw)dx < ||divoy + f|l2,7;||lw — Thw]|2,T,
T

< ¢ |[divoy + 27, diam (Ti) W12,y (T):

Then, the first sum is estimated as follows:

(divon + f)(w — mhw)dx <

1,2,Q,

N ) 1/2
< dl(z ()" diam (T:)%div o, + f||§,Ti) [wl

i=1

where the constant di depends on the maximal number of elements in the
set wn(TH).
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Second term in sup

For the second one, we have

ZZ/ on-vij)(w — mpw) dx <

i=1 j>i
. E 1/2
< ZZ li(n-vis)ll2.e; € [Es"? [wll1,2,0e(m) <
i=1 j>i
1/2
< dz(ZZ( ) il vi)lie, ) Iwhias.
i=1 j>i

where d2 depends on the maximal number of elements in the set we(T;).
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Residual type error estimate

By the above estimates we obtain
N ) 1/2
IR(un) [ < Co <(Z ()" diam (T div oy + f||§7Ti> +

(ZZ(CU) [Esl [i(on-v) 2., )1/2>. (54)

i=1 j>i

Here Co = Co(d1,d2). We observe that the right-hand side is the sum of
local quantities (usually denoted by n(T;)) multiplied by constants
depending on properties of the chosen splitting Fy.

Mat-5.210 i in Computational Mechani




Error indicator for quasi-uniform meshes

For quasi—uniform meshes all generic constants ¢ have approximately the
same value and can be replaced by a single constant ci. If the constants ci'f
are also estimated by a single constant cz, then we have

N 1/2
[R(u) [ <C <Z nz(Ti)> 7 (55)
i=1
where C = C(Cl7 C2, Co) and
2
. . c .
n*(Ti) = cidiam (T;)?||div op + f||§7Ti + 52 Z |Eii||li(on- Vii)“%,E;,--

E;COT;

The multiplier 1/2 arises, because any interior edge is common for
two elements.
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Comment 1

General form of the residual type a posteriori error estimates is as follows:

|
lu— un|| < M(u, c1, €2, ...cn, D),

where D is the data set, up is the Galerkin approximation, and

ci,i=1,2 ...N are the interpolation constants. The constants depend on
the mesh and properties of the special type interpolation operator. The
number N depends on the dimension of Vi, and may be rather large. If the
constants are not sharply defined, then this functional is not more than a
certain error indicator. However, in many cases it successfully works and
was used in numerous researches.
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Comment 2

It is worth noting that for nonlinear problems the dependence between the
error and the respective residual is much more complicated. A simple
example below shows that the value of the residual may fail to control the
distance to the exact solution.

Y

o

I -
>

Mat:
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A posteriori error indicators based on post—processing of computed solutions

A posteriori methods based on post—processing

|
Post—processing of approximate solutions is a numerical procedure
intended to modify already computed solution in such a way that the
post—processed function would fit some a priori known properties much

better than the original one.
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Preliminaries

Let e denotes the error of an approximate solution v € V and
E(v) : V — R, denotes the value of an error estimator computed on v.

The estimator is said to be equivalent to the error for the approximations
v from a certain subset V if

cE(v) < |le] < 2E(v)  WweV
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a

W1}

3 a %1} 3 7 L3
The ratio
E(v) — |le]l
lle]l

is called the effectivity index of the estimator £.

i 1= 1+

Ideal estimator has ier = 1. However, in real life situations it is hardly
possible, so that values ie in the diapason from 1 to 2-3 are considered as
quite good.




In FEM methods with mesh size h one other term is often used:

The estimator £ is called asymptotically equivalent to the error if for a

sequence of approximate solutions {u,} obtained on consequently refined
meshes there holds the relation

E(un)

v [lu— un]|

It is clear that an estimator may be asymptotically exact for one sequence
of approximate solutions (e.g. computed on regular meshes) and not exact
for another one.




General outlook

Typically, the function Tun (where T is a certain linear operator, e.g., V)
lies in a space U that is wider than the space U that contains Tu. If we
have a computationally inexpensive continuous mapping G such that
G(Twn) € U, Ywi € Vy,. then, probably, the function G(Tun) is much closer
to Tu than Tup.
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These arguments form the basis of various post-processing algorithms that
change a computed solution in accordance with some a priori knowledge of
properties of the exact solution. If the error caused by violations of a priori
regularity properties is dominant and the post-processing operator G is
properly constructed, then

|GTup — Tul| << |[|Tup — Tul|.

In this case, the explicitly computable norm ||GTus — Tup|| can be used to
evaluate upper and lower bounds of the error.

Indeed, assume that there is a positive number a < 1 such that for the
mapping T the estimate

|IGTup — Tu|| < a||Tup — Tu]|.
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Two—sided estimate

Then, for e = up, — u we have

(1-a)|Te|| = (1 — &) [|Tun — Tul| <

< |ITup — Tu|| — ||GTup — Tu|| <
S HGTuh — TUhH S
< ||GTup — Tu|| + ||Tus — Tu|| <

< (1 +a)||Tup — Tul| = (1 + a) | Te] .
Thus, if o << 1, then
[[Tuh — Tu|| ~ ||GTun — Tun||.

and the right-hand can be used as an error indicator.
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Post-processing by averaging

Post-processing operators are often constructed by averaging Tup on finite
element patches or on the entire domain.

Integral averaging on patches
If Tup, € L2, then post-processing operators are obtained by various
averaging procedures. Let €Q; be a patch of M; elements, i.e.,

Q=T i=12.M:.

Let P*(;,R"™) be a subspace of U that consists of vector-valued polynomial
functions of degrees less than or equal to k. Define g; € Pk(Qi, R") as the
minimizer of the problem:

inf lg — Tun|* dx.
gEPK(Q;,R ™)
Q

Mat-5.210 Special Course in Computational Mechanics, Autumn 2006,




The minimizer g; is used to define the values of an averaged function at
some points (nodes). Further, these values are utilized by a prolongation
procedure that defines an averaged function

GTUh 1 Q — R.

Consider the simplest case. Let T be the operator V and u, be a piecewise
affine continuous function. Then,

Vuy, € PO(Tij,]R") oneach T;j C ;.

We denote the values of Vun on Ty by (Vun)j.
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Set k = 0 and find g; € PY such that
/|g;7Vuh|2 dx = inf /|g7Vuh|2dx:
J EEPO(Qi)Q

M; M

= inf 8?1 — 2g - > (Vun)y | Tgl + > [(Vun)s Tyl
8<PY() P ="

It is easy to see that g is given by a weighted sum of (Vuy);j, namely,

| Ts|
|€2i]

(Vuh);j.

Set G(Vuh)(xi) = gi.




Repeat this procedure for all nodes and define the vector-valued function
GV (un) by the piecewise affine prolongation of these values. For regular
meshes with equal |Tj|, we have

M:

&= ﬁ(vuh)u‘-

=1
Various averaging formulas of this type are represented in the form

M;

g = ZA.,(Vuh w SN

=1 =1

where ) are the weight factors. For internal nodes, they may be taken,
e.g., as follows

il
%= o

|vij| is the angle.




However, if a node belongs to the boundary, then it is better to choose
special weights. Their values depend on the mesh and on the type of the
boundary. Concerning this point see

I. Hlavacek and M. Krizek. On a superconvergence finite element scheme
for elliptic systems. I. Dirichlet boundary conditions. Aplikace Matematiky,
32(1987), No.2, 131-154.




Discrete averaging on patches

Consider the problem

inf Z lg(xs) — Tun(xs)|?,

gCPk(Q;)

where the points xs are specially selected in €2;. Usually, the points xs are
the so—called superconvergent points.

Let g; € ]P’k(Q;) be the minimizer of this problem.

If k=0, and T = V then
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Global averaging

|
Global averaging makes the post—processing not on patches, but on the
whole domain.

Assume that Tuy, € L? and find gn € Vi(RQ) C U such that
g, — Tup||2 = inf — Tun|? .
8n — Tunllg ghel\r}h(ﬂ)th unllg

The function gn can be viewed as GTuy. Very often gy is a better image of
Tu than the functions obtained by local procedures.
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Remark

Moreover, mathematical justifications of the methods based on global
averaging procedures can be performed under weaker assumptions what
makes them applicable to a wider class of problems see, e.g.,

Carstensen, C.; Bartels, S. Each averaging technique yields reliable
a posteriori error control in FEM on unstructured grids. I: Low order
conforming, nonconforming, and mixed FEM, Math. Comp., 71(2002)

Mat-5.210 Special Course in Computational Mechanics, Autumn 2006,




Solve the boundary—value problem

Au+f=0, u=00n9dR

by h-version FEM (use Matlab or another code). Apply the simplest
gradient—averaging error indicator to indicate the error distribution.
Compare it with the distribution of true error (the latter can be extracted
from a solution on a much finer mesh).
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Justifications of the method. Superconvergence

Let up be a Galerkin approximation of u computed on Vy. For piecewise
affine approximations of the diffusion problem we have the estimate

V(u— uh)”zﬂ <ah, fu-— uh”zﬂ < &oh?

However, it was discovered see, e.g.,

L. A. Oganesjan and L. A. Ruchovec. Z. Viyvcisl. Mat. i Mat. Fiz.,9(1969);
M. Zlamal. Lecture Notes. Springer, 1977;

L. B. Wahlbin. Lecture Notes. Springer, 1969 that in certain cases this rate
may be higher. For example it may happen that

|u(xs) — un(xs)| < Ch** c>0

at a superconvergent point x;.
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Certainly, existence and location of superconvergent points strongly
depends on the structure of 7j.

For the paradigm of the diffusion problem we say that an operator G
possesses a superconvergence property in w C Q if

[Vu—GVu|,,, < ch't,

where the constant co may depend on higher norms of u and the structure
of Th.
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For the diffusion problem estimates of such a type can be found, e.g., in

I. Hlavacek and M. Krizek. On a superconvergence finite element scheme
for elliptic systems. I. Dirichlet boundary conditions. Aplikace Matematiky,
32(1987).

M. Krizek and P. Neittaanmaki. Superconvergence phenomenon in the
finite element method arising from averaging of gradients Numer. Math.,
45(1984)
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By exploiting the superconvergence properties, e.g.,

[[Vu — GVuth’w < CzhH—U7
while
[Vu = Vun|,, < cah,

one can usually construct a simple post-processing operator G satisfying
the condition

IGVun — Vu|| < a||Vun — Vu||.

where the value of a decreases as h tends to zero.
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Since

||<GVuh - Vuh||
||GVuh - Vuh||

[Vun — Vul| + ||GVup — Vu||,

<
> |[Vun — Vul|| — ||GVup — Vu||.

where the first term in the right-hand side is of the order h and the second
one is of h'*®, We see that
||GVuh — VuhH ~ h

Therefore, we observe that in the decomposition

[V(un — )| < [[Vun = GVun|| + [GVun — Vu]|

asymptotically dominates the second directly computable term.




Thus, we obtain a simple error indicator:

[V (un —w)[| = [[Vun — GVun]|.
Note that

[V (un — )]

= — = 1 -|-Ch‘s
||VU|1 —GVuhH

leff
so that this error indicator is asymptotically exact provided that uy is a
Galerkin approximation, u is sufficiently regular and h is small enough.
Such type error indicators (often called ZZ indicators by the names of
Zienkiewicz and Zhu) are widely used as cheap error indicators in
engineering computations.
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Some references

M. Ainsworth, J. Z. Zhu, A. W. Craig and O. C. Zienkiewicz. Analysis of
the Zienkiewicz-Zhu a posteriori error estimator in the finite element
method, Int. J. Numer. Methods Engrg., 28(1989).

I. Babuska and R. Rodriguez. The problem of the selection of an a
posteriori error indicator based on smoothing techniques, Internat. J.
Numer. Meth. Engrg., 36(1993).

O. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adaptive
procedure for practical engineering analysis, Internat. J. Numer. Meth.
Engrg., 24(1987)
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Post-processing by equilibration

For a solution of the diffusion problem we know that
dive +f =0,

where o = AVu. This suggests an idea to construct an operator G such
that

div(G(AVup)) +f = 0.

If G possesses additional properties (linearity, boundedness), then we may
hope that the function GAVu,, is closer to o than AVuy, and use the
quantity ||[AVu, — GAVuy|| as an error indicator.
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This idea can be applied to an important class of problems

u+f = R u = u, 5
NT f=0 T AN 6

where A is a positive definite operator, A is a linear continuous operator,
and A* is the adjoint operator.

In continuum mechanics, equations of the type (56) are referred to as the
equilibrium equations. Therefore, it is natural to call an operator G an
equilibration operator.

If the equilibration has been performed exactly then it is not difficult to
get an upper error bound. However, in general, this task is either cannot
be fulfilled or lead to complicated and expensive procedures. Known
methods are usually end with approximately equilibrated fluxes.
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A posteriori error estimates constructed with help of adjoint problems

Goal—oriented error estimates

Global error estimates give a general idea on the quality of an approximate
solution and stopping criteria. However, often it is useful to estimate the
errors in terms of specially selected linear functionals /s, s =1,2 ..M, e.g.,

</Llv—u >:/<,00(v—u)dx7
Q
where ¢ is a locally supported function. Since
| <Cu—un>[ < |[€]|[|u—unv,

we can obtain such an estimate throughout the global a posteriori estimate.
However, in many cases, such a method will strongly overestimate the
quantity.
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A posteriori error estimates constructed with help of adjoint problems

Adjoint problem

A posteriori estimates of the errors evaluated in terms of linear functionals
are derived by attracting the adjoint boundary-value problem whose
right-hand side is formed by the functional £.

Let us represent this idea in the simplest form. Consider a system

Au=f,

where A is a positive definite matrix and f is a given vector. Let v be an
approximate solution. Define u; by the relation

A* uy = &
where A* is the matrix adjoint to A. Then,

C-(u=v)=A"u-u—C-v=Ff-u—£L-v=(f—Av) - u,
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A posteriori error estimates constructed with help of adjoint problems

|
Certainly, the above consideration holds in a more general (operator)
sense, so that for a pair of operators A and A* we have

<lu—v>=<f—Av, u >. (57)

and find the error with respect to a linear functional by the product of the
residual and the exact solution of the adjoint problem:

A*Ug = /.

Practical application of this principle depends on the ability to find either
uy or its sharp approximation.
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A posteriori error estimates constructed with help of adjoint problems

Consider again the diffusion problem. Now, it is convenient to denote the
solution of the original problem by uf, i.e

/ AVus - Vwdx = / fwdx, VYw e V().
Q Q

Since in our case A = A*, the adjoint problem is to find u, € Vo(2) such
that

/ AVu, - Vwdx = / fwdx, VYw € V().
Q Q
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A posteriori error estimates constructed with help of adjoint problems

Let Q be divided into a number of elements T;, i = 1,2,...N. Given
approximations on the elements, we define a finite-dimensional subspace
Von € V() and the Galerkin approximations um and ug:
/ AVug - Vw,p dx = / fthX, Ywy, € V()h,
Q Q
/ AVug - Vwp dx = / éwhdx, Ywyn € V.
Q Q
Since

/ L(uf — ug)dx = / AVu; - V(us — up)dx
Q Q

and

/ AVugh . V(Uf — Ufh)dX = 0,
Q
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A posteriori error estimates constructed with help of adjoint problems
We arrive at the relation
/Z(Uf — upm)dx= / AV (ug — upm) - V(uf — ugp)dx (58)
JQ JQ

whose right-hand side is expressed in the form

Z/AV(Uf —um) - V(ug — ugn)dx =

i=1

Z —/div (AV(uf — um)) (ue — ugn) dx+

+% /j(lli . AV(Uf - Ufh)) (Ug — ueh)ds
oT,

This relation implies the estimate
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A posteriori error estimates constructed with help of adjoint problems

N

[ e = un =3~ { AV (ut w7, e = vl 7, +
Q

i=1

2 i AV (ur - um))

lpom, llue = wnlly om, | =
N
= > {IF + divAVun|ly, ue — vl r, +

i=1

+3 i - AVum) [ oy, llue = o, } -

Here, the principal terms are the same as in the explicit residual method,
but the weights are given by the norms of u; — ugh.
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A posteriori error estimates constructed with help of adjoint problems

Assume that u, € H? and ugy, is constructed by piecewise affine continuous
approximations. Then the norms |Ju; — ugl|T, and |Ju; — ugnl2,0m, are
estimated by the quantities h*|ug|2 2,7, with @ = 1 and 1/2 and the
multipliers & and &, respectively.

In this case, we obtain an estimate with constants defined by the standard

H?> — Vg,

interpolation operator whose evaluation is much simpler than that of the
constants arising in the

H! — Vg,

interpolation.
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A posteriori error estimates constructed with help of adjoint problems

A posteriori estimates in L°>~norm

In principle, this technology can be exploited to evaluate estimates in
L2 norm. Indeed,
(f, uf — Ufh) (AVUz, V(Uf — Ufh))

|lus — uml|| = sup = sup
£eL? WH £cL? ||£||

_ qup (AV(ue = mh(ue)), V(ur —um)) _
= sup =
eer? llell
(V(Ug — Wh(Ug)),AV(Uf — Um)) _

€Il

= sup
LeL?

{IV(UZ — mh(ue)), AV (us — ufh)dx}

M=z

|
iR

€Il
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A posteriori error estimates constructed with help of adjoint problems

Integrating by parts, we obtain

N
_; {If+divAVum||7, [lue—mn(ue)lly, + 5 [i(¥i - AVum) |7, lue— mn(ue)llor, }
€]

If for any £ € L? the adjoint problem has a regular solution (e.g.,

ug € H?), so that we could combine the standard interpolation
estimate for the interpolant of uy with the regularity estimate for the
PDE (e.g., ||ue]| < Ci||€]|), then we obtain

ue — mn(ue) |7, < C1h €], ue — mn(ue)|lor; < C1h*2||£]|

with certain o.

Under the above conditions ||£|| is reduced and we arrive at the
estimate, in which the element residuals and interelement jumps are
weighted with factors C;h®t and Cah2.
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A posteriori error estimates constructed with help of adjoint problems
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A posteriori error estimates constructed with help of adjoint problems

Comment

In the literature devoted to a posteriori error analysis one can find
often find terms like

?duality approach to a posteriori error estimation” or

”dual-based error estimates”.

However, the essence behind such a terminology may be quite
different because the word ”duality” is used in 3 different meanings:
(a) Duality in the sense of functional spaces. We have seen that if
for the equation Lu = f errors are measured in the original (energy)
norm then a consistent upper bound is given by the residual in the
norm of the space topologically dual to a subspace of the energy
space (e.g., H1).

(b) Duality in the sense of using the Adjoint Problem.

(c) Duality in the sense of the Theory of the Calculus of
Variations.
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A posteriori error estimates constructed with help of adjoint problems

In the next lecture
we will proceed to the detailed exposition
of the approach (c).
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Lecture 3

In the lecture, we derive Functional A Posteriori
Estimate for the problem
Au+f=0, Q u=009Q.

and discuss its meaning, principal features and practical
implementation.
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Lecture plan

1. Functional a posteriori estimates.
2. How to derive them? Paradigm of a simple elliptic problem

3. How to use them in practice?

4. Examples.
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Functional A Posteriori Estimates

Functional A Posteriori Estimate is a computable majorant of the
difference between exact solution u and any conforming approximation v
having the general form:

®(u—v) <M(D,v) Yv e V! (59)

D is the data set (coefficients, domain, parameters, etc.),
® :V — R, is a given functional.
M must be computable and continuous in the sense that

M(D,v) -0, ifv—u
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Types of ¢

= Energy norm d(u—v) =|u—v|e
= Local norm d(u—v) =|u—vl

m Goal-oriented quantity ®d(u—v)=(f,u—v)

Functional a posteriori estimate gives complete solution of the error
control problem from the viewpoint of the MATHEMATICAL THEORY of
PDE’s
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METHODS OF THE DERIVATION.

These estimates are derived by purely functional methods using the
analysis of variational problems or integral identities.
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Variational method 96’-97’
Exploits variational structure of the original problem and Duality Theory
in the Calculus of Variations.
See
S. Repin Mathematics of Computation, 69(230), pp. 2000, 481-500.
A systematic exposition of the variational approach to deriving Functional
a Posteriori Estimates can be found in

P. Neittaanmaki and S. Repin. Reliable methods for computer simulation.
Error control and a posteriori estimates. Elsevier, NY, 2004




Nonvariational method 2000’
Derives a posteriori estimates by certain transformations of integral
identities.
Basic idea of the method is presented in
S. Repin. Proc. St.-Petersburg Math. Society, 2001 pp. 148-179 (in Russian,
translated in American Mathematical Translations Series 2, 9(2003)). .
Other publications:
S. Repin. Estimates of deviation from exact solutions of initial-boundary
value problems for the heat equation, Rend. Mat. Acc. Lincei, 13(2002), pp.
121-133.
S. Repin Estimates of deviations from exact solutions for some
boundary—value problems with incompressibility condition, Algebra and
Analiz, 16(2004), 5, pp. 124-161.




Let us consider both methods in application to our basic problem
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Variational Method

Let u be a (generalized) solution of the problem
Au+f=0 Q u=009Q.

As we have seen in Lecture 1, this problem is equivalent to the following
variational problem:

Problem P. Find u € Vg := I(-)II(Q) such that

J(u) = inf J(v),

veVy

where
1 2
3W) = IV = (£, v).

By the reasons that we discussed earlier this problem has a unique solution.
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Lagrangian

Note that

J(v) =supL(Vv,y), L(Vv,y)= /(Vv y— 1|y|2—fv>dx
yey A 2

where Y = L2(R,R"). Indeed, the value of the above supremum cannot
exceed the one we obtain if for almost all x € Q solve the pointwise
problems

2 x € Q

sup (Vv)(x) - y(x) — %|y(x)
y(x)

whose upper bound is attained if set y(x) = (Vv)(x). Since Vv € Y, we
observe that the respective maximizer belongs to Y and, therefore

supL(Vv,y) = L(Vv, Vv) = J(v).
yey
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Minimax Formulations

Then, the original problem comes in the minimax form:

(P) inf sup L(Vv,y)

veVy yey

If the order of inf and sup is changed, then we arrive at the so-called dual
problem

(PY) sup inf L(Vv,y)

yey veVy

Note that
infu/ Vv - 71| |>—fv dX*71|| |?+inf /(Vv —fv)dx =
VeV, y 2 y - 2 y VEVU y -
Q Q

_ [ —3lyl?  ifyeQri={yeY|divy+f=0}
—00 ify & Qs
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Thus, we observe that the dual problem has the form: find p € Qs such that

—I"(p) = sup —1"(y)

where
. 1 2
| = —
(a) = 5 lal
1

How are these two problems related?

First, we establish one relation that holds regardless of the structure of the
Lagrangian.




SupInf and InfSup

Lemma

Let L(x,y) be a functional defined on the elements of two nonempty sets X
and Y. Then

sup inf L(x,y) < inf sup L(x,y). (60)
X xeX yey

yey S

Proof
It is easy to see that

> .
L(x,y) > élren; L(,y), VxeX, yeY

Taking the supremum over y € Y, we obtain




supL(x,y) > sup mf L(&y), VxeX.
yey

The left-hand side depends on x, while the right-hand side is a number.
Thus, we may take infimum over x € X and obtain the inequality

inf sup L(x,y) > sup |nf L(&,y).
xeX yey

|
Therefore, we always have

< inf P
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Duality relations

However, in our case we have a stronger relation, namely

1 ——
sup P* = inf P

To prove this fact, we note that

/Vu -Vvdx = /fvdx Yv € Vp.
Q Q
Therefore p = Vu € Qf and

1 (p) =5 Vul?= [ (5Tl ~ [Vuix= [ (5ITuP ~ fu)dx = ()
Q

Q
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Let us use the Mikhlin’s estimate established in Lecture 2:
1 2
5[V =v)" < J(v) = I(u).
Since J(u) = —1"(p), we have
1 * *
SV = V)I? < J() +1(p) < I(v) +1"(a) Ya € Q.

Reform this estimate by using the fact that q € Qf.

. 1 1
3W) 41 (@) = 29V~ (£.) + 5 all?
_1 2,1, o _
= JIVVIP + Ll ~ (Vv.q) =

= IV gl
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Now, we have

IV -w)l < [Vv—al Vae Q.
Take arbitrary y € L*(Q). Then,

[V(v—=uw)|| < [[Vv—y[+ inf [ly —q]|.
a€Qy

How to estimate the above infimum?
Various methods give one and the same answer:

inf |ly —qll < [divy +f] y € L}(Q), (61)
qEQf

inf lly —all < Calldivy +F € H(R,div) (62)
f




To prove these estimates we consider an auxiliary problem

An+f+divy=0 Q n=0 0.

/Vn . dex:/(fw —y - Vw)dx
Q

Q

g
/ Vn+y)- dex—/fwdx Yw € Vy
Q Q

Thus, § € Qr 1!




Since n is a solution of the boundary—value problem with right—hand side
divy +f € H™1, we have

[Vl < Idivy +f],
Then

inf [ly —all < |ly —all = [[Vnl| < [divy +f].
qEeQs

Here

[y - Vw — fw)dx

[ divy + f = sup 2
[= s = ow




y € H(Q, div)

If y has a square summable divergence, then we have

J(divy + f)wdx

[divy + f] = sup 2

< Calldivy + f],
weVy ||VW||

where Cgq is the constant in the Friederichs—Steklov inequality for the
domain €. We observe that

a "noncomputable” negative norm has been estimated by a " computable”
one without an attraction of Galerkin orthogonality and local
(mesh—dependent) constants.




Thus, for any y € H(R, div) we obtain
[V(v—u)|| <[[Vv—y|+ inf [y—aql <
a€Qf
Vv —yll + Call/divy + f||.

Above presented modus operandi can be viewed as a simplest version of the
variational approach to the derivation of Functional Error Majorants.
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Deriving a posteriori estimates from integral
identities.

For many problems the variational techniques cannot be applied (e.g.,
because they may have no variational formulation).

In

S. Repin. Two-sided estimates for deviation from an exact solution to
uniformly elliptic equation. Trudi St.-Petersburg Math. Society, 9(2001),
translated in American Mathematical Translations Series 2, 9(2003))

it was suggested another method, which is based on certain transformations
of integral identities.
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Non—variational method in the simplest case

Let us expose its simplest version adapted to our model problem.
We have

/V(u —v)Vwdx = /(fw — Vv Vw)dx

In order to get an upper bound of ||[V(u — v)|| we use the relation

/(divyw+Vw-y)dx:0 Yw € Vo
Q

valid for any y € H(, div).
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We have

/(Vv -Vw — fw)dx =

Q

/(Vv -Vw — fw — (divyw + Vw - y))dx =
Q

/ (Vv —y) - Vw — (f + divy)w)dx <

Vv = y[[l[Vwl| + [If + divy|[[|w]] <
< (Vv =yl + Callf + divy]))[[Vw]|.
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Set w =u —v.

/IV(u —v)2dx < (|[Vv — | + CalIf + divy|)[|V(u = v)]|.
Q

Thus, we find that

IV(u—=v)[| < [[Vv -yl + Col[f + divy]|.




Functional error estimate. Meaning and properties

For the problem
Au+f=0, u=00n0Q

we have obtained the estimate

[IV(u = )| < |[Vv - y|| + Cal/divy + ||| (63)

The estimate is valid for any v € Vg and y € H(Q, div)
Two terms in the right—hand side have a clear sense: they present measures
of the errors in two basic relations

p = Vu, divp+f=0 inQ

that jointly form the equation.

Mat-5.210 i in Computational Mechani




The estimate is sharp

If set v=0 and y = 0, we obtain the energy estimate for the generalized
solution

[Vul| < Callf].

Therefore, no constant less than Cq can be stated in the second term.

If set y = Vu, than the inequality holds as the equality.

Thus, we see that the estimate (63) is sharp in the sense that the multipliers
of both terms cannot be taken smaller and in the set of admissible y there
exists a function that makes the inequality hold as equality.
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The estimate as a quadratic functional

By means of the algebraic Young’s inequality
2ab < Ba’ + %bz, B>0

we rewrite this estimate in the form

IV (u—v)|* < (64)
1+3
B

For any B the right—hand side is a quadratic functional. This property
makes it possible to apply well known methods for the minimization with
respect to y.

<(@+8)Vv—yl*+ C3||divy + f||?
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Deviation Majorant

Denote the right-hand side of (64) by Mg, i.e.,

1+
B

This functional provides an upper bound for the norm of the deviation of v
from u. Therefore, it is natural to call it the Deviation Majorant.

Mg (v,y,B,Cq,f)i= (1+8)| Vv—y| + === Ch | divy+ f||*.

Mat-5.210 i in Computational Mechani




BVP Au + f = 0 has another variational formulation

inf M@(v7y7ﬁ7cﬂ7f)
vEV),
B>0,
yEH(Q,div),

m Minimum of this functional is zero;
m it is attained if and only if v=u and y = AVu ;

m Mg contains only one global constant Cgq, which is problem
independent;
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In principle, one can select certain sequences of subspaces {Vn«} € Vg and
{Yn} € H(R,div) and minimize the Error Majorant with respect to these
subspaces

inf M@("vYa/@acﬂvf)
vEVh,

B>0,
YEYhi,

If the subspaces are limit dense, then we would obtain a sequence of
approximate solutions (vk, yk) and the sequence of numbers

Y = ,Blr;foM$(Vk7yk7ﬂ’ Co,f)— 0




How to use the Majorants in practice?

Consider CONFORMING FEM APPROXIMATIONS.

We have 3 basic ways to use the deviation estimate:

(a) Direct (via flux averaging on the mesh 7);

(b) One step delay (via flux averaging on the mesh hyef);
(¢) Minimization (minimization via y).
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(a) Use recovered gradients

Let up € Vi, then
pr = Vup € Ly(2,RY),  pn & H(RQ, div).

Use an averaging operator Gp : L2(2,RY) — H(Q,div) and have a directly
computable estimate

[V(u—un)|| < [Vun — Gupn|| + Ca [|divGrpn + f||
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(b) Use recovered gradients from 7,

Let uy,uz, ..., u, ... be a sequence of approximations on meshes 7j, .

Compute pk := Vug, average it by Gk and for ukx_1 use the estimate

Jlu—uc 1| <[[Vue 1—Gpill + Cq [|divGipi+f]|

This estimate gives a quantitative form of the Runge’s
rule.




(c) Minimize Mg with respect to y.

Select a certain subspace Y, in H(S, div). Generally, Y, may be
constructed on another mesh 7. and with help of different trial functions.

Then
[V(u—un)|| < inf {[[Vun—ynll + Ca |/divy, +f|[}
Yh€Yn

The wider Yi C H(, div) the sharper is the upper bound.
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Quadratic type functional

From the technical point of view it is better to square both parts of the
estimate and apply minimization to a quadratic functional, namely

IV(u=uw)|® < inf {(1+B)IVun—yu| +
YhEYh
1 .
+ Co <1 + E) |divyn +f||2}

Here, the positive parameter 3 can be also used to minimize the right—hand
side.
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Before going to more complicated problems
where Deviation Majorants are derived by a
more sophisticated theory, we observe several
simple examples that nevertheless reflect key
points of the above method.




a() ) = f(x),
u(a) =0, u(b)=up.

(
It is equivalent to the variational problem

J(v) = /b (%a(x) a: +f(x)v> dx.

Assume that the coefficient a belongs to € L* and bounded from below by
a positive constant. Now

Vo+uo = {ve H'(a,b) | v(a) =0, v(b) = up}.
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Deviation Majorant

b C2 b
Ma(uBy) = (1+0) [ [lav-y P dct s Jiy—t) ax. (e9)

a

In this simple model, u can be presented in the form

u(x) = /ax azt) /at f(z)dzdt + E (ub - /ab a}t) /at f(z)dzdt) .

what gives an opportunity to verify how error estimation methods
work.




Approximations

Let Vi, be made of piecewise—P! continuous functions on uniform splittings
of the interval and consider approximations of the following types:

m Galerkin approximations;
m Approximations very close to Galerkin (sharp);

m Approximations which are ”good” but not Galerkin;

Coarse (rough) approximations.

Our aim is to show that the Deviation Majorant can be effectively used as
an error estimation instrument in all the above cases.
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Computation of the Majorant

To find a sharp upper bound, we minimize Mg with respect to y and 3
starting from the function yo = G(v’), where G is a simple averaging
operator, e.g, defined by the relations

1

G(v')(x) = 5 (v/(xi = 0) + v'(xi +0)),

By the quantity
inf
|n>OM@(v,ﬂ,yo),

we obtain a coarse upper bound of the error. It is further improved by
minimizing Mg with respect to y.
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Example

Let a(x)=1,f(x) =c,a=0,b=1, u, =1, e.g., we consider the
problem

u’=2, u(0)=0,u(l)=1.

In this case, C(ap) = 1/7 and

%)x, W =cx+1- <.

u:Exz—i—(l— 5

2

Take a rough approximation v = x. Then

1
[(u—=v)|?= / c(x — 0.5)%dx = c?/12 ~ 0.083c>2.
0




1.2 .

v
1t u o

0.8 | .

0.6 [ .

0.4 E

0.2 -
O i 1

0 0.5 1

Exact solution and an approximation.




(a) Take y = v’ = 1, then the first term in

1 1
/ 1 /
Mo(wpy) = @+ B)( [IvoyPact g iy -7 | ox
0 0

vanishes and we have Mg — c?/7% =~ 0.101c?; as 3 — +o00. We see that
this upper bound overestimates true error. Note that in this case, all
sensible averagings of v/ = 1 give exactly the same function: G(1) = 1!
Therefore,
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For the choice y = v/ the Majorant give a certain upper bound of the error
(which is not so bad), but the integrand cannot indicate the distribution of
local errors. Indeed, we have

1M1,
M@zj/cdx.
™ Jo

However, the integrand of the Majorant is a constant function, but the
error is distributed in accordance with a parabolic law:

(u—v) =c(x—0.5)%
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(b). Take y = ex+ 1 —¢/2. Then, y' = c and the second term of the
majorant vanishes. We have (for 8 = 0)

1
Mg = / ?(x —1/2)%dx = ¢?/12.
0

We observe that both the global error and the error distribution are
exactly reproduced. In real life computations such an ”ideal” function
y may be unattainable. However, the minimization makes the
Majorant close to the sharp value. In this elementary example, we
have minimized the Majorant on using piecewise affine approximations
of y on 20 subintervals. The elementwise error distribution obtained
as the result of this procedure is exposed on the next picture.
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True errors and those computed by the Majorant.
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To give further illustrations, we consider the functions
us =u+ 0,

where § is a number and ¢ is a certain function (perturbation).
Approximate solutions (whose errors are measured) are piecewise affine
continuous interpolants of us; defined on a uniform mesh with 20
subintervals. We take ¢ = xsin(mx) and § = 0.1, 0.01, 0.001, and 0.

Table:

1) € 2MEB 2Me ieﬁ iesh
0.1 0.019692 0.019743 0.019683 1.003 1.018
0.01 0.001022 0.001025 0.001013 1.003 1.011

0.001 0.000835 0.000839 0.000827 1.005 1.002

0 0.000833 0.000836 0.000825 1.004 1.002

In this experiment the Majorant was computed for 3 |le[.
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Error estimation for 6 = 0.1
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Error estimation for 6 = 0.01

A more precise approximation.
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Error estimation for 6 = 0.01

A more precise approximation.
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Error estimation for 6 = 0.001

Sharp approximation.
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Error estimation for 6 = 0

Interpolant of the exact solution.
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Apply the above theory to the problem

(o) =f,
u(0)=0, u(l)=0>b

with your own «, f, and b. Compute approximate solutions and verify their
accuracy along the same lines as in the example above.
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Other examples

For problems with lower terms it is easy to obtain estimates without Cg.

Au—ou+f=0, 0>0,

u=ug onodN.

Such estimates can be derived by both variational and non-variational
method. Let w € Vg := HY(R). We have

/V(u—v)-dex-l—g/(u—v)wdx:

:/(fwwaVw)dfo/vwdx.

Q Q




Use the integral identity for y € H(R, div):
I ——

J(Vw -y + wdivy)dx =0 Yw € V.
b

/V(u—v)~dex+g/(u—v)wdx:

Q Q

/(f+divy — ov)wdx + /(y —Vv) - Vw)dx <
Q Q
< [If + divy — ovll{lw]| + [[Vv = y[[[Vw]].
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Set w = u — v and note that
I + divy — ov][Ju— v + Vv — y][[ V(u — v)]| =
1 .
= 218+ divy — ovlofla vl + 9%~ y[[[¥ (0 )] <
1 ) ) 1/2
< (Enwdivy— ol £ Vv —y] ) Ju—v]

where

fu—vi*= /(IV(u —v)* + olu — v[*)dx.
Q




Then, we obtain the estimate

1 .
Ju—v < ?Hf +divy — ov||* + | Vv —y|?

By the variational method this estimate was derived in 97’. Also, it readily
follows from the general a posteriori framework
(see, e.g., S.R. Math. Comp. 2000).

This estimate has no Cq. However, in practice, it may give big
overestimation if g is small due to large penalty at the first term.




How Functional A Posteriori Estimate looks like for the problem
divAVu+f=0, u=up onoQ

and for problems with boundary conditions of other types?
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For the generalized diffusion equation it is as follows:

| V(u—v) ’< v/D(Vv,y) + C(, A)||divy + f[

where

Iy 2= / AV Vidx,

D(Vv,y) := /(AVV SVv+Aly. y—2Vv.y)dx =
Q

= /(AVV —y)- (Vv — A ly)dx,
Q
[wll<  C(Q,A)| Vw | .
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How such estimates are derived we will discuss in the next Lecture.
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Lectute 4

We expose the general approach to deriving two-sided
functional estimates of the deviations from exact
solutions of linear elliptic type problems having the
operator form

NAAu+£2=0

where A and A are linear bounded operators and
A is symmetric and positive definite.




m Two—sided a posteriori estimates for linear elliptic type problems;

m Properties: computability, consistency, reliability;

= Relationships with other error estimation methods;

m Diffusion equation with Dirichlét boundary conditions;
m Diffusion equation with Neumann boundary conditions;
m Diffusion equation with mixed boundary conditions;

m Linear elasticity with mixed boundary conditions;
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Problem in the abstract form

Many problems can be presented in the following form: find
u € Vg + ug such that

(AAu, Aw) + (£,w) =0 VYw € V. (66)

Here Vj is a subspace of a reflexive Banach space V,
[e]
e.g., V=H! Vo =H.
A :V — U is a bounded linear operator, e.g. A =V.
U is a Hilbert space with scalar product (-,-) and norm || - ||,
e.g., U=1L2
£ € Vy, is a linear functional in the dual space, e.g., in H-!l In
general, we may assume that




Assumptions

We assume that
V  is compactly embedded in U (67)
and the operators A and A satisfy the relations

alyl® < (Ay,y) <ellyl’,  vyeu, (68)
[Aw]| > cs[lwllv, Yw € Vo, (69)
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For our analysis, it is convenient to introduce two more norms:

2 -1 1/2
Iy = (Ay, )%y .= (A", )2

where A71:U — U

is the operator inverse to A. The respective spaces Y and Y* contain
elements of U equipped with the norms || - || and || - ||+, respectively.
Let A* be the operator conjugate to A, i.e.,

(y, Aw) = (N'y, w), Yw € Vy. (70)
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Getting a posteriori estimates by transformations of
integral identities

For a detailed exposition see

S.Repin. Two-sided estimates of deviation from exact solutions of
uniformly elliptic equations, Proc. St. Petersburg Math. Society,
IX(2001), pp. 143-171, translation in Amer. Math. Soc. Transl. Ser.
2, 209, Amer. Math. Soc., Providence, RI, 2003.

Let v € Vg+up be an approximation.

(AN (u —v),Aw) + (£, w) + (AAv,Aw) = 0 Yw € Vo,




Set w=u—v.
I A —v) I2=] (€u—v) + (AMv,Au—v)) | .
By
(v, Aw) = (N'y,w),  Vw € Vo.
we have

I Aw—v) I =1 (€u—v) + (AAv —y,A(u—v)) + (Ny,u—v)) | .
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Therefore, we find that

I A —v) <] {€+Nyu—v) | + | (AW —y,A(u—V)) | <
STLHNYT I Au—v) |+ | AAv —y [ | Afu—v) ||,

where

(u,w)
u] = sup
[l = sup AwT]

denotes the norm of the functional p : Vo — R.
To prove that the value of | £+ A*y | is finite we note that

€+ Ny, w) < [|€]v; [Iwllv + [lyll|Aw] < (5]
—-1/2 _
<2 (3t ellvs + Nyl ) | Aw |-

vi Iyl [Aw] <
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General estimate

As a result we obtain the general form of a functional a posteriori estimate
for an elliptic type problem:

ITAw=—v) < T€+Nyl+ | AAv—y . . (71)




Denote
1 1,
D(y1,y2) := 5 (Ay1,y1) + 5 (A" y2,y2) — (y1.y2) =
1 1 —1 1 1 g2
=5l - ATy —ATy) =S Iy - Ay =
1, 1 )
= 5(A7 (2 = Ay1).y2 = Ay1) = 5 v — Ay [
Then

| AAv —y 2= 2D(Av,y)

and we obtain
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I A(w—v) < T€+ Ay + /2D(Av,y).

Square both sides and use Young’s inequality
I Aw=v) IP< (143) [e+A"y[* +2(1+8D(Av,y).  (72)

This estimate holds for any y € Y* and 8 > 0. Denote its right—hand side
by 2Meg(v, 3,y)
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2Mg (v, 3,y) is a sharp upper bound

Proposition

For any 3 > O there exists y € Y* such that

2Me (B, v,y) =l Mu —v) > .

Proof. Set y; = ﬁ(p + BANAv) where p = AAu. Note that
(€+ Ny1,w) = (—p +y1,Aw).

. (y1 — p,Aw)
L+ Ny ] =sup =T~ =
I [= s T Aw]

(AA(v — u), Aw)

_ B _ B
= su = A(v—u
1+3 WE\FI)O ”l /\ ”l 1+3 "l ( ) ||| )
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Similarly
D(Av,y1) = gl | Alv =) |
Therefore,
(1+1) 6+ Ay I +2(1+ B)D(Av,y) =
(1+2) (2 1A =) 1)+ 201+ 9) (ks I A - w) 1) =
= 125 I AW = w) I 25 Il A — ) IP=] A = w) |
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We replace | £+ A*y] by the norm in a Hilbert space U provided that £
belongs to a narrower set. Assume that

£ € UC Vg,
yeQ ={z" €Y"| Nz" e U}
Note that Q* can be endowed with the norm

2 2 112
Iyllg~ = llyll + IAyl[u-

If £ € U, then Q" contains the exact solution p of the dual problem! This
fact is important for the proof of the sharpness of the Majorant.




Then
£+ Ny w)=(L+Nyw) weV,
. €+ Ny, w) 1€+ A"y [[w]
[£+Ny] =sup ————+ < — o <
weVg ||\ Aw ”l weVy ||| Aw ||\
. Awll
<|e+A y||c sup <
! o [[Aw ||

Denote ¢ = c; 2c3_2.

rlestle+ Ayl




Computable Majorant of the deviation

Now, the Majorant Mg is replaced by Mg, namely we arrive at the

estimate

1
5 1AW =) 1< Mo (v, B.y) =
1+

= (14 B)D(Av,y) + c2||e + A*y|2. (73)

23




Variational Method

Problem P. Find u € Vg + up such that

J(u)= inf J(u):=infP,

veVy+ug

where

W) =5 IV I +e).
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Lagrangian

On the set (Vo + ug) x Y*, we define the Lagrangian

Lw,y) = (. A) — 3 Iy I +ew)

and the functional

veVg+ug —00, y¢Q27

where Q; :={y € Y| (y,Aw) + (€,w) =0, Vw € Vo}.
Note that since

|*(y): inf L(V,y):{ (Y7 AUO)_% ||| y ‘||£+<£,U0>7 yGQz,

(y; N(uo + w)+ (€, (ug + w)) = (y, Aug)+ (£, ug)

we see that 1" does not depend on the form of ug inside €.
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The problem dual to P is as follows.
Problem P*. Find p € Q; such that

I"(p) = sup I"(y) :=supP* <inf P.
yeq;

The minimizer u and the maximizer p satisfy the conditions
(AAu, Aw) + (,w) =0 VYw € Vo,
(Auo — A 'p,y) =0, VyeQg,
where Qp := {y € Y*|(y,Aw) =0, VYw € Vo}.
|

We see that AAu € Qy,.




Take
I"(AAu) = (AAu, I\uo)—% I AAU? [|+(£, o).

Recall that the dual functional does not depend on ug inside Q. Therefore,
we set ug = u and observe that

I"(AAu) = (AAu, Au) — % | ARu | +(£,u) < supP".
Since || AAu ||2= (A~'AAu, AAu) =|| Au ||, we see that
I"(AAu) = J(u) = inf P

Thus
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The relation I"(p) = J(u)  means that
1 2 1 2
(P, Au) = 5 I p Il (6 u) = 5 [l Au " +(€, u),
which is equivalent to the relation
1 2 1 2
D(Au.p) = 3 [ Au | +5 I p I ~(p, Au) = 0.

From the above we see that Au and p are joined by a certain relation:

p=AAu
This is the so—called duality relation for the pair (u, p).




Let v € Vo+uo and y € Y* be some approximations of u and p, respectively.
Our goal is to obtain two-sided estimates of the quantities || A(v — u) || and
'y —p ||+« that are norms of deviations from the exact solutions u and p.
First, we establish the following basic result.

For any v € Vg +ug and q € Qy,

I A —u) I* + [l a = p 2= 2(J(v) = I"(a)), (74)

I A(v —u) I” + | a = p 2= 2D(Av, q). (75)




By the stationarity relations, we have

A - ? = %(A/\(V —u), A(v —u)) = J(v) — J(u) +

+(ANu, A(u — V) + (£,u —v) =
= J(v) — J(u).

Analogously
1 2 1 1 oy
5 la=pli=5(A"(p~a)p—a)=
=1"(p) — 1"(q) — (Auo — A" 'p,p — q) = I"(p) — I"(q).

Since J(u) = 1"(p), we sum two relations and obtain (74). For q € Q; the
difference J(v) — 1"(q) is equal to D(Av, q), so that (75) follows from (74).
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The estimates (74) and (75) are valid only for q € Qp, which poses some
difficulties. Below it is shown how we can overcome this drawback. First,
we establish one subsidiary result.

Letqe Qy,vEVo+up, BER,, andy € Y*. Then
. 1+
W) - F@ £ @+AD(wy) + 5 | a-y B . (1)
Note that

1 1
D(Av,y) = 5 (AAv, Av) + E(A’ln p) — (v, Au) =

= (AN —y),Av — A7 ly) =
= (A(W — Ay, A — A7ly) = [ Av — ANy |.
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For any y € Y*, we have

i} 1
Jw)—r@) =5l I+ Iy I2)+
1
+5(lal? = Iy I2)~(Auo,a)+ (€. v — uo).
Since (£,v — ug) = (q, A(ug — v)), we find that
. 1 1
JW-r@=5 (AP +1yI2) +5 Wal2-IyI2) - (@) =

B 1
=D(Av.y)+(y—a.Av—Aly) + o [la—y i

This relation yields (76) if we use the Young’s inequality

2(y—aAv—Aly) <B[Av-Ay P +8 ly—q?.




Another form of the estimate

Introduce the quantity
2 - 2
de(y) :== inf [la—y|,
aeq;
which is the distance to Qz. Then, (76) imply the estimate

3 1AW -0 < @+ 9Dy + (L4 3) Ja)

where v € Vg + up and y € Y*. We rewrite this estimate as
1
5 I A(v —u) I’< M(v,B), WeVo+u, BERy,

where

M) = iof {1+ 0Dy + (14 5) 30}
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Now, we proceed to finding computable upper bounds for the quantity d,.
The first step is given by

Theorem
3di(y) = sup {3 I Aw [|> (£, w) — (v, Aw)}.
w 0
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This assertion comes from that inf P = sup P*. Indeed,

1 1 1
~d3(y)=— sup {— y—-n" i}:— sup {— n* 5},
20 == sop {3 Iy Bf=- sp {3

where Q; —y = {n*EY*|'r]*:ae*—y, a*eQz}.
In other words, n* € Q; —y if

(n*a AW) = *<£,W> - (ya AW)? Yw € V.

The right-hand side of this relation is a linear continuous functional.
We denote it by £, and rewrite the relation as follows:

(n*,Aw) + (£y,w) =0 VYw € V,.




1
Sd3(y) = — sup {— n* i}-
210 = s {310

This maximization problem is a form of Problem 7 if set ug = 0 and
£ =£,. Since sup P* = inf P, we have

1 2 _ H 1 2 _
2800 == ot {5 1w e f -

. 1
— ot {2 Aw |||2+<e,w>+<y,/\w)}:
weVg | 2

= sup {5 1A 12 —(eow) ~ (v. 2w}

weVy




Corollary

We arrive at the conclusion that the majorant M (v, 3) has a minimax form
M(v,B) =

inf sup {(l-l-ﬁ)D(’\V»}‘) +

yeY* weVy

1+8
g

Further,we use (77) for deriving upper and lower error bounds.

(A= 3w)) . (70)
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Upper estimates of || v—u ||

In the relation
M(v,8) < (1+ B)D(Av,y)+
1 1 2
+ <1 + ﬂ) sup. {—2 I Aw " — (€, w) — (Yv’\"")}’

we will estimate the value of supremum. Since A* is the
operator conjugate to A, i.e.,

(Y7 AW) = <A*va>7 Yw € V07

(€, w) + (y,Aw) = (£+ Ny, w) < [ £+ Ny] [[Aw]].




Here

We see that

IN

IN

[+ Ny] := sup e+ Ay, w)

— e < Fo0.
wevp [ Aw |

sup {=3 I Aw > —(&,w) — (y,Aw)} <
weVy

sup {3 I AW > +T €+ N y]|Aw]} <
weVp

sug{—§t2+ [£+Ny[t)=1]e+Ny]%
t>




Thus, we obtain

2 IAv—wP< @+ pD(vy) + T2 T e Ay ()
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Deviation Majorant for the problem A*AAu + £ =0

(AA(v — u),A(v —u)) <
< (14 B)((AM, Av) + (A7ly,y) = 2(y, Av) )+

1+5

"5

c’|le + Ny|>.

In the above, ve Vg+ug, >0, yeU.




For any v € Vg + ug,

1 .

5 I Au—v) I?= inf Mg(v,B,y).
yeQ
B>0

If £ € U, then p € Q" and, therefore,

. 1
Jnf Ma(v..y) < Ma(v.e.p) = (L+€)5 | Mu—v) I,
B>0

where € > 0 may be taken arbitrarily small.

Hence, the majorant Mg is reliable and exact.
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Lower estimates

Recall the minimax form of the Majorant

inf sup {(1+ﬂ)D(Av,y) —I—HTﬂ (—(y,l\w)— J(w))} )

YEY* wev,

Since sup inf < inf sup, we have

M(v,8) > sup inf {(1 + B)D(Av,y)—

y (1) (A e+ Aw) ) .
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Thus, for any w € Vg

M(v,8) =
o {aeo( 1y -om )= (14 ) om b+
Hemy I (145 ) (G UM e ).

Evidently, this estimate is also valid for the function Bw, which yields
. 1 2
M(v.8) = (1+8) inf {5 1Y IE = (3. M+ w)) f+

caem) (IG5 A ew).
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Note that

. 1 2
Jop {3 1y 12 (rnw)) } >
> it L2y Ry LA w) I = -2 A w) )P
=yev- 12 WY iy ~T2 '

Thus, we obtain

M(v.8) > (1+B) 3 I Alv +w) |2 +

1 » B - B
T+ AV =5 EAw 2 —(gw)} =

= 1+ B){ (v aw) - 252 Aw P e}
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In

@+ B (v, aw) — 22 aw 2 o))

w is an arbitrary function in Vo. We may replace
w
w by ——.
Y 1+

Such a replacement leads to the Minorant Mg (v, w) that gives a lower
bound of the deviation from exact solution:

For any w € Vy,

S IAG—0) [ 3 | Aw [P (A, Aw)—(e.w)  (79)




Minorant is sharp

It is easy to see that

1
sup Mo (v,w) = 2 [ A(v—u) |I*.

weVy

Indeed, take w = u — v.
1
Mg(v,u—v) = ~3 Il A(u—v) |||2 —(ANv,Au — v)— (€, u —v).

Represent the last two terms as follows:

—(AAv,A(u —v))—(L,u—v) =
= —(AAv,A(u — v)) + (AAu, A(u —v)) =
= (AA(u —v),A(u—v)) =] Au—v) |2

so that this choice of w gives the true error.




Remark.

We outline that for the exact solution Mg = Mg = 0! Indeed, assume that
v coincides with u. In this case,

1 1
Mo (u,w) = —3 || Aw I? —(ARu, Aw) — (£, w) = —5 I Aw I?

and, therefore,
sup Mg(u,w) =0.

weVy

The same is true for the majorant. Indeed, set y = AAu. Then,

1+8 , ¥ 2
25 c’|le + N AAu|” = 0.

M@(“?ﬁa/y\) = (1 +ﬂ)D(AU,/y\) +
Thus,

y|€nj* Mg(u,8,y) =0.
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Computability of two—sided estimates

By computability we mean that upper and lower estimates can be
computed with any a priori given accuracy by solving finite-dimensional
problems. In the case considered, they are certain problems for quadratic
type integral functionals whose minimization (maximization) is performed

by well-known methods.
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Let {Y{}Z; and {V0i}iZ; be two sequences of finite-dimensional subspaces
that are dense in Q* and V), respectively, i.e., for any given € > 0 and
arbitrary elements y € Y* and w € Vg, one can find a natural number k.
such that

anf W —wlv <e, y'Ean I¥9—ylle<e,  Vi>ke.

Let us show that sequences of two-sided bounds converging to the actual
error can be evaluated by minimizing the Majorant on {Y; } and
maximizing the Minorant on {Vg;}.
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Take a small € > 0,. Then there exists a number k and elements wyx € Vo
and pk € Y, satisfying the conditions

[we —(u=v)llv<e, lIp—ploa<e

Define two quantities defined by solving finite—dimensional problems,
namely

Mtﬁ = mf* M@(Vaﬁayk)’ Mk@ = sup M@(V>Wk)‘
)geeﬂgk wy € Vo
+

By the definition

1
Mo (v, wi) < ME < o flu—v [*< M5 < Me (v, B, pi).
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The quantities Mk@ and MIEB are computable (they require solving finite
dimensional problems for quadratic type functionals). We will that

1

ME = SIAW - )
1

ME — S IA - )|

as the dimensionality k tends to +oo.

Mat:




Consider the upper estimates.

Mo(v.Bup) = (14 B)D(A.pu) + 1P €4 Api* =
— (14 BD(Av,pe) + 1 PN (b~ B
Here
DAV, ) = L(Av — A 'p, ANV — py) =

2
= 3 (A=) — A7 (e~ p), ANy~ u) — (px —p)) =

1 2 2

=5 A —u) I+l px = p Il —(A(v = u), pc — p)-
From the latter estimate we see that

1 1
D(Av, pi) < 5 [l A(v —u) I +e Il A(v = u) | +§€2‘ (80)
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Since

A" (P — p)lla-

IN
n

we find that

MED < M@(V7E7 pk) =

12-;8(:252 _

1
= 5 I A(v = u) |I* +cae + o(e?).

=@+ e)(FIAN —u) [P e A —u) | +3¢%) +

where ca = 1 (c+2 || A(v—u) || + | A(v—u) H|2) . Thus, we conclude that

ME — 2AW-u) [P as koo
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Remark

It is worth noting that the constant c4 in the convergence term with &
depends on the norm of (v — u), so that we can await that for a good
approximation convergence of the upper bounds to the exact value of the
error is faster than in the case where || v — u || is considerable. This
phenomenon was observed in many numerical experiments. In general,
finding an upper bound for a precise approximation takes less CPU time
than for a coarse one.
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Consider the lower estimates.
1
Mo (v, i) = — ] A 12— (ARV, Awi) — (€, wi) =
1
= =5 I Awic || + (AN(u = v), Awi) =
l 2 1 2
=5 AU =v) I =5 I Awic = (u = v)) [°=
1 1
25 A u—v) I —5C2 [IA(wi — (u— v))[1%.
This implies the estimate
LA 25 M > La 2 2
5 I A =v) [I*= MS 2> 3 [[A(u = v)|* - ese”,
where ¢c5 > 0 depends on the norm of A. Thus,

M — % | A(u—v) > ask — .
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Computable upper bound of the effectivity index

Having MY, and MY, one can define the number
&
= M >1, (81)

which gives an idea of the quality of the error estimation. From the above
it follows that

e — 1, as k — +oo.




Relationships with other methods

1+8 , o2
28 [+ Nyl

involves an arbitrary function y. We are aimed to show that some special
choices of it lead to known error estimates.

MGB(V7B>Y) = (1 +/8)D(Av7y) +

We assume that (€, w) = (g,w), where g € U, so that p € Q" C Q; and

Q={yecQ |(Ny+gw)=0, Vwe Vo}.
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Let us first define the function
yo = AAv.
A variety of options comes from the relation

y = MNyo,

where I is a certain continuous mapping.

(82)

(83)




Residual based estimate

If N is the identity mapping of Y™, i.e., y = yo :== AAv, then
D(Av,yi) = 0.

Use the majorant in the form (78):
1 1+ *
2 1AW= IP< @+ BD(vy) + T L e Ay T,

Now, it contains only the second term, which after the minimization with
respect to 3 gives

IA(v—u) IS T€+ANAAV] =
(£,w) + (AAv, Aw)

sup . (84)
weVy I Aw ||
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If v is obtained by FEM and v = up € V}, := Vg, + ug, then we arrive at the
following estimate:

I ACun —u) IS T €+ A AAu, | =

(£, w — wp) + (AAup, A(w — wy))
sup .
wevg I Aw ||

We find an upper bound of the right—hand side by the arguments accepted
in the classical residual method.




Conclusion

If in the functional a posteriori error estimate is applied to a FEM solution
up then we may select the variable y in the simplest way as

y = Aup,.

Then, if up is a Galerkin approximation, we can use this fact and obtain at
an upper bound given by the residual type a posteriori error estimate that
involves integral terms associated with finite elements and interelement
jumps.
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Estimates using post—processing of the dual variable

In Mg(v, 8,y) the best choice is y = p € Q*. Therefore, if yo ¢ Q" then its
mapping Q* could be a better approximation of p. Let us denote such a
mapping by NMi. We obtain

y1 =Ty € Q° (85)

and the quantity Mg (v, 3,y1), which leads to the error majorant

ME(v) = Bigg+{(1+B)D(Av7 N1 (AAV))+

1 *
+;—;c2 | £+A" M1 (AAV) \|2}. (86)
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Particular case

In the simplest case associated with the problem
Au+f=0, u=up onJdRN
we have

ME) (un) =

- - 2, (L+8)C3
= inf {(148)[Vun— My (Vun) P+ 25

[F+divi (V)| }.

If My is a gradient averaging operator, then the first term in the right—hand
side is the difference between the original and averaged gradient, i.c. it
coincides with a gradient averaging indicator. However, as we have seen in
previous lectures, such an indicator cannot provide a reliable upper bound
of the error. The second term in the right-hand side shows what is
necessary to add in order to provide the reliability.
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Estimates based on the ” equilibration” of the dual variable

Let M2 maps Y™ to the set Q;. Define
y2 = Mayo € Q. (87)
Then,
Ny, +£=0,
so that the Majorant has only the first term:
MZ(v) = D(Av,y,).

M5 is natural to call an equilibration operator. In general, it is rather
difficult to construct an ”exact mapping” Mz to Q. One may use an
operator Nz, which provides an approximate ”equilibration”. In this case,
the second term of the Majorant does not vanish and should be taken into
account.
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/ Problem P
(primal )

SPACE

Problem P*
SPACE (dual)
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A priori projection type error estimates

As an exercise, we now will derive classical a priori projection type
error estimates from a functional a posteriori estimate. Let up € Vj,
be a Galerkin approximation of u. We have

I A u—uy) [2< 2(1+mD(Auh,y)+(1+;) Ay e]?

Set here y = AAvy,, where vy, is an arbitrary element of V. Then,

. (y — p, Aw)
JNy+£2] = sup ————+ =
weVy |” Aw H|

(AN(vh — u), Aw)

= sup <l Alvn —u) || -

weV Il Aw ||




It is easy to see that
D(l\uh,A/\vh) = J(Vh) — J(uh).

Indeed,

D(I\uh,AI\vh) = %(.AI\Vh7 I\Vh) + <1€,Vh>—

— %(Al\uh, I\uh) — (€7 uh)—|—
+ (Al\uh, I\(uh — Vh)) + (Z, up — Vh>.

Since up € V), is a Galerkin approximation, the last two terms vanish and
we obtain the relation.
We know that

Il Aun — u) 7= 2((un) — J(u)),
I Avn — u) [I*= 2(3(vn) — J(u)).
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Therefore,

2D(Aup, AAvy) = 2(J(vh) — J(u)) — 2(J(un) — J(u)) =
=[| Avn — ) I* = | Afun —u) .

Now, the error estimate comes in the form
I ACu—un) < (1+8) (| Awn — u) [ = || Alun —u) |?) +
1
(14 5) 1A -0 1P
B
Thus, we obtain
2+ 8) | Au—un) <

< (14 8) | (v — ) [ + (1 n %) I Afwn — ) 2,
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We see that
1

I A —un) I*< (1 + m) I A — ) 12 -

Since f is an arbitrary positive number, we arrive at the projection type
error estimate

I ACu—un) < inf || A(u—vn) || .
VhEV,L




APPLICATIONS TO PARTICULAR CLASSES OF PARTIAL
DIFFERENTIAL EQUATIONS
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Diffusion equation

Let A is produced by a matrix A = {a;} = {aji}, V = H(Q), where Q is a
Lipschitz domain, U = L?(R,R"), and Aw = Vw. Let the entries of A be
bounded at almost all points of  and such that

alef <agg < elé’,  VEER" (88)

Then, the spaces Y and Y* have the norms

Iy IP= / Ay-ydx, [y [= / Aly .y dx.
Q Q
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Dirichlet boundary conditions

We begin with the problem

divAVu=f in Q, (89)
u=up on Q. (90)

In this case, Vo = ISII(Q) and u meets the integral identity
/AVu~dex—|—(f,w) =0, Yw € V. (91)
Q
The relation (y, Aw) = (A"y, w) has the form
/y -Vwdx = (—divy,w),
Q

where A* = —div and divy is in H™1(Q).

Mat-5.210 i in Computational Mechani




The operator A satisfies the required inequality

ca[Vw|| > [lw],  vw e H'(Q).

Upper estimates of || v — u || for an approximation v € Vo+up follow from
the general estimate presented in Lecture 5. We have

%/AV(V - U) : V(V - u)dX S M@(V,,@7y),
Q

+ -1 1+8ch, . 2
—_— Vv - A -(AVv —y)dx+ ———=||divy — f 92
! Q/( ) (AVY—y) dxt Soa” Blldivy 7 (02)

[¢]




Certainly, the above estimate is aplicable for the case f € L%(2) so that

(f, w) :/fwdx,

Q
and for y € H(£, div).
Let {Yi} be finite-dimensional subspaces of Y* such that
Yy € H(Q,div) forallk =1,2, ..;

dimYyg — +o0o as k — oco.

We obtain computable upper bounds

Mt = inf #/(v\/ffly).(Awa)der
pex, 2
1+8 ¢, . 2
t g olldivy—fla}. (93)

Mat-5.210




Lower estimates

We have

%/AV(V—U)-V(V—U)C'XZ Mg (v, w), VYw € Vo,
Q

where
Mg (v,w)= —% /AVW -Vwdx — /AVV - Vwdx —(f, w).
Q Q
Let {Vok} be finite-dimensional subspaces such that
Vo € Vo forallk=1,2,..;
dimVox — 400 as k — oo.
Find the numbers

MY = sup Mg (v, wi). (94)

wy € Vi

Mat-5.210 i in Computational Mechani




1
Both sequences MY and MY tend to 5 lv—u|® as k — oo, provided that

{Yx} and {Vok} possess necessary approximation properties (limit density).
Note that if v is a Galerkin approximation computed on Vqk, then

Mg (v, wi) = 0. This means that to obtain a sensible lower estimate in this
case, one must always use a finite-dimensional subspace that is larger than
Vok.
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Neumann boundary condition

Consider the Neumann boundary condition
v-AVu+F=0 on 09, (95)

where v is the vector of unit outward normal to 9. To apply the general
scheme we set

Vp = VEHl(Q)‘ /vdx:O

and define A*y € Vg by the relation

(Ny,w) = /y - Vw dx, Yw € V.
Q

If y is sufficiently regular then

(N'y,w /( divy)wdx + /(y v)wdx.
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Therefore, in such a case
Ny =[-divy|a; y-V|oq]

Also, we assume that F and f satisfy the equilibrium condition
/fdx+/Fdx:0.
Q oQ

Assume that f € L?(R2) and F € L?(99). Then the Neumann problem has a
solution defined by the integral identity

/AVU'VWCIX+<£,W>:0, Yw € Vy,
Q

where

(E,w):/fwdx—i—/Fwds,

0
o))
<]
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In general, [£+ A*y] is estimated in terms of the norms
[divy —f|4-1 and [y -v+F|,-1.
However, if we assume that y possesses a certain regularity, so that
y€Q () :={yecY"|divy € L}(Q),y-v € L2(69)},

then

€+ Ny,w)= /(f— divy)wdx+/(F+y-l/)wds
Q Bl

and, therefore,

[(€+ Ny, w)| <

< | divy —fl2,0

Iwliz.0 +ly - v+ F|

2,00/|w||2,00. (96)




Let the constant cq be defined as

1 J AVw - Vw dx

= inf
c(zn,asz) weVo [[wlfZ g + [lw

|§,6§2 .

Since the trace operator is bounded, this constant is finite. Therefore, (96)
implies the estimate

[(€+ Ny, w)| <

S C(Q@Q) ( H divy —f

1/2 2
Ba+ly v+Fl3on)  IAw]

and the second term of the majorant is calculated as follows:

. €+ Ny, w)
L+Ny] =sup —+
I = TAwl

. 2 2 1/2
< caom (Ildivy —F[3a+ly-v+FlBon ) .

The term D(Av,y) is defined as in the Dirichlét problem.




We see that the Majorants Mg for the two main boundary-value problems
have different values of cg. In addition, the Neumann problem majorant
contains an extra term

lly - v+ Fll2.00
that penalizes violations of the Neumann boundary condition.

It is worth noting that if the given F can be exactly reproduced by y - v for
y in a certain finite dimensional subspace Y, then one can compute M'ZB as

yeYy, y-v=Fon 8Q

MY, = inf {”Tﬂ /(vV— A7'y) . (AVv—y)dx+
BER, Q

1+

cla.0n) || divy—f ||521} (97)

2B




Mixed boundary conditions

Let 02 consist of two measurable nonintersecting parts 01 and 9.2, on
which different boundary conditions are given:

u=uy on R,

v-AVu+F=0 on Q.

Set
Vo = {v eHY(Q)|v=0 on 819}
and
(N'y,w) = /y - Vw dx, Yw € V.
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Assume that
fel’(Q), Fel}(a9).
and y possesses an extra regularity, namely,
yEQ(Q) = {y €Y |divy € LX(R), y-v € Lz(azsz)}.
Then, for any w C Vg, we have
€ + Nyw) = /(divy — flwdx + /(y - v + F)wds,
Q 8,9

Note that p € Q*(R)!
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Now, we obtain

[(€+ Ny, w)| < [[divy — f[|2.0[lw]

2.0+
+|y-v+F

[2,6,2[|Wl[2,0,0

Let v and ~, be two numbers such that v > 1, v, > 1, % + % =1
Use the algebraic inequality

1 1
ab +cd < y/va%2 +v,¢2 [/ —b2 + —d2.
vy Y

Then

1/2
2
|2,629) X

1, 1 ) 1/2
x(—\|w||z,n+—uw||z,azn) .
Yy Y«

£+ Ny, w)| < (ylldivy—f3.q+.lly-v+F




Since (Friederichs type inequality)
|w[3e < CE(Q)|VW|2a,  Vw € Vo,
and (trace inequality)
HWHiazﬂ < Co(Q,5,9Q)|w| 2.0, Yw € V),

we find that
1 1
Zwlze + = lwl}.0e <
vy Y

< —
Ch[vw|Ch - (HWstH‘HVWHzn)_

*

<(aleal
~

(1+c§)) Vw2 g.

*




Therefore, there exist a positive constant Cy such that

J AVw - Vw dx
Q

— = inf )
(:,2y weVy %HWH%,Q + %HwH%,azﬂ

The value of this constant can be estimated numerically by minimizing the
above quotient on a sufficiently representative finite dimensional subspace.
Besides, if C¢ and C are estimated, then

~ 1 1) _
c<c= (c,%; +CZ(1+ Cé)?) ol

*

so that an upper bound ofC, is directly computed. Now,

[(€+ Ny, w)| <

2 1/2
Bow) " VW

<G, (7||divy —fl3a+7.ly-v+F




From this estimate, we obtain
1€+ Ny < C(yldivy — flBa + Tl v + Flise).
Consider first the case, in which we simply set v = v* = 2. Then
Cy =Ci= (c2 FC2(1+ cz)) ol
[£+Ny]? < 2Cz(||divy ~Fl3.0 + lly- v+ FlB.o,0).

and we find that
1 ' _
Mo(v.B.y) = 57 [(Tu=ATly): (AVY - y)dxt
Q

1+
+ P& (divy — flBa+ lyv + FlBas). (99)
23
This Majorant gives an upper bound of the deviation for any v € Vg + ug,
y€Q*, and 3 > 0.
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Mg for mixed boundary conditions

A more exact estimate is obtained if we define v by minimizing of the
Majorant. Then, we obtain

[£+Ny][? < (Celdivy - flaa+
211/2 L
+Cu(1+ €2y v + Flaopa) o

and
Mo(v.B,y) = 57 [(Tu=A"ly): (AW y)dxt
Q

1+ . 2 _
+ o (Crllivy — flaa + CulL+ €O 2ly-w + Fllaa) . (99)
Majorant vanishes if and only if v =u and y = AV, it is continuous with
respect to the convergence of vin V and y in Q
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Lower estimates

Lower estimates for the problems considered follow from the general ones
obtained in the previous lecture. They have the form

%/AV(V—U)~V(V—U)(]XZ Mg (v, w), Yw € Vo,
Q

where

Mg (v,w) = f%/AV(wfv)-dexf/fwdxf/ Fwds.
Q

Q )

Here Vy depends on the type of boundary conditions, and the integral over
0»€) must be eliminated in the case of Dirichlét problem.
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Linear elasticity

Classical statement. The classical formulation is as follows:

Find a tensor-valued function o (stress) and a vector-valued function u
(displacement) that satisfy the system of equations

o’ = ]LE(U) in Q. (Hooke's law)
dive™ = f in Q, (Equilibrium equation)
u=up OoOn 819,

oc'v+F=0 on 0.

where &(u) is a symmetric part of the tensor Vu.

Mat:




Here Q is a bounded domain with Lipschitz boundary 02 that consists of
two disjoint parts 012 and 9,Q, |0:Q| > 0, f and F are given forces and

L = {Ljkm} is the tensor of elasticity constants, which is subject to the
conditions

Cile]? < Le : e < Cylef?, Ve € Mg*",
and

Lijkm = Ljikm = Limij, Lijkem € L™°(R).
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Generalized solution

Let
feL’(Q,R"), FelL*Q,R").

Then, a generalized solution u € Vg + ug is defined by the identity

/I[,e(u) ce(w)dx + (€, w) = 0, Yw € Vy, (100)
Q
where
(£, w) :/f-wdx—|— / F-wds.
Q 5,92
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Assume that u is a smooth function and it satisfies the identity

/I[,f-:(u) re(w)dx+ (£,w) = 0, VYw € Vo,

Then,

/(f— div(L £(u)) - wdx + /((Le(u))u+ F)-wds = 0,
) Yw € V()(?29

and we observe that in such a case the equilibrium equation and the
Neumann boundary condition are satisfied in the classical sense.




Variational formulation

Note that the relation (100) is the Euler’s equation for the functional

1/]L€ v)dx+ < £,v>.

Therefore, the respective boundary—value problem may be considered as a
minimization problem for J(v) on the set

Vo :={ve H(2,R") | v=ugonHQ}.

To prove existence of a minimizer we must show the coercivity of J(v) on
Vp. The key role in this belongs to the so—called Korn’s inequality.
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In the Dirichl et problem

J(v) = %/Ls(v) re(v)dx+ < v > >

Y

> lle@)* = Ifliiv] =

C: 2
— lle(uo +w)[|” —[[f[|]|uo +w]| >

%(Hé(lm)ll — lle(w)ID* = [Ifllfluoll — [IFl|Iw].

Thus, if we can prove that

\Y

le(w)|| > cl|Vw]  vw € H'(Q),

then we would establish the coercivity of J.




Korns's inequality

This inequality is required in various aspects of the mathematical analysis
of elasticity problems. In the general form it states the equivalence of two
norms:

1/2
Wiy 50 1= / (VW + [wP)dx |
Q

and
1/2

120i= / (Je(w)? + [w]?) dx

(
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Korns’s inequality in H?

For the functions in H'(£2) this fact is not difficult to prove. Indeed, for
smooth functions

1 1
/\e(w)|2dx = EHVWHZ + 2 /Zwa,jwj,idx =
= f||V /Z wiw; jjdx = fHVwH += /Zw..w“dx =
1 1
= §||VWH2 + E/Z |wi i dx.
o i

o
Since smooth functions are dense in H', we find that

IVwll < V2wl vw € HY(®). (101)
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By (101) we prove that the energy functional of the elasticity problem for
the case of Dirichl’et boundary conditions is coercive, i.e.,

J(vk) — +oo, as ||V — +oo.




Rigid deflections

In the analysis of elasticity problems one more notion is often required. It is
the so—called Space of Rigid Deflections that we denote RD(S). This space
is the kernel of the operator e(w), i.e. it contains vector—valued functions w
such that

e(w)=0.
It can be defined as follows:
RD(Q) = {W = wWp + wpX | wWo € Rn, wo € Mnxn},

where wo(w) = 2(Vw — (Vw)") is a sqew-symmetric tensor associated with
”rigid rotations”.
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Implications of the Korn’s inequality

Let Q be a Lipschitz domain and 01K is a nonempty connected part of the
boundary. Then,

1
)

lullipa < C / cPdx| VueVe, pe(12] (102)
Q

Proof. Assume the opposite. Then, for any m € N we can find v(™ such
that vi™ € Vg and

o=

W apn > m | [ 1) dx
Q
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o(m)

Set w(™ = Yoo , then
V™I p e
1
1 P
HW(m) l1p=1 and - > /|s(w(’“)|" dx
Q

Therefore,
w s w o in W(QR"),
W(m) S w c LIZ'(sz7 Rn),
le(w™)llpa — 0 in LP(Q,R").

From here we conclude that (w) = 0.




Indeed, by the fact that a norm is weakly lower semicontinuous, we have
0 = liminf (™) o0 > ()]0

Thus, w € RD() N V. There is only one such a function: w = 0. It means
that w™ — 0 in LP. Now, we apply Korn’s inequality

1

)

w(m)|l1p.0 < C /(|s(w<*">)|°+|w(m>|") x| — o0,

m—oo

Q

which shows that [|w(m)||1,p.e tends to zero. But for any m [|w™][,1.0 =1,
so that such a behavior is impossible. We have arrived at a contradiction
that proves the Theorem.




Another similar result is required for the Neumann problem. Define the set

V= vew;(9)|/v-wdx:o Yw € RD(Q)
Q

Let Q be a bounded domain with Lipschitz boundary Q2. Then

1

p

lullips < € /|a(u)|"dx Vu e V. (103)
Q
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Proof. By the same arguments as before, we obtain a sequence w(™ € V
such that

w™ S w in er,(Q, R"),
W(m) —w c LD(SZ7 Rn),
le(w™)|lpe — 0 in L°(Q,R").

By the arguments similar to those in the previous Theorem, we find that
e(w) = 0 and, thus, w € RD(R). In addition, for any w € RD, we have

:/w(m)-de:/w~VTldx.

Q Q

But w € RD, so that ||w| = 0, and by applying Korn’s inequality we prove
that |lw(™|

1,0, tends to zero, what leads to a contradiction.




Estimates of deviations

Let v and y be some approximations of u and o*. Estimates of v — u and
y — o follow from the general scheme if we set

U=L%Q M), V=H(QR",
Vo={weV|w=0on 6,2},

Iy I?= / Ly:ydx, lylP= / LYy : ydx,

Q Q

and Av = g(v) := 1 (Vv + (Vv)"). In this case,

(N'y,w) = /y : g(w) dx, Yw € Vo,
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Now y is a tensor-valued function and yv = y;v;j is a vector—function
defined on 09Q.

It
yeQ = {yeY"|divy € L}(M""), yv € L*(8,Q,R")}.
then
(N'y,w) = f/divy~wdx+ / (yv) -wdrl
Q 59
so that

Ny = {—divy o, (yv)|s,0}




Upper estimates

By applying the general estimate, we obtain the following upper estimate:
1
5 /]Le(v —u):e(v—u)dx < Mg(v,8,y),
Q

where

Ma(v,B.y) = 5 D(ev.y) + P [Ny e

and

D(e(v),y) = %/(]Le(v) ce(V)L 7yt y — 2e(v) : y) dx =

- / (e(u)~L1y): (Le(u)—y) dx.




Ify € Q*, then

. Ny +2£,w)
Ny+£€] =sup ——— =
' =22 T aw

Sy e(w)+f-w)dx+ [ F-wds

= sup 2 929

weVg Il e(w) |l
J(F—divy) -wdx+ [ (F+yv) wds
= sup 2 929 <

wevy Il (w) I B

< sup If — divy|l20(wll20 + [IF + yv|lo,e[wllo,e

weVg I e(w) ||




Let Cq be a constant in the inequality
/\w\ dx + / w[2ds < C3lle(w)lz,  Vw € Vo.
2,9
Note that the existence of such a constant follows from the Korn’s
inequality. Indeed, the inequality
/|w| dx + / w[2ds < C2[V(w)[3,  Vw e Vo.
8,9

for the tensor—gradient V(w) follows from the Friederichs type inquality for
the vector—valued functions and the respective trace theorems. By (102) we
recall that for the functions in Vj

IV(w)lle < Clle(w)]le

with a certain constant C and the estimate follows.




In practice, values of Cq can be estimated by minimizing the quotient

[ECOIIE
JIwPdx+ [ |w|2ds
Q 8,92

over sufficiently representative finite dimensional space Von C V.

Let us now return to finding an upper bound of the quantity | Ay + £ [.
By the inequality ab + cd < va? + ¢2v/b? + d?, we obtain

INy+2] <

(Il +[Iwl3,0)" "2

. 2 2 1/2
< (lldivy | +|Ftyviye)  sup
we

T Tew

_ . 1/2
< Cac;  (ldivy — F}% + IF + yvil3,0)




Error Majorant for mixed boundary conditions

Hence, we arrive at the Majorant Mg;:

Ma (=(v),y ”'@/ ):(Le(v)—y) dx-+

1+ .
+ 275 C& (Jldivy—f+IF+yvlda) . (104)
It has a clear physical meaning. The first term of Mg is nonnegative and
vanishes if and only if

y = Le(v).

It penalizes violations of the Hooke’s law. The meaning of the second term
is obvious: it contains L2-norms of other two relations, which gives errors in
the equilibrium equation and boundary condition for the stress tensor.
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Thus, the majorant not only gives an idea of the overall value of the error,
but also shows its physically sensible parts.

Let {Yy} C H}(Q,M"*") be a collection of finite-dimensional subspaces
that satisfy the limit density condition. Then, (104)) generates a sequence of
computable upper bounds

MY = inf {#/(Ls(v) re(v)+ L7y 1y —2e(v) 1y) dx

yeYy

BERL 3
1+ .
+250, Cb (ldivy —flf& + F +yviEa) }.

which tends to the exact value of the error.




Lower estimates

Lower estimates also follow from the general theory. We have

%/]Lz—:(vfu):e—:(vfu)dsz@(v,w)7 Yw € Vo,

where

Mg (v, w)

N \

/ ) e(w)dx — /]Ls(v) ce(w)dx —

—/f-wdx—/F-wds.
Q

59

By the same arguments as for the diffusion equation one can prove that

%/Le(v —u):e(v—u)dx = sup Mg(v, wy).

weVy
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By the maximization the functional Mg on a sequence of finite-dimensional
spaces Vok C Vg, we obtain a sequence of computable lower bounds

Mk@ = sup Mg(v, wy).
wEVok

If the spaces Vo« satisfy the limit density condition stated, then the
sequence of numbers {Mg} tends to 3[le(v—u)|?.




Linear elliptic equations of the fourth order

Now, we consider the problem

V.-V-(BVVu)=f in Q (105)
Ou
u= oo = 0 on 0RQ. (106)

Here Q C R?, v denotes the outward unit normal to the boundary, and
B = {bijkl} [S ﬁ(szz,ngz). We assume that bijaq = bjii = biij,

a1ln® < Bn:n < aaln’, vnge M,
and

fe L’ (Q), by e L™(Q).

Mat-5.210 Special Course in Computational Mechanics, Autumn 2006,




To apply the general scheme, we set

U=L%Q,M>*?), V=HQ),
ow
Vo—{WEV\W—a—V—O Onaﬂ},
and define A as the Hessian operator. Now, the basic integral identity has
the form
/BVVU 1 VVwdx = /fw dx VYw € V,. (107)
Q Q

By B! we denote the inverse tensor, which satisfies the double inequality

a'InP <B'pin<arlnP vneMP?




The spaces Y and Y* are equipped with norms

Iy I?= / By ydx; |y|’= / Bly : ydx,

Q Q
(L,w) = f/fwdx,
Q
and
Q ={yeY" /y:Vdex:/fwdx, Yw € Vo}.
Q Q
Since

||VVWH > O(3||WH272,Q Yw € V()7

we have the required version of the coercivity condition

[Aw]| > cs]|wl|v.

Problem (105) and (106) is associated with two variational problems.




Problem P. Find u € Vy such that
J = inf J
(U) vIEnVD (V),

where
Jv) = %/BVVV : VVvdx — /fwdx.
Q Q
Problem P*. Find p € Q; such that

I"(p) = sup I"(a),

where
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Two basic relations for the deviations that we derived in the previous
Lecture now come in the form:

I VY(v—u) >+ [ a—p 3= 2(J(v) — I"(q)), (108)
and
I VV(v—u) >+ [l a —p|I3= 2D(VVv,q) =

- / (vaV  VVv+Blq:q-2VVv: q) dx. (109)
Q

They hold for any v € Vg and q € Q}.
Also, from the general theory it readily follows the first a posteriori
estimate:

LIVl - P @+ 9y + (1+5) 52, o)

here d2(y) = inf —y?.
where d(y) ord la—yll
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Note that
/y :VVwdx = /(divdiv y)wdx, Vw € Vo,
Q Q

so that A* : Y* — H™2(Q) is the operator divdiv.

Next,

€+ Ny,w)= /(y 1 VVw — fw) dx
Q

and, therefore,

J({y : VVw — fw) dx

d%(Y) =JL+Ny] = sg\;/) 2 Tvvw]
w 0
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1f
y € H(divdiv, Q) := {y € L2(Q, M) | divdivy € LZ(Q)},

then this quantity is estimated by the relation
" divdivy — f
L4 Ay < sup ldivaivy —Flalwla _
wevg I VVw ||

< sup ||d|vd|vy—f|\g|\w\|g Cm
weVg || VVw|

Hdlvdlvy —flle,

in which Ciq is a constant in the inequality

lwlle < Cio||VVW|a Yw € V.

Now, we obtain the first variant of a posteriori estimate for the biharmonic
type problem.




First a posteriori estimate

1
21— u) IP< (14 B)D(VIv, )+
1\ o ivdivy 2

Here, y is an arbitrary tensor-valued function from H(div div, ) and 3 is a
positive real number. However, this is rather demanding in relation to the
dual variable y (which must have square summable divdiv). To avoid
technical difficulties that rises from this condition, we estimate the negative
norm in a different way.
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Sy : VVw — fw) dx
[£+Ay] =sup?

weVg I VVw |
J({y: VVw + 1 - Vw + divpw — fw) dx
Q
= sup =
wevg I VVw |

J(—divy - Vw + 1 - Vw + divpw — fw) dx
Q

<
I VVw

C . C .
< "Edivy - nlla + —2||divy — f|a.
a1 a1

Here, n is an arbitrary vector-valued function from H(div, Q) and Caq is a
constant in the inequality

[Vwlla < Ca||VVW|| Yw € Vp.




Second a posteriori estimate

Then, we arrive at the estimate
1
5 IVV(v—u) [°< (14 B)D(VVv,y)+

1 1 . .
+ (1 + *) ~— (Caa|divy — nlla + Cialldivy — fllo)®, (112)
B) 2af

in which y € 4y (R) and n € H(div, Q).
This estimate was obtained in
P. Neittaanméki and S. Repin. A posteriori error estimates for

boundary-value problems related to the biharmonic operator,
East-West J.Numer. Math., 9(2001)
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Note that
lw|| < Ce||Vwlla < CeCaq||[VVW|a Yw € V.

where Cf is a constant in the Friederichs inequality. Therefore,
Cig < CrCaq. In view of this, we obtain a slightly different form of the
deviation estimate:

219V —u) IP< (1+B)D(VIv,y)+

1\ C? . .
+ (1 5) 523 laivy — s + Crldivn — fla)*, (113)
O[l

For boundary conditions of other types, the deviation majorants can be
derived by arguments similar to those used in Lecture 6.




Lower estimates of the deviation from u

Lower estimates follow from the general estimate discussed in Lecture 5.
We have
| VV(v—w) [> Mo (v,w) w e Vo, (114)

N[ =

where

Mg (v, w) :

S Ivvw I - / (BYVV : VVw — fw)dx.
Q
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Lecture 5

A POSTERIORI ESTIMATES IN NON-ENERGY QUANTITIES
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If we cam estimate the energy error norm, then we can estimate all other
quantities subject to it.
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General Principle

If
lu-vi< Mg
and
plu—v) <Cllu—ua |
then

$(u—v) <CMg
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Example

By the embedding theorems we know that for any Lipschitz domain

|
If g>1,and 14 2 > 7, then W2(Q) is continuously embedded in L9(R),

n
. a9 =
ie.,

[wllg,e < C(R,q)[lwll1,2,0

|
If 1> 7, then W2(Q) is compactly embedded in C(RQ), i.e.,

Iwllc@) < C(Q)Iwll1,2,0




If the conditions of above theorems hold, then we obtain

[u—vllg.0 < C(2,9)Mg(v,y)

Note that if n = 2 then the above relation holds for any finite q.

esssupeeq||u(x) — v(x)[| < C(2,q)Ms(v,y)




ERROR ESTIMATES IN TERMS OF GOAL-ORIENTED FUNCTIONALS

L(u—v) < Mgg
Example:
<é,u—v>:/<p(u—v) dx,
Q
where the weight ¢ is a locally supported function.
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Let us consider the methods of goal-oriented error control on the paradigm
of our Basic Linear Problem.

(AAu, Aw) =< f,w >, VYw € V. (115)

A e L£(U,U),

A e L(V,U),

V is a Banach space, Vg is a subspace of V, f € Vj,

U is a Hilbert space equipped with scalar product (-, -),
< -, > denotes the duality pairing of Vg and Vj.
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We assume that the operators A and A satisfy the conditions

allylld < (Ay,y) < ellylld, vy € U, (116)
colwilv < [Awllu, Y € Vo, (117)

Our aim is to derive estimates of the quantity
<ftu—v >,

where v is an arbitrary element from V.
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A commonly accepted way of the derivation of such estimates is exposed in
the works of

M. Ainsworth, R. Becker, C. Johnson,

K. Eriksson, P. Hansbo, T. Oden,

S. Prhudome, R. Rannacher, E. Suli and other scientist, see, e.g.,

M. Ainsworth and J. T. Oden, A posteriori error estimation in the finite
element method, Numer. Math., 60(1992), pp. 429-463.

W. Bangerth and R. Rannacher, Adaptive finite element methods for
differential equations, Birkh&user, Berlin, 2003.

It consists of the attraction the adjoint problem.
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Adjoint problem

Find ua € Vg such that
(A*Aua, Aw) =< L,w > Yw € Vo, (118)
where A* is the operator adjoint to A, i.e.,

(Ay,z) = (y, A*z) Vy,zeU.
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Mat:

Proposition

Let u, v and u,, v, be exact and approximate solutions of the primal and
adjoint problems respectively. Then,

< L,u—v >:=E(v,va) = Eo(v,va) + E1(v, va), (119)
where

Eo(v,va) = < f,va > — (AAv, Av,) (120)
and

E1(v,va) = (AA(u — v), A(ua — va)). (121)
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Since u, is a solution of the adjoint problem, we have

<liu—v>= (A"Aua, A(u —v)) =
= (AA(u — v), Au,) =
= (AA(u — v),A(ua — va))+ < fva > — (AAv,Av,).

O
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Eo(v, va) is explicitly computable !

Ei(v,va) contains unknown solutions of the two problems.

Let Vi and V. be two finite-dimensional subspaces of Vg, and let v = uj
and v, = uar, where u, and u,, are solutions of the problems

(Al\uh, /\Wh) =< f,Wh > Ywy, € Vh7 (122)
(A*Auar, Aw,) =< liw, > Yw, € V. (123)

Mat-5.210 Special Course in




In the particular case Vi, = V., the relation (122) implies that

Eo(un, uar) = 0 so that there remains the term containing the product of
the (unknown) energy errors. On the contrary, for noncoinciding spaces
both terms Eg and E; are present. Moreover, it is easy to show that the
term Eg dominates if v, is close to u,. Indeed, if va — u, in V, then
A(ua — va) — 0 in U, so that

Ei(v,va) — 0.

However,
Eo(v,va) + Ei(v,va) =< L,u—v ># 0.

Hence, if v, is sufficiently close to ua, then the directly computable term
Eo(v,va) contains the major part of the estimated quantity.
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Key question: how to estimate

Ei(v,va) = (AA(u — v), A(ua — va)).

Two ways.
m Economical method that gives correct presentation on the error but
does not give guaranteed error bounds,

m Computationally expensive method that provides two—sided
guaranteed error bounds for the goal-oriented functional.

Mat-5.210 Special Course in




Economical way: use post-processing methods

Main idea: recover the unknown functions Au and Au, by some
post-processing techniques.

See: S. Korotov, P. Neittaanmaki and S. Repin,
A posteriori error estimation of goal-oriented quantities by the
superconvergence patch recovery, J. Numer. Math. 11 (2003), 1, pp. 33-59.
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Let G, and G- be averaging operators defined on V, and V., respectively.
Replace E(un, ua-) by the directly computable functional

E(un, uar) := Eo(un, uar) + E1(un, uar), (124)

where

Ei(un, uar) = (A(Gn(Aup) — Aup), G- (Auar) — Auar) .

If the operators G, and G, perform a proper recovery of Aup and Au,.,
then it is natural to expect that the difference between E1(uh, uaT) and

E(un, u,-) is given by higher order terms and, thus, the latter quantity can
successfully be used instead of Ej.




Two—sided estimates

Main idea: is to apply two-sided error estimates given by Mg and Mg to
derive sharp bounds of (AA(u — v), A(ua — va)) using a special
representation of this term.

See
P. Neittaanmaki and S. Repin, Reliable methods for computer simulation,
Error control and a posteriori estimates, Elsevier, New York, 2004.
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Certainly, we may simply use the estimate
(AN(u —v), Aua — va)) <[l A(u—v) ||| A(ua —va) || -

However, it may considerably overestimate the error.
Therefore, it is suggested to use the algebraic relation

2
2ab = (aa + 1b) —a?a? - lzbz.
« o
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We have
(,u —v) := E(v,va) = Eg(v, va) + E1(v, va), (125)
where v is an approximation of u, v, is an approximation of u,, and

EO(V7V3) = <f7Va> - (AAV, Avﬂ)a
E1(V,Va) = (AA6f,A5/), 5{ = (u — V)7 5( = (ua — Va).

By the algebraic identity
2(ANG,, Nos) =

1 1
=l Aade + ~00) |I* —a® || Ade [I” —— | Aoe |I* . (126)
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Assume that for the primal and adjoint problems we have found good
upper and lower error bounds in the energy norm, i.e., we have y{, y;, 0r,
Be, we, and wy such that

1 *
me = Mo (v,wr) < 5 || A% [°< Mo (v, fr,¥i) = M,

1 "
me = Mo (va, we) < 5 | Ade [P< M (va, B, ¥7) 1= M.




Note that the quantity

1 2 1 1 2
A =6¢) [P=Il Alou + Zua — av — = v,
I Aade + =) IP=] Aau + —us — av = —va) |

can be viewed as the norm of the difference between the exact solution
ugy € Vo + (a + é)uo of the problem

(ANugy, Aw) + (of + éf, w) =0, Yw € Vo

and the function vy, = av + éva eEVo+ (a+ é)uo, which is an
approximation of ug.

Mat-5.210 Special Course in




To obtain two-sided bounds of || A(ads + L6,) II> we use already known
functions yf, y;, wr, and wy and compute the numbers

o 1
mey = M@(anyawf + awf)r
e * 1 *
M = Mg (uy,, 3, ayr + EW)'

We note that mg, = mg(a), Mg = Mge(a, 8) and positive numbers « and 3
can be taken arbitrary. By (126), we obtain

< i —aPme— My =
(AA(S;,A&/)_ ,IﬁnefM{M” a mg 042}- m@,

@

M
(ARG, AGg) > sup {mg; — o’ My — a—f} =M.

a€ERy




Recalling (125), we now deduce a two-sided estimate

Mo + Eo(v,va) < (,u—v) < Mg + Eg(v,va), (127)

If yf, y7, wr, and wy provide accurate two-sided estimates of the energy
error norms in the primal and adjoint problems, then Mg, and mg¢, furnish
accurate two-sided estimates for the norm || A(ads + 2 5¢) I and,
consequently, (127) yields sharp upper and lower bounds of (¢,u — v).
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Error estimates in terms of seminorms

Estimates of u — v computed on a set of linear functionals can be used for
an evaluation of this difference in some seminorms.

Let w be a subdomain in Q and {¢1, 2, ..., ¢4} be a set of functions that
vanish in Q\ w.

By the method described above, we can estimate the quantities

1= [ o) (u(x) — v(x) dx

w

Using these quantities we can estimate the error in terms of local
seminorms




Let
lu—vlE. = / () — v(x)P? dx.
Note that
[ n(u — v)dx
lu—vlzw = sup
nGLz(uJ) ||77H2;W

and the supremum is attained if n =u — v.




Thus, if the difference u — v is known to belong to a certain set
T(w) C L?(w), then the problem is reduced to the evaluation of the

seminorm
[ n(u = v)dx
|lu—v|y:= sup

neT(w) [Im]

2w

In general, a seminorm does not provide complete information on the error,
because the relation |u — v|y = 0 does not mean that u = v. Nevertheless,
seminorms may give a useful information if T contains sufficiently large
amount of linearly independent functions.




Let T be a subspace made by s, i.e.,

T = Span {1, 2, ..., pd} = {Z Ocsnps} .

s

Then,
d
S [ (- v)dx
[u—v|y = sup ':Z = . (128)

aeR 1
Y @iy [ pipidx)?

ij=1 w

This problem is equivalent to the following one:




|_réfRZa;aj/<pigojdx‘

1, w

for all a; such that

d

iz;aiw/cpi(u —v)dx=1

The latter problem can be reformulated as:

| Mechanics, A




Problem. Find the quantity

#*(w,T) = inf Ba - a,
acQ

where a = (a1, az, ..., ad4),
Q:{aERd \a-l:l}, |:(|¢1»|<P27

and

B = {bjj}ij-14, bj= /@igo,- dx.

w

oy Lgy),

(129)




The problem (129) has a minimax form

ﬂ(wT)—lerg/s\u?R{Ba at+A(a-)-1]} >

> sup inf {B a-a+A[(a-1)—1]}. (130)
A€RacR
Assume that the functions ¢; are chosen in such a way that B is a positive
definite matrix. Then (130) holds as equality. The minimization problem
that stands on the right-hand side in (130) has a solution

__Ap-1
a= 2B l.




Therefore,
K2(w I)—sup{——)\zB 1I-I—)\}—71
’ AER 4 B-11- |7

and

1
K(w, T)
We see that the value of |u — v|y is not difficult to find, provided that the
functions {ps} are properly chosen and the respective quantities /I, are
defined.

lu—v|r = = (B711-1)z.
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Let us show that if v € T(w) and u is a sufficiently smooth function, then
seminorm |u — v|y gives a good estimate of |u — v||2,.. Let T(w) be a
subspace of [?(w) and U be an arbitrary function from T(w). Then

J((u—=1)n+ (@ —v)n) dx
Jlu—vl20 = sup

nELz(w) ||77H2,w

J (@ —v)n dx

< sup +lu—1u

|2,w~

neL2(w) lI7l]2.0




Since u — v € T(w), we have

J(@—=v)n dx
Ju—vl2. < sup

e =2
neET(w) lI71l2,e0

By rearranging again the numerator of the fraction on the right-hand side,
we arrive at the estimate

J((@—u)n+ (u—v)n) dx

o= vlaw = sup 2 T llu— i <
nET(w) [In]l2.
J(u—v)n dx
< sup %
neET(w) lIml

+2llu =120 = [u—vlr +2[u 20,

2w

in which U is an arbitrary function from T(w).




Hence, we see that
lu—=v|2,w < |u—v|y + 2dist(u, T(w)), (131)
where

dist(u, T(w)) = _inf lu—c

is the distance between u and T(w).

If T(Q) is a set of polynomials and u is a smooth function then §(u, T(w))
can be estimated with the help of well-known results of approximation
theory.




By similar arguments, we obtain

JS((u—=1)n+ (@ —v)n) dx
Jlu—vl2w = sup

nELz(w) ||77H2,w

J (@ — v)ndx
> sup

T oaelw) Il

2w

= [u =120

Since G — v belongs to T(w), we can replace in the first integral n € L? by
neT.
Then, we obtain




J((@ = u)n + (u—v)n) dx

[lu—vll2.. > sup —lu—-1lz0 >
neET(w) lImll2.0
J(u—v)n dx J@—u)n dx
> sup ———— — sup — Hu *ﬁ||2,w =
nev@)  Inllze neizw)  lmll2w
=|u—v|r —2|u— G| 2,ws Yu € T(w).
From here, it follows that
lu—vl|j2,6 > |u—v|yr — 2dist(u, T(w)). (132)

By (131) and (132), we conclude that the error arising if ||u — un||2,0 is
replaced by |u — un|r depends on the regularity of u and approximation
properties of T(w).




Lecture 6

A POSTERIORI ESTIMATES FOR MIXED METHODS




Mixed approximations. A glance from the minimax theory

Consider our basic problem

divAVu+f=0 inQ,
u = ugon 019,
AVu-n = Fon 0,2,

Gle? <AX)E - < Bl VEERY, forae x€Q,

where up € HY(Q), f € L2(R), F € L»(3:9) . Functional spaces

V:=H'(Q), Vo:={veV|v=0 on 59}, V= L2(),
Q= Lz(Q;]Rd) (3 =
Q' :={yeQ|y- n|,,q € L2(0292)} .

H(Q; div),




We recall that ||q/aiwv is the norm in H(L; div):

lallav := (llal® + [[dival®)'* Va € Q

and
1/2
lal=| [ Aa-asx| . aca
Q
1/2
lal.=| [ Aa-qdx
Q
Note that,

P <A (x)E-£ <P VEEeR?, forae xeQ

with ¢; = :l/Cz7 C = 1/C1.




Generalized solution can be viewed as a saddle point of the Lagrangian
1.4
L(v,q) := Vv~q—§A q-q) dx—£(v),
Q

where £(v) = [, fvdx + fazsz Fv ds.
______________________________________________________________________|

The problem of finding (u, p) € Vo + up X Q such that

L(u,q) < L(u,p) < L(v,p) Yq€Q, Vv Vo+ug (133)

leads to is the so-called Primal Mixed Formulation

omputational Mechani




In this formulation the solution of a PDE is understood as the pair of
functions (u, p) € (Vo + ug) X Q satisfying the relations

/(A*lpfw) .qdx=0 VqeQ, (134)
Q
/p-dexfE(w)ZO Yw € Vy. (135)
Q

In the PMM,

p = AVu, issatisfiedinL2(Q) — sense

divp+f=0in Q and p-n= F on 0,9 are satisfied in a weak sense.




As we have seen in previous lectures L generates two functionals
1
J(v) :=supL(v,q) = 5 || Vv || —£(v)
qeq 2

and 1
F(@i= 5 lal? ~¢(u)+ [ Vuo-qdx.
Q
Also, we know that

inf  J(v) :=infP = L(u,p) =supP” := sup I"(q), (136)

vEVo-tug 9€Qy

where Qe :={q € Q | [q- Vwdx = £(w) Yw € Vo}.
2
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Primal Mixed Method (PMM)

Let Qn C Q and Von C Vj are subspaces

constructed by FE approximation, then a discrete analog of (134)—(135)) is the
Primal Mixed Finite Element Method

See, e.g., F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element

Methods. Springer-Verlag, New York, 1991.

D. Braess. Finite elements. Cambridge University Press, Cambridge,

1997.

J. E. Roberts and J.-M. Thomas, Mixed and Hybrid Methods. In

Handbook of Numerical Analysis, 11, eds. P. G. Ciarlet and J.-L.

Lions, North-Holland, Amsterdam, pp. 523-639, 1991.




In PMM, we need to find a pair of functions
(un, pn) € (Von + ug) X Qy such that

/ (Aflph — Vuh) *Jh dx=0 VQh € Qh ) (137)
Q

/ph - Vw, dx — E(Wh) =0 Vw, € Vo . (138)

Q

In this formulation, u, can be constructed by means of the
Courant-type elements and py, by piecewise constant
functions.




Dual Mixed Method (DMM)

Another mixed formulation arises if we represent L in a somewhat different
form. First, we introduce the functional g : (Vo + ug) x Q — R by the
relation

g(v,q) == [ (Vv-q+v(divg))dx.
f

We have
1.
L(v,q) = Vv-a-35ATq-q) dx—£(v) =
Q

—g(v.)~ [ vidva)dx— 5 [ ~¢(v).
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Introduce the set

Qr = {qe@ | g(w,q):/ Fwds Vw € Vo}.
8,0

Note that for q € ap we have
g(v,q) = g(w + uo, q) = g(w, q) + g(uo, q) =

:/ Fwds + g(up, q) Yw € V.
8,9

Therefore, if the variable q is taken not from Q but from the narrower set
QF, then the Lagrangian can be written as

L(v,q) :=
1 .
3 lal? - / v(divg) dx — / fu dx — / Fuo ds + g(uo, q).

Q Q o)




We observe Note the new Lagrangian L R
is defined on a wider set of primal functions v € V, but uses a narrower set
QFr for the fluxes.

The problem of finding (u,p) € V x Qr such that

L(@,4) < L(@,p) < L(V,p) VacQr, WeV (139)

lead to is the so-called

Dual Mixed Formulation
of the problem in question (see, e.g., F. Brezzi and M. Fortin).




From (139) we obtain the necessary conditions for the dual mixed
formulation. Since

L(@,6) <L(,p) va e Qr,
we have

1, PN 5 ~
— 5 I 2= [ Gaiv( + xn) — faydx— [ Funds + gluo.po+ ) <
Q 8,9

1, SR _ A
—5 P2 f/u(dlvp)dxf/fudxf / Fuo ds + g(uo, p),

Q Q 9,9

where A is a real number and 7 is a function in 60 = 6[: with F = 0. Now,
arrive at the relation

C1a I e
_)\/(A 15 - n + t(divn))dx+Ag(uo, ) < 7/A 1y - ndx.
Q
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Rewrite it as

_1a s A _
/(A "B+ G(divn))dx—g(uo, 1) = 5 /A 'n - ndx.
Q Q
Since A > 0 can be taken arbitrarily small, the latter relation may hold only
if
[ (A5 + v )dx—g(un, ) = 0.
Q

But 7 is an arbitrary element of a linear manifold 60, so that +n can be
replaced by —n what leads to the conclusion that

/(Aflf)\-n + udivn)dx—g(ug,n) =0 Vn € Qo.
Q




From

~ ~

L@,p) < L@+v,p) WeV:=L%Q)

we observe that the terms of L linear with respect to the ”pressure” must
vanish. Namely, we obtain

/ (Vdivp + FU)dx = 0

Q
Thus, we arrive at the system
J (AP -+ (divd)d) dx = g(uo,d) Va € Qo, (140)
Q
[(divp + f)udx = 0 WeV. (141)

Q




We observe that now the condition
divp+f=0

is satisfied in a ”strong” (L2) sense, the Neumann type boundary condition
is viewed as the essential boundary condition, and the relation

p=AVi

and the Dirichlet type boundary condition are satisfied in a weak sense.
These properties of the DMM lead to that the respective finite dimensional
formulations are better adapted to the satisfaction of the equilibrium type
relations for the fluxes. This fact is important in many applications where a
sharp satisfaction of the equilibrium relations is required.
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The Lagrangian L also generates two functionals

JEW) := sup L(V,§) and T1°(§) := inf L(¥V,§).

GeQr vev
The two corresponding variational problems are

JW) and  sup I"(q).

They are called Problems P and 7/5*, respectively. Note that the functional
J (unlike J) has no simple explicit form. However, we can prove the
solvability of Problem P by the following Lemma.




W1}

a

2 3 a %1} X3 2 3

For any V € V and F € Ly(8;R) there exists p € Qr such that

divp' +v=0 in Q, (142)
I'e* < Co (IN[] + [[Fllo,e) - (143)

Proof. We know that the boundary-value problem
divAVu' +v=0 inQ,
u'=0 onoQ,
AVu' -n=F ondhQ

possesses the unique solution u' € V.




For it and the energy estimate
I Vu" [|< Ca ([ + [[Fllo,2)
holds. Let p' := AVu". We have
divp' +v=0.
Obviously, p* € Qr and, since

Ie* 2= /A_I(AVUV) - (AVU") dx = Vu' |I?,
Q

we find that (143)) also holds.
O




By the Lemma we can easily prove the coercivity of Jon V. Indeed,

J@) > L(v,ap") =
1
-3 Il e | —a/ (divp® )dx—/fAdx— / Fug ds + g(ug, ap’) =
Q 5,9
1 v -~ ~ v
= —50" I p" I +alv)* — [F[[I¥9] + g(uo, ap”) - / Fuo ds.

)

Here |g(uo, ap”)| < a|p”|ldiv][uol[1,2,0 and

2 2 . 2 1 2 =112
10l = llp"[1" -+ lldivp™[|™ < = I p" [l +IV]I" <

1 ~ -
< aC?z (NIl + IF lo,2)* + 9]




Therefore 1
JVv) > —5042C?1||V||2 +o|[V)|* + ©([V]) + @0,

where ©(]|V]|) contains the terms linear with respect to ||[V]] and @g does
not depend on V. Take a = 1/C%. Then
1

3@) = 5o 91+ O + @0 — +00 as 7] — oo
Q

It is not difficult to prove that the functional J is convex and lower
semicontinuous. Therefore, Problem P has a solution u.




Inf-Sup condition for the dual mixed formulation

Corollary
Lemma implies the inf-sup condition

Sj;qﬁdiqux—i— fazﬂ ¥q-nds
inf sup >Cp>0.

ver2@ qeqe llav(l[412 + [1413,0)"/2
€L2(8,Q)

W




~

The Dual Problem with respect to the Lagrangian L

Let us now construct the dual functional 1*. It is easy to see that

@ =infl(v,q) =

=inf {5 1a 1 -/ wava)ax— [ fuax— [ Funds--g(un. @) =
Q

Q 9,9

1, _
— 5 1T +ew.@) - [ Fuds

5,0

provided that divg + f = 0 (in the Lo-sense). In all other cases 1*(§) = —oo.
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2 3 a %1} X3 2 3

Recalling that divg = —f (in L>()-sense), we find that the dual functional
for such a case has the form

~ 1 ~
I"(q) = -3 I 4> +/(Vuo q-— fuo)dx—/aQFuo ds
2
Q

N 1
— [ Vuo-adx— 5 1@ 12 ~£(w),
Q

Since q € 6F7 we have

/Vw -qdx = — /(diva)wdx +/ Fwds Yw e Vy.
X0
Q Q

we see that q satisfies the relation

/Vw-adx:ﬂ(w) Yw € Vp.
Q

In other cases, I*(§) = —cc.




Thus, Problems P* and P* coincide and are reduced to the maximization
of I" on the set Q. This means that

supP* = sup P*.

Since the saddle point of L exists, we have

but

Thus, we infer that
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Thus, we conclude that u € Vg + up (minimizer of P) also minimizes Jon V.
Analogously, if p € Q¢ is the maximizer of Problem P*, then

/Vw'pdx:/fwdx—k/ Fwds Yw e Vp.
Q Q 920

From here we see that divp +f =0 a.e. in Q and, hence,

/(Vw -p + (divp)w) dx = / Fwds Vw e Vp,
50
Q

that is p € 6;. Thus, p is also the maximizer ofAProblem P*.
The reverse statement that the solutions of P, P* are also the solutions of
P, P* is not difficult to prove as well.




Hence, both mixed formulations have the
same solution (u, p) which is in fact the
generalized solution of our problem.




Finite dimensional formulations

Let

Vi C \77 Qon C Qo Qrr C QF
A discrete imalo/\g of the dual mixed formulation is: Find
(Un, Pr) € Vi X Qrn such that

/ (AP -Gt dndivein ) dx=g(uo. @) Van € Qo (149)
Q
/ (divpn + F)Undx = 0 Vi € V. (145)
Q
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Error analysis for DMM

First we will obtain a priori error estimates for the dual mixed method and
after that we will derive computable upper bounds for the quantities

IVu—=un)ll, 'p—pnll; lIp—Pnllav-
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A priori error estimates for DMM

Below we will show a simple way of the derivation of projection type error
estimates for the dual mixed method. By combining them with standard
interpolation results, one can obtain known rate convergence estimates. A
detailed exposition of this subject can be found in the above cited books.
Here, we present a simplified version, which, however contains the main
ideas of the a priori error analysis for the dual mixed approximations.
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For the sake of simplicity we will consider the case of uniform Dirichlét
boundary conditions and a constant matrix A. In this case, the basic
system is as follows

[ (A5 -G+ (divg)i) dx =0 Vg€ Qo,
Q

[(divp + f)idx =0 wWev.
Q

§ince there is no Neumann part of the boundary, a[: and 60 coincides with

Q := H(Q, div).




In the considered, case the system of DMM is as follows

\/(Ailah -ah—l—ﬁhdivah)dx:o Vah S am

Q
/(divfih —+ f)Vhdx =0 Wh S \7h~
Q

Assumptions.

(a) Th is a regular triangulation of a polygonal domain €.
(b) vh ={vheL?|v, e PT) VT €T}

(¢) Qn = {qn € H(R,div) |gn € RTY(T) VT € T}

(d) fePYT), YVTET
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Note that under the assumptions made
divph +f =0 onany T.

Indeed, this fact directly follows from the relation

/(divﬁh + f)Vhdx =0 Yv, € \7h~
Q

Therefore pn € Qs.




Compatibility and stability conditions

In order to provide the stability of the discrete DM formulation we need
additional assumptions. L

We assume that a pair of finite dimensional spaces Vi, Qn satisfies the
following condition:

For any v, € \7h exists qy € 6;. such that

divgy = v (compatibility), (146)
gl < Cllwall ~ (stability). (147)
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Mat:

We will show that the above two conditions are the sufficient conditions for
proving that discrete DM problem is

(a) correct (e.g., has a solution),

(b) stable,

(c) has a projection type error estimate.
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Discrete Inf-Sup condition

From (146)) and (147), it follows that
J vndivgn dx

inf sup e
vh€Vh g, €Qy lIvh [l an]|div

>C>0

Indeed,

[ vndivgndx [ vpdivgy, dx
Q Q

< < vl 1
p > — = > :
aca, [Volllanllav = [lvallllaglley — [lan[lav = vI+C2

Now, we refer to known results on the solvability of DMM, that can be
summarized as follows: if the triangulations are ”regular” and the discrete
Inf-Sup condition holds, then the discrete formulation has a unique solution.
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Projection type estimate for the dual problem

Since p is a maximizer, i.e.,

1 2 1 2
_ = < =
slalP<—3Ipl?  vacq,

we find that

/A71p~qu:0 vq € Qo,
Q
where Qo is the space of solenoidal functions. Therefore, for any q € Qy,

1 21 2 1 2 -1

Tva_pize = _z A lp-(p— -

Sla-pli=Llalt S il + [ A (- as
Q

1, o 1, o
= lal 5 el
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Let Qm = Qf N Qp. Note that pPh € Qm is also the maximizer of f% Il am |2
on Qm, so that

1 2 2_1 2 1 2
—= — — —= < = —_— =
5 e —plli= \|| pn % — ||\ Plss llamli =5 lel

,_\N

S llam—p ||| Vam € Qm.

N

Thus, we arrive at the first projection estimate

Ip=pul-< inf |lp—aml-. (148)
am €Qm




However, this projection error estimate has an obvious drawback. It is
applicable only for a very narrow class of approximations: conforming
(internal) approximations of the set Q.

To obtain an estimate for a wider class, we first derive one auxiliary result.




A Modified DM problem

Take f = div(gn — p) where g, € ah and solve the modified DM problem

/ (A’lﬁﬁ -ah+a{,divah)dx=0 Yan € Qon, (149)
Q
/ (divpl, + T)Undx = 0 Vo € V. (150)
Q

Under the assumptions made fe PO(T), the above DM problem is solvable,
and

I8 12 + / & divpldx — 0,
Q
= 2 ~f N PO
Il Pn %< llunlll|divpg || = [|ag|If]]
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From here, we observe that
S IBhI? <l Bl < (1G]l (151)
By (146) and (147) we conclude that for G we can find s in Qs such that
divdn + =0 and |Gl < Clla
Use @n in the first identity (149). We have,
/(A—la; -G+ Ghdiv, ) dx=0
Q

Thus,

~f 12 ~f 4o = ~ -
Gl :/ﬁmwmsmmquwms
Q

= ~ = = I~ ~f
< T P [l [lanll < €C || pn [I« [Tnll-




We observe that

[[Un]| < €&C || ph [I- - (152)
Now, we use (151)) and obtain
~f 12 ] _ ~ ~
Il Bh 1< IGRIIF]] < €C | B I« [IF]]
so that
€|l <l Ph [I-< ECJIf|]. (153)

Hence,

2
~ ~ . C T
[PhlGw = [Ih]l* + Idivpa|* < (1+ C%C2)Hf\|2- (154)
1




We note that the estimates (152), (153), and (154) show that the modified
DM problem is stable, i.e. its solutions (ﬁ{,,ﬁ‘;) are bounded by the problem
data uniformly with respect to h.

If replace f by f, then we can derive the same stability estimate for the
functions (pn, Un) that present an approximate solution of the original DM
problem.
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Projection estimates for fluxes

Now, we return to the projection error estimates. As we have seen
— « < inf — .
I —pnll-< _inf lip—amll

This estimate did not satisfy us because the set Qg is difficult to construct.
To avoid thls drawback, we apply the following procedure.

Let n, = Ph + Qn, where Gy, is an arbitrary element of Qh

We have,

divn, = divpy, + divgy = —f + divg, =
= div(p — qn) + divgn = divp = —f.

Therefore, n, € Q¢
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Now, we recall the projection inequality and substitute in it n,:

PUEN
Ip—pnll«<llp—nnl-=llp—pn—an[.< (155)
<[lp—anll«+1lpnl- (156)

Note that in the case considered div(p — pn) = 0, so that
1
I = pullav = llp = pull < =l p = pn [l -

Therefore,

1 . R
Ip = pullav < =-(I P —an [l +] pn 1<) <

1 . _ ~
(153) < 2 (e —an [l +ECJF]D-

But f = div(p — Gn).




3 a 1] & || 11
Thus, we arrive at the estimate
P — pnllav <
1 ~ _ . ~ ~
< g, (lp—an [l +&Clldiv(p —@n)[l) Van € Q.
and, therefore,
P~ Pnllav <

€ inf {Ip—Gn Il +ldiv(p—Gn)I}. (157)
ah€Qp

where (_:,, depends on C,T1, and & and does not depend on h.




Projection type error estimates for u — uy,

We have

/(A_lah -ah+ﬁhdivah)dx:0 Vﬁh S ah-
Q

Since Qn C Q, we also have

/(Aflp . ah—i—udivﬁh)dx:o.
Q

From here, we observe that

/ (A7 (Bn = P) - G+ (n — u)divein )dx=0 ¥a € Q.




Denote
1 .
[ult = = [ udx, [ula(x) =[u]r, if x€Ti
Tl J+
Since divqy, is constant on each T;, we rewrite the relation as follows:
J (A B0 0) @ (@ — [l ) =0V € Qu.
Q

Note that [u]n € \7h and therefore Gip := Un — [u]n € \7h Now, we exploit the
compatibility and stability conditions (146) and (147)) again. For @, one can
find qf, € Qn such that

divah + G = 0 and ap| < Clfanll




Let us use this function qj, in the integral relation. We have

/(Ail(ﬁh -p)- q;.—&-ﬁhdivqﬁ)dxzo,
Q

From here, we conclude that
J? ]/ (v —p)-a| <

<l Pn—p Il an < C || Pn — p [l [[Tn]l-
Thus,

[[Gn]| = [[[uln —Un|| < CC [P —p - -




We have

[Ju =l < [lu— [ulnll + [[[u]s — G| <
< lu—[ulafl +C& | pn —p I

Note that by the definition of [u]n
lu—[ula]l < [lu=val|  Vvn € Vi
From here, we observe that

lu—@ul < CE I Bn—p Il + inf [u—wi
vhEVR

Recall (156]) and observe that

I'p—pnll<llp—anl+I[lpnll-<
I'p =@ I+ +€2 C|div(p —@n)]l.




Then, we arrive at the projection type error estimate for the primal
variable

lu— | <

< Cu_inf {llp =@ Il +]div(p — @)+

ah€Qp

+ inf lu—wll}, (158)
vhEVH
where C, depends on C, €, and €2 and does not depend on h.
Estimates (157) and (158) lead to a qualified a priori convergence estimates
provided that the solution possesses proper regularity.
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Now, we proceed to the derivation of functional type a posteriori error
estimates for the Primal Mixed and Dual Mixed methods.
Our analysis follows the lines of the paper

S. Repin and A. Smolianski, RINAMM (2005).

Our aim is to find the difference between (u,p) and (v, q) in the respective
energy norm, e.g. in the norm of the space V x U.
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A posteriori error estimates for PMM

A posteriori estimates for the mixed formulation are based on the relation
that we have already derived:

e =@ 2+ V(u—v) *=20(v) - 1I"(@),

where q € Q¢ and v € Vg + up.
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Since the difference of the functionals in the right—hand side can be
estimated by the known way, we arrive at the estimate

Ip—al2+ Il V(u—v) |>< 2(1+ B)D(Vv,y)

1 .
+(143) € (ldivy+ A7+ Iy n— FlZa) . (159

where y € a*, q € Qf and v € Vg + ug are arbitrary functions and 3 is any
positive number.




Thus, for the error in the primal variable we have

I V(u = un) IP< 2(1 + B)D(Vun,y)

1 .
+ (1 + B) C? (lidivy + I + |ly - n — Fl0) . (160)

where C is a constant in the inequality

Iw[l* + [wlZ,e < C* | Vw I* Vw € Vo.




A posteriori estimate for the dual variable

Error estimates for the dual variable in the dual energy norm || - || can be
obtained by the arguments similar to those used above.

Let g € Y* be an approximation of p. For any q € Qf, we obtain (from the
triangle inequality and Young inequalities with v > 0)

- 1 ~
la—plP < (1+7) |||q—qn|i+<1+;) ld—p 2.

Use the fact that || g —p [|2< 2 (J(v) — 1I"(Q)).
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Therefore, for any w € Vg + ug, we have
- 1 e
la-pB<@+n)la-aR+2(1+ )0 I@)s
~ 1 o
<@+ la-al +2(1+7) (J(w) — 1"(@) =
Recall that
* (2 1 1 ~ N2
J(w) —1"(q) < (1 + B)D(Vw,y) + 1+5 > la—ql:

so that the right—hand side is estimated by

(1+7) <1+$ + 1> do,2(a) +2(1 + B) <1 + i) D(Vw,q).

By




If q € U, then dgq; is given by the negative norm and we obtain

1
By

+(1+5) (1 + %) D(Vw,q). (161)

1 .
la—p I s(1+w)(1+;+ )1f+d-vql+

If q € Q then we have (for the Dirichlét problem)

1
By

+(1+8) (1 + % ) D(Vw, q). (162)

1 .
la—p 2 s(1+v><1+;+ )cn||f+d-vq||+

This estimate holds for any positive parameters 3, =, and any w € Vg + up.
Here w is a "free” function in Vg 4 ug. This ”freedom” can be used to make
the estimate sharper.
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Application of (161) to DM approximations leads (after optimization with
respect to scalar parameters) to the estimate

I'p—pn < V2DV (Vw,y)+ [y — pn ||«

1/2
+2C (|[divy + F* + |y-n— F|?) . (163)

Here w is an arbitrary function from Vg + ug and y is an arbitrary function
from Q*. If y = AVu and w = u, then the right-hand side of (163))
coincides with the left-hand side, i.e. is exact in the sense that there exist
such ”free variables” that the inequality holds as the equality.




A directly computable upper bound of || p — pn ||« is given by (163)), if we
set

v=un and y = Gnpn,

where Gn : Qn — 6+ is a certain projection operator (some examples such
operators has been already discussed in the previous lectures). We have

I p = pn [l-< V2D*(Vun, Gupn)+ || Gopn — pi |-
1/2

+2C (|| divGupn + fII° + |Gupn - n — F|*)




Projection from Q;, onto Q*

If pn is a piecewise-constant vector field on a simplicial mesh 7, then,
Raviart-Thomas elements (e.g., RT’—elements) can be used in order to
define the mapping G.

Assume that the Q has a polygonal boundary, and the latter is exactly
matched by the triangulation 7;. Let T; and T; be two neighboring
simplexes with the common edge E;. Let qn be a piecewise constant
vector-valued function that has the values g; and q; on T; and T;
respectively. Let Ej be the common edhge with the unit normal n;j oriented
from Ti to T; if i > j.

How to define the common value qj - nj on E;?
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One possible option is as follows:

1
Gi - mj = 5 (i +a5) -0y,

Another option is
= oo |Tilai +[Tila;
| T
where |T;| and |Tj| are the areas of T; and Tj. We repeat this procedure for
all internal edges of 7.
If Eip € 019, then we set Qio - nio = qio - Mio. If Eig € 329, then

~ 1
qio - Nio — —— FdS.
|Eiol Eig

Here |Ejp| is the length of the edge Eip.




Thus, all the normal components g; - nj on internal and external edges are
defined. By prolongation inside all T;, with the help of RTo-approximations
we obtain the function a piecewise affine function, which has continuous
normal components at all the edges and piecewise constant normal
components on 0S2.

Therefore, we, in fact, have constructed a mapping qn — Qi such that

dh = GnQn € 6+.
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A posteriori estimates for DMM

An a posteriori estimate for the flux p, readily follows from the general
estimate

1
By

+(1+8) (1 + %) D(Vw, y).

1 .
Liy—pl? s(1+7)(1+;+ >[f+dlvy]2+

We set y = pn € 6*. Since py is a piecewise polynomial function, it has a
summable trace on 9>€2. Then, we estimate | f + divy | from above in the
same way as before.
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Minimization with respect to v and 3 leads to the estimate

I p—Bn ll-< V2D"2(Vw,Bn) + (164)

N N 1/2
+2C ((|divpn +£]° + [Bn -0 — Fli3a)

where w is an arbitrary function from Vg + up.




Assume that Q is a polygonal domain decomposed into a regular collection
of simplexes. If py is constructed by means of RTo-elements, then

/ (divpn + wndx = 0 Ywp € Vy C V (165)
Q

where the subspace V) contains piecewise constant functions.
Therefore, on each element T;

divp, = —% / fdx. (166)
il J1;




Let us define by [f] the function whose values on T; coincide with the mean
values of f on T;. It is clear that [f] € Vi, Then, we have

divp, = —[f] onevery T;.

Estimate (165) is valid for any approximate flux pn from Q. If Pn belongs
to the narrower set E)F (as, e.g., it would be in the discrete dual mixed
method if f = [f] and pure Dirichlét conditions ) then the last norm in (165)
would be identically zero.

It cannot, however, be expected, when p is constructed in the space RTy,
unless the function F is a constant on 9>€.




Remark. The problem of taking into account the essential boundary
condition for the flux variable

p-n=F on 002

in the dual mixed method is not at all easy and, usually, leads to a
non-conforming approximation pn

(see, e.g., I. Babuska and G. N. Gatica,

On the mixed finite element method with Lagrange multipliers.
Numer. Meth. PDE, 2003 ).

However, (L165) still works for such (nonconforming) approximations of the
flux !




One simple nonconforming version of the discrete dual method, particularly
suited for the lowest-order Raviart-Thomas approximation is as follows.
Instead of requiring pn € Qf, we impose a weaker condition

N 1
Bnon|, = H/EO Fds (167)

on every edge Ejp € 3.9Q.

If now we denote by [F] the piecewise constant function defined on the set
of edges forming 3. and whose value on every edge Ejp € 029 is equal to
the mean value of F on that edge, we can write that pn - n = [F] for all

Eio € 0:9.




In this case, nonconformity errors will be automatically accounted in the
functional a posteriori estimate (165). Indeed, we obtain

- - 1/2
o~ o ll-< VZDY2(Tv,B) + 2C (IIf — [f]| + | F ~ [Fll3,0) - (168)




How to choose in (168) the function w € Vg + ug.

The simplest way is to use the function Uy € \7h available from the solution
of the discrete dual mixed problem and to construct a suitable projection
operator Pp : Vh — Vg + ug. Again, the projection can be easily
accomplished with a simple averaging.

Projection from \7h onto Vg + ug.
In order to find v € Vg + ug, it is sufficient to find w € Vj in the
representation v = w + ug (the function ug is given). Using the computed
piecewise-constant function uy, we define wy, € Vg as follows.
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We set \
k
> T8 G0
Wh(Xk) = S::lNk— — UO(Xk) (169)
> T8
s=1

for any internal node xx and when xx € 3,€. Here Tgk), s =1, Ny, are

the elements containing the vertex xyx, and we have assumed that the
function ug has a sufficient regularity, so that its point values are
defined.

If the node xx € 919, we simply set wi(xx) = 0.

Thus, using the nodal values of wy, and the piecewise-linear continuous
finite element approximation on the mesh 7y, we define the function

wp, + ug = Pptp € Vo + ug.
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Hence, from (168) one obtains
Gllp—mnl <l p—pn|.<
R 1/2
VDYV (Puiin). Bw) + 2C (|If — [F1IP + F — [Fll3e) . (170)
which, together with the obvious relation

[[div(p —Pn)l| = || = f — divpn|| = [If — [f]]

leads to the upper bound for ||p — Pn||div:




Let (u,p) € V x QF be the exact solution of the dual mixed problem and
(Un,pn) € Vh X QFh the solution of the discrete dual mixed problem with Qph
being the Raviart-Thomas space RT®.

Then, the following estimate holds true:

[IP — Phllav <
I AV (Prtn) — pn |+ +(2C + 1)|If — [f]]| + 2C|[F — [F][[a,2, (171)

where Py : Vi — Vo + ug is the projection (averaging) operator introduced
above and [f] and [F] are the averaged functions.

Remark. The first and the second terms in (171)), being computed
elementwise, can serve as local error indicators.




A sharper estimate can be obtained by the minimization of the Majorant
with respect to v. Here, we can restrict ourselves to certain subspace Vi,
ie.,

P — Pullaw <
Vhig\flh I AV (vh) = pn [l +(2C + 1)[If — [f]|| + 2C||F — [F][lo,e . (172)
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By (160) we can also the squared norm of the error of the averaged solution
Pnu, using the computed flux approximation py:

I V(u — Puiin) [P< 2(1 + B)D(V(Puin), pn)
+ (1 + %) C(IF — [ + [F - (FlIZ,0).  (173)

where > 0 is an arbitrary number that can be used to minimize the
right-hand side of (173) and to obtain the estimate for the norm of the

error.
A sharper estimate may be obtained, if one spends some time on the
minimization of the right-hand side of (173) with respect to the dual
variable y over some finite-dimensional subspace of Q.




Remark.
If one has the solutions of both the primal and the dual mixed problems,

the flux approximation pn can be substituted into (160) to immediately
yield the error estimate for the primal variable (which is the most
important in the primal mixed method), while the approximation u, can be
used in (171) to bring the error estimate for the dual variable (which is the
most important in the dual mixed method).




Lecture 7

MIXED FEM ON DISTORTED MESHES




The Plan

Approximations on distorted meshes
H Inf-sup condition

A priori rate convergence estimates

A A posteriori estimates




Distorted meshes

Distorted meshes may arise by several ways:
m Forcibly, due to the form of the given data;

m In the process of mesh refinement;

m In the process of adaptation to physical structure (e.g. layers of
different materials)
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How to work with such meshes?

Straightforward way:
Construct a regular mesh composed of standard elements that contains the
given distorted one and solve the problem:

Drawback:
The problem obtained may have a very large dimension

We consider another modus operandi that is based upon a certain
aggregation procedure and reduction of some degrees of freedom.
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Basic problem

Principal ideas of the approach we discuss on the paradigm of the classical
problem

~Au=f, inQ (174)
u—0 on 09, (175)

Q is a bounded connected polygonal (polyhedral) domain in R? (d = 2, 3),
where v is the outward unit normal vector to the boundary 9Q and it is
assumed that
f e Ly(Q), /fdx 0. (176)
Q
However, the approach can be extended to problems with the elliptic
operator divAV and other types of boundary conditions.
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To introduce a minimax formulation of the problem (174)—(175), we define
the space of square intergable functions with zero mean

V(Q) = VGLZ(Q)H/vdx:O ,

for the primal variable u and the set
Q(Q) :={ge H(Q,div) || q-»=00n0R2},

for the dual variable p, where the boundary condition is understood in a
generalized sense and H(,div) is the Hilbert space of vector-valued
functions with the scalar product and the norm defined by the relations

(p.q) = / (p-a+divpdiva)dx,  [pllav.e == V(P p).




On V x Q, we define the Lagrangian
. 1
L(v,q) :== — vdivq + E\q| + fv ) dx.
Q

As we have seen, the saddle—point problem: find (u,p) € V() x Q(R) such
that
L(u,q) < L(u, p) < L(v,p) WweV,qeQ

has a unique solution, which satisfies the equations

/(divp +fHwdx =0 VYw e V(Q), (177)
Q
/(p -q+udivq)dx =0 Vq € Q(RQ). (178)
Q
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Discrete problems

Let ¥4 be a partitioning of Q into polygonal (polyhedral) cells ns,
s=12,....,N,h— 0as N — 4o0.
We assume that
(a) partitioning is conforming in the sense that interfaces Es between cells
ns and n; are straight segments for d = 2 and simply connected polygons
ford=3
(b) partitioning is quasiuniform and the cells are regularly shaped. The
first assumption means that there exist two positive numbers a; and a»
such that

N~ < diam(ns) < aoN™% s=1,2,... N. (179)

The second means that every cell ns of ) can be partitioned into ns
regularly shaped triangles (d = 2), or tetrahedrons (d = 3), and
maxns < const.

S
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We analyze samplings where the degrees of freedom represent normal
components of the vector field on the edges (interfaces) between
cells/subdomains.

Figure: Distorted polygonal mesh







Elements of a distorted mesh in 2D




Denote by Es the common edge of subdomains ns and n; and by vs the
unit normal vector to this edge oriented such that it is external to ns if

s < t and external to n; in the opposite case. The set of all edges we denote
by Ek. The field is approximated by the quantities g defined on each

Es € &n (see Figure [1). The value of g represents the normal component
of the vector field on the edge Es. All these quantities form the set

q(%h) == {qst || gstisdefinedon Es; € & }.

Besides, for each ns we define a number Vs. These numbers form a
piecewise constant approximation of the scalar—valued function w, i.e.

Vh € Vy = {v e V(Q) || ve P°n,) for any ns}7

where P? denotes the set of zero order polynomials.




In general, there are various finite dimensional formulations that can be
established on the basis of this set of parameters. We consider the one
based on the ”conformity concept” and certain extension operators that
transform q € q(%4) to a function in H(L, div). For this purpose, we
construct a linear continuous mapping Pq : ¢ — Pq g such that

Q =Pqoq € H(Q,div)  Vq € q(Th).

Then, the respective finite dimensional scheme readily follows from the
functional formulation, if the space Q(R2) is replaced by the image space of
the operator Po, which we denote by Qx(£2).




W] 1% A 1] 16 1]

To define Pq we need first to present a suitable way of extension for a cell n.
Let

q(n) := {qst || gst isdefinedon E € On'}

be the set of normal components of the flux on the edges of n.

Figure: Polygonal cell with normal components of the flux




On n we define the cell extension operator
Pn : q(n) — H(n,div),

which maps the set of normal components of the flux given on dn to a
function Qn = Prq(n) defined on n. This operator must be linear and
satisfy the following conditions:

(@) divQn € P°(n), (180)
(b) QOn ispiecevise affineon n,

/dvandx— Z st | Est|

Egcon




Comment: why special Q;, and V|, should be used?

A cell may have a complicated form, but it is ”"small” so that on each sell
we can approximate the pressure v by a constant, i.e., the first space is

Vi = {vn € V = L%(Q) | vn € P°(E')},

How then gn € H(R2, div) should be presented on a distorted cell ?
We use the method suggested in Yu. Kuznetsov, S. Repin, JNM, (2003).

It is based on the condition

divq, = const on E'
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Motivation

1. Approximations qn and v, are compatible in the sense that divqn, € V.
This fact is very important in the stability and convergence analysis.

2. Also, we have approximation arguments to justify such a choice.
Indeed, since v, = const on E', the equation

/(divph -+ f)vth =0 Yvh € V.
Q

is equivalent to

/(divph + [flg)vadx =0 Yvh € V.
Q

where [f] ¢ is the function taking mean values of f on each cell.
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Thus, in this lowest order approximations, the variability of f inside a cell
is ignored and in reality we use the relation

divp + [f]; = 0.

Therefore, for the flux approximation it is natural to impose the condition:

divp, = const on E'




Certainly, Pn must additionally satisfy the natural condition on that the
norm ||Qn|ln must be equivalent to the norm of the vector q(n). This leads
to certain requirements on the structure of the mesh, which are satisfied
under the assumptions we have imposed on Tp.

Having Pnr, for each cell ns, we define the global extension operator

P : q(%h) — Qn
by setting
Poq(x) = Pnsq(ns)(x), ifx € ns

for any q € q(%h).
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Consider the respective saddle point problem for the Lagrangian

. 1
L(vh,qn) = —/ (vhdlvqh + §|qh|2 + fvh> dx
Q

on Vih X Qn. Components of the saddle point (un, pn) are solutions of two
variational problems associated with the Lagrangian L. The first problem
Py is to find up € V() such that

vhel\r}I(Q)Jh(Vh) = Jn(un) := inf P,

where

Jn(vh) = sup L(vh,qn).
an€Q

h




Another (dual) problem Pj is to find ps that maximizes the functional
1
aw) =~ [ lanf”dx
Q

on the set

Qﬁ,(Q) =4 gn € Qn H /(divqh + f)vhdx =0Vv, € Vy,
Q




Well-posedness of the discrete problems

Under the above made assumptions on the external data and ¥, both these
problems Pp, and Pj are stable and well-posed.

Assumption. For any vn € Vh(R2) one can find a function n, € Qn(2) such
that

diVT]h||-|S :Vh|ns, S = 1,2,...N (181)
I [lH(@,aiv) < Cllvalle, (182)

where the constant C depends on Q.
Proposition 1. Functional J, is coercive on V.
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Let vp € V. For any vp, we find 7, in accordance with conditions of
Proposition 1. For any positive «

Jn(vn) = sup L(vh, qn) >
dh h
. 062 2
> L(vh, —amn) = / avpdivn, — 7‘%‘ — fvp, | dx
Q

By (181) and (182), we obtain

N

2 a2c? 2
W)= D alwlh, — o Il - / fundx =

s=1
(1 — —) Va3 — /fvhdx
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‘ -

Take a = =;. Then

|

C

1
RSN /fvhdx >
Q

1
> cslwlia - Il

and the coercivity of J, on Vj follows.
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Proposition 2. J;, is convex and lower semicontinuous on V.

Corollary. Since the functional J is convex, lower semicontinuous and
coercive on Vy, known theorems of the calculus of variations guarantee that
the minimizer uj exists (see, e.g., [?]) .

Moreover, from (183) it follows that

1
4—C2||uh||521 < C?||f||& + Jn(vh) Vvi € Vi (184)

For any partition Tj the zero function belongs to Vi, and Jn(0) = 0.
Therefore, the second term in the right-hand side of (184) vanishes and we
see that the norm of uy is uniformly bounded with respect to h. This means
that the problems Py are stable.




It is also not difficult to justify the well-posedness of the dual problem.
Indeed, Problem Py is a problem of maximization a quadratic functional on
the affine set Qm, which has a unique solution provided that this set is not
empty.
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Since

(dinh + f)Wh dx=0 Ywy, € Vh(Q), (185)

(ph - Qn + uhdivqh) dx=0 Yagn € Qh(Q), (186)

P P

we arrive at the conclusion that

lonl[3 = / fun dx < [F[la]un]lo.
Q




In view of (184), we obtain
Ipnlla < 2C|If|[5. (187)

It is worth noting that elements of Qm(S2) satisfy the condition
. 1
— (divan),, = el fdx.
Ns

Really, is set w, = 0 on all the cells except n; and wy, = ¢ on that single sell.
then

/(divqh + fledx =0 = [divas + f] 5, =0,
Q

ie.,

(divan)n,|ns| + / fdx = 0

Ns




Since pp € Qm(), we see that

In

(divph)ns [ 1| /fdx = ﬁ /divp. (188)
s ng

Thus, divpy is the cell-averaging of divp.
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From (187) and (I88) it follows that
Iphlaiv,e < const.

Moreover, by (188) and the property of averaged functions we conclude
that if f is a smooth (or piecewise smooth) function then divp, — divp a.
e. in Q.

If f e W21(Q)7 then from the Poincaré inequality for the functions with zero
mean we also find that

|ldivps — divp|la — 0 as h — 0.




Other results on the convergence of up to u and pp to p follow from the
above stability estimates provided that the spaces V,, and Qy are limit
dense in V and Q, respectively: for any V € V (resp. q € Q) and any
positive € one can find he such that for h < h. Vy contains a function V.
satisfying the relation ||v — ve|l@ < € (resp. Qn contains qe satisfying the
relation ||q — qc|laiv,o < €).

Then, for any w € V and q € Q there exist sequences {wn} € Vi and
{an} € Qn that strongly converge to vw and q in V and Q, respectively.
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Since the sequences {un} and {pn} are uniformly bounded, they contain
subsequences weakly converging to some limits u € V and q € Q,
respectively. Passing to the limit in (185)—(186) we obtain

/ (divp + F)w dx — 0 Vw € V(Q), (189)
Q
/(5 ‘q+Tdiva)dx =0 Vg € Q(), (190)
Q

what means that u = u and p = p, i.e. the sequences converge to the
solution of the basic problem.




Take sequences G, — u in V and pn — p in Q. We have

L(un,qn) < L(un,pn) < L(vh,pn) Vvh € Vi, gn € Qn.  (191)

Therefore,
Jn(un) = sup L(un,qn) = L(un, pn), (192)
qh€Qp
I(pn) = inf L(vh,Pn) = L(un, pn) (193)
VhEVh
and

lim 1(p) > lim L(Bn, un) =

= ’limo/ <uhdivﬁh — %\f)h|2 — fuh> dx = L(u,p) = I(p). (194)
Q
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Since pn weakly converges to p, we have
lim [[pnfle > [Iplla;

what gives the relation

Jim 1(pn) < 1(p)- (195)
From (194) and (195) we conclude that
lim 1(pn) = 1(p)- (196)

Thus, ||pa]le — ||p|le and, consequently, ||pn — plle — 0.




Examples of extension operators

Quadrilateral cells in R2.

Quadrilateral cell n with nodes numerated 1,2,3, and 4. Edges are
denoted by Ejz, Ez3, E34, and Eq4. Below we construct a cell extension
operator P, valid for a convex, nonconvex and degenerate cells.

N
N




To construct an extended function Qp, that satisfies the
conditions Onlg, - Vst = qst (Where vg denotes the unit normal
to Est) we introduce a subsidiary edge E13 and define the
respective normal component i3 from the condition

1 div(Qn)dx = —

div(Qn)dx,(197)

I T123] JT0s  |T13a| Sy,

which means that the divergence of the extended function Qp is
constant on mn.




From (197) we obtain

B q12|E12| q23|E23| q14|E1a| q3a|E34]
i3 = - ; (198)
|T123]|E13| = |T123||E13]  |T134||E13|  |Tui3al|Eas|
where
= | T123[ T134]
|T123| + | T13a]
Now, for each of the two triangles we can construct the field using the
lowest order Raviart—Thomas elements. This field meets the conditions
divQn = const in n and

/diVQn dx = qu2|E12| + q23|E23| + q34|E3a| + qu4|E1a|.  (199)
n




It is possible to show that the extension operator satisfies the relation

[Qnllf < WPp2(n) > ai, (200)

Escon

where u» is a positive constant depending on the shape of a cell n. For this
purpose, at each node, we define vectors associated with certain triangle
containing this node. It means that it is bounded.
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Denote the normal components of the flux on the faces E12a5, E2356, E1346,
E123, and Ess6 by g1, g2, g3, qa, and gs, respectively. Introduce two
subsidiary internal faces Ez3s and Esgs with normal components ¢’ and g”
oriented inside n. Now, the prism is divided into 3 tetrahedrons Tizza, T234s,
and Tasse. The divergence of the extended field is defined via the Stokes
theorem as

divPn = gn,
where

gn = q1|E1245| + q2|E2356| + a3|E1346| + qa|E123] + qs|Ease|.
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Since the condition divlPy = gn must hold on each of the tetrahedrons, we
obtain

q1|E124] + q'|E234| + q3|E134| + qa|E123] = gn|T1234],

2|E3s6| 4+ q”|E3as| + q3|Ezas| + s|Ease| = gn|T3as6|-

Thus, the numbers ¢’ and g’ and the respective extension Qn are uniquely
defined.
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General method of constructing Py

In more complicated cases as, e.g., for

internal fluxes are easily excluded by the divgy = const condition and the
Stokes theorem.
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In fact, we have constructed an interpolation operator 7@ on each cell.

If q is a vector—valued funcfcion defined on E' having summable traces, then
the normal flux on e; C OE' can be defined as follows

i 1
1 - . ._d
q |eij /q V'J S
€jj
By extending the field inside E' we obtain the function gy such that

an € H(R,div), divgy = const on E'

gh is piecewise affine in E
and, thus, define the interpolation operator

7rQ:Q—>Qh.
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For such a sell there are many different fields that satisfy the condition

divqn = const.

To avoid nonuniqueness the condition
laulle — min

should be used.

| Mechanics, A




We may equivalently formulate additional condition as follows.

Using the lowest order Raviart-Thomas finite elements we find
"local” Qp satisfying the boundary condition Qn - v = q(n) - v as a
solution of the discrete problem

/(vfdinI1 +gnv,)dx=0 W, eV, (201)
n
/(QrI -q; +u,;divq,;)dx =0 Vq, € Qq,, (202)
n

where V. is the space of piecewise constant functions and Qp, is the
finite element space formed by Raviart—Thomas elements contained in
H(Q,div) and subject to the boundary condition

g -v=20 on on.

Mat-5.210 Special Course in Computational Mechanics, Autumn 2006,




It is well known that this problem has a unique solution Qn and the
function u, is uniquely defined up to an arbitrary constant.
In virtue of (201)),

divOn +gn =0 inn, (203)

so that the requirement divQOn = const is satisfied. Since Qn € H(n,div),
the condition (I80kc) is also satisfied.




Note that the function On can be also viewed as a solution of the respective
discrete problem with Neumann boundary conditions, which is to maximize
the functional

1
h(g-) = —E/qu|2dx
n

on the set of fields satisfying the condition
divgr = gn

and the prescribed boundary conditions . If n is divided into a few
subdomains (as, e.g., in the above example for quadrilaterals), then such a
condition may uniquely define the field. However, in other cases fields with
constant divergence may create a subspace. In this case, uniqueness of the
extension is provided by the fact that the minimizer of the quadratic
functional Iy on this subspace is uniquely defined.
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Rate convergence estimates. General line

We analyze 3 different mixed approximations on distorted meshes:

A. The finest approximation on the mesh 7, when all cells are decomposed
into simplexes. On simplexes the pressure field is assumed to be constant
and the flux is approximated by the RT? clements. This gives the pair of
spaces (Vh, Qn).

B. The approximation on the mesh ¥} that consists of all cells. On cells the
pressure field is assumed to be constant and the flux is approximated by the
procedure discussed further. This gives the pair of spaces (Vi, Qn).

C. % is the same, but normal fluxes are averaged on each ”macroface” e.
This gives the pair of spaces (V}, Qr).
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" Referenced” problem

Consider tNhe dual mixed forrgulations on ﬁ,:
Problem Py: find (pn,un) € Qn X Vi such that

/ (Pn - G + Undivgn)dx =0 Vg € Qn
Q

/ (divpn + F)Undx =0 Viin € V.
Q

Vi = {W € V= L%(Q) | W € P"(T))},

Q.cQ= H(Q, div) is constructed by RT? elements on the mesh Tn.
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Properties of Problem P

Problem Py, is used as the "referenced” one. Its properties are known
(see, e.g., F. Brezzi, M. Fortin,
J.E. Roberts and J.-M. Thomas, 1991.)

1. If ’]~L is regular then the inf-sup condition
thdivah dx
inf sup ————— >C (204)

WneVig,cqy [Vhllllan]ldv.e

holds with a constant C independent of h.
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2. Problem Py is uniquely solvable for any h > 0 and

up — uinV(Q), prn— pinQ.

Moreover, for the RT? approximations we have the standard rate
convergence estimate

[Pn — plldiv,0+[[an — ul| <
< Crrh(|ul1,0+]pll1,e+/divp|l1,e)

that holds provided that the exact solution is sufficiently regular.

Mat-5.210 Special Course in Computational Mechanics, Autumn 2006,




We use the above properties
of Problem P,
in order to establish
similar properties

for
Problems P}, and 7.
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First dual mixed formulations on %,

Problem Py: find (pn, un) € Qn X Vi such that

/(ph - gn + updivgy)dx = 0 Ydn € Qn (205)
Q
/(divph =+ f)Vth =0 Yvp € V. (206)
Q

Vii={vh € V=L*(Q) | v € P’(E"), i=1,2,..N},
Qn = {an € Qu | divan € P°(E), i=1,2,..N}

Mathematical properties of this problem are in focus of the investigation
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Reduced space Qy

In real life problems, analysts are often faced with meshes having
”nonmatching” faces.

Certain faces of a cell may belong to one common plane and create a
common boundary of one cell (macroface) denoted by I',. We can reduce
degrees of freedom on a macroface if replace different normal fluxes given
on e by one on the basis of the condition:

the value of [ g - v remains unchanged.




A macroface

By this ”averaging” procedure we replace gn by qp € Qp and obtain a new
space for fluxes:

Q:={gh €Qn | gn-v =const Ve ey}
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Second dual mixed formulations on %,

Problem P; Find (py,up) € Qf X Vi such that

/(pf’l - qp + updivgy)dx = 0 Van € Qh,
Q

/(divpﬁ + f)vndx =0 Yvh € Vp.
Q

It is clear that

ViCV,CV and QheCQhC(SCQ.
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Main goals

We show that if the above " aggregation—reduction” procedures are
properly done and Problem P, is stable and convergent, then

(a) the inf-sup conditions for (Vi, Qu) and (Vi, Q}) are satisfied;

(b) gn and gy converges to p in Q with the same rate as q, and v, and
vy converges to u in V with the same rate as v;

(c) computational errors for the approximations of all types can be
explicitly controlled by the a posteriori estimates presented.




Assumptions

More precisely, we assume that
cih < diamE' < eh, VE' € T,
F Number of simplexes in a cell is from 1 to muyax.

{74} is regular in the usual sense:
All angles of simplexes are uniformly bounded,

Any face of a simplex is either a part of a boundary or a face of
another simplex

61h? < [Ti| <60, VTie 7,
If e is a face of Tj- then

’yﬂ‘ldil < le| < ’yzhdil.
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Logical scheme

Inf Supin P, = InfSupinP, = Inf SupinPf

H Construct interpolation operators
Q. A
7 1 Q - Qprand 7 :V—V,

Establish projection type estimates

[ Obtain estimates for |79 — 79|
and [|77p —7Vp|
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Inf-sup condition for cell-approximations

First, we prove that for the cell-approximations Inf-Sup condition holds:

Let {7~7,} satisfies the above made assumptions. Then, for any Vy, € V, there
exists a vector—valued function nj € Qp such that

—diviy, = vy oneach E' (209)
175 llaiv.0 < Cllvall, (210)

where C does not depend on h and V.
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Set f = vi. Let (p',u") € Qn x Vi, be the pair of functions that satisfies the

system
/(.371 - Gn + Undivan)dx =0 Van € Qu (211)
Q
/ (divpy, + v )Vndx =0 V¥, € Vi (212)
Q

‘We observe that

—divpy, = vy onany TJl
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Since vy, is constant on E', we arrive at the conclusion that
—divpy, = v, onany E".

Now we construct the required 7} by means of py, as follows. On each cell

we set normal components of 7} equal to the normal components of py. If E!
contains no internal points, then (265) uniquely defines 7y by the values of
normal fluxes on JE'. Thus, in this case, we simply set 0} = p}, in the cells.

Mat-5.210 Special Course in




If E' has an internal point, then 7} is defined in accordance with minimal
energy principle, i.e.,

Ik ll& = nf 175lIg:- (213)
T EN(E')

div7y, +vp =0
Since py, € R(E') and divp}, + vh = 0 we observe that

k]l < [IPull- (214)
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Set gqn = py, in (268). Then,
~v |12 ~v .~ ~v (| |1~
[[Pnl|” < [[un[[|divp || = [[un][[|val- (215)

By assumption Inf-Sup condition for Qun x Vi holds! Therefore, for the
function uy, we can find a vector—valued function qj € Qn such that

/ Bedivae dx > Cllan &
Q

Since
/ (B - G + Gt dival)dx = 0
Q

we observe that

€|l )l < — / BL -Gt dx < Iy IIGe
Q




Therefore,
1,
lonll < <Ipnll-
C

Now, (215)) leads to the estimate
~ 1
IBil < = llval- (216)

Since 7y = py, we have

v 1
e < (1 + ?) v,




Corollary 1. It is easy to see that under the conditions of Proposition 1, the
discrete inf-sup condition for the spaces (Qn, Vi) holds. Indeed, take
arbitrary v, € V. We have

J vndivgn dx J vndivny, dx
a 2 [lvall

sup >
ane@y [IVallllanllav.e = llvallllngllaiv,.e |17} ]ldav,e

Thus, for (Vh, Qn) the inf-sup condition holds with a certain positive
constant C depending on C.
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If for cell-approximations Inf-Sup holds, then
for them PROJECTION ESTIMATE HOLDS

[lp — Palldiv,e + [Ju — un| <
< Cq inf |lp— qnlla inf [Ju— }
< Oy, o~ @llava 4+ o, I




Key point in deriving a priori estimates

In projection estimates we have quantities of the type
inf — , inf |[u— wa||.
Jnf llp—aull,inf flu—w]
We estimate them by

lp— 7%l < |Ip— 7r°p|| + |7% — =],
lu—7mVull < [Ju—7"ul| + |70 — 7"ul

For RT? approximations on T, we have the estimate

Ip— %[ ~h, [u—7%l ~h.

in Computational Mechanics, Autumn 2006,




Therefore, we need to estimate the difference between interpolation
operators on the "fine” and ”coarse” meshes.
Estimates for ” pressure” interpolants.

|mww — 7y w|| < Cy E(Th, Zn, W), (217)

where the constant Cy does not depend on h and the quantity E is defined
by the relations
E(‘Ih,’ZNI,,w) = max Ej(w),

325

Ew) = o [lwly -~ fule
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Indeed, take a cell E' and a simplex in it.

2
v ~V 1
ThW — TpwW) dx = wdx — —; wdx | =
/r;( h h ) | (|EI|/ lTJ|| T}
2

) |T}\fEiwdx—|Ei|fTiwdx
= |T; i :
|E¥|| T}

T}|fEi\T}wdx— |Ei\T}|fT}wdx
= BT
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Now, we apply the estimate

(e~ Bl )" <2 | (Wl ~ e+ (1wl - le) |
and note that
e — Wl < Ei(w).
By these arguments we obtain

/Ti(w.‘(w — 7yw)?dx < 2|Ti|ulEF (w).

]

By summing over all simplexes, than over all cells we obtain (279). Since
wi <1, Cy =2.




Similar estimate holds true for the interpolants of fluxes

||7r,?q - :’vthquivyﬂ < GE(Th, ﬁh divq), (218)




Rate convergence estimates for p, and u,

By the above results we arrive at a priori rate convergence estimates for
approximations on distorted meshes (see Yu. Kuznetsov and S. Repin,
JNM, 2005).

P — Palldiv,e + lu —un|| <
< c[h(HPHLQ + |ldivp|1,e + [[Vul)) +

+E(Th7 ﬁh diVP) + E((Ihv ﬁh U):| )
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A posteriori estimates for cell approximations

P = pnll < V2||Vun — ]| + 2Ca||divps + f||,

Since —divpn = [f] ¢, we can rewrite this upper bound as

Ip = pull < V2/|Vun — il + 2Cal|[f] — f,
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Lecture 8

A POSTERIORI ESTIMATES FOR PROBLEMS IN THE THEORY OF
VISCOUS INCOMPRESSIBLE FLUIDS
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Mathematical models of viscous fluids;

Stokes problem;

Inf-sup condition ;

A posteriori estimates for solenoidal approximations ;

A posteriori estimates for non-solenoidal approximations;

A posteriori estimates for problems with condition divv = ¢;

A posteriori estimates for problems on a subspace.

Bingham fluids. A posteriori estimates.




Coordinates of particles at t = 0 are denoted X and called Lagrangian
coordinates. They serve as particles labels. Then, the trajectory of an
individual particle is given by the relation

x = x(X, 1),

where x denote the Cartesian coordinates of particles at the moment t.
They are called Euler coordinates.
Motion equations describing evolution of a media have the form

po% (x,t) +vi (x, 1) % (x,t) = div o (x,t) +f(x,t) (219)
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Here o is the effective stress,
vi% is the so—called convective term which is often presented as
d

(v-V)v(x,t)

and
(vij + i) (220)

N =

e(v) =

is the tensor of small strains.
In the majority of models liquids are assumed to be incompressible, what

means that
divv = 0.

In view of this fact
e(v) =€ (v).
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Constitutive relation are usually given in the form
o=—pl+, (221)

where p is the pressure and I is the unit element of M?*" and ”deviatoric
stress” is defined by the relation

T € OW (e) (222)

where W : MI*" —— R, is the dissipative potential and W stands for
subdifferential.
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Boundary conditions

Two main types of the problems:
Flow of a fluid in a container (basin).

W=0:=Q, t>0 v=up 0N (223)

v =0 on 09 is called the ”adhesion” or "no—slip” condition.
Flow in an "open” domain.
In such a case, on a part of the boundary we set

o(x,t)v(x,t) =F(x,t), X € 082, t>0 (224)

Initial condition.
v (x,0) = ¢ (x) x € Q (225)
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Now the task is to find v, p 7 such that
po%—i—vig—)‘(’i —divo=f
divv=20 (x,t) € Q := Q2 x (0, +00)
o=—-pl+, T € OW (g)
v(x,t)=0 (x,t) € 512 x (0,400)
ov=F (x,t) € 292 x (0, +00)
v (x.0) = p(x) xeQ
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Bingham type fluids

W(s):%|€|m+k*|e| (231)

A particular case with k., = 0 and m = 2 leads to

U:—p]l—i—a—wz—p]l—i—pa,
Oe

Then
div o = —Vp + pAv

and we arrive at the Navier—Stokes system

Ny Ay =
{pOatJrV-axi piv =f+Vp (232)

divv=20

If k. > 0 then it is typical that the stagnant zones with & (v) = 0 arise.

in Computational Mechanics, Autumn 2006,




Power law models
p
W (e) = ioc [ + 1o (14| )

W (€) = pioo | € [* + polel”

Here p € 1, +00], fioc > 0 pio > 0, piocfio # 0.
Powel-Euring models

W (e) = poc e + pale|In (1 + |e])

(233)

(234)

(235)




General system

In all the cases we have the system

{ PG tvigy — G2 (e(v)) =f+Vp

divv=20 (236)

In case of slow motions the term v - (Vv) is usually neglected. Then, we
arrive at simplified models among which the most known is the Stokes
model.
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Spaces of solenoidal functions

J1°(Q) = {u € CF(Q), divu = 0,suppu C Q},
] (Q) := closure of J° inthe topology of L»(R,R?),
j%(Q)(Q) = closureof J*° inthetopology of H'(Q, RY).
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Navier—Stokes equation

At present Navier—Stokes problem dominates among the models describing
the behavior of viscous incompressible fluids. It is to find u(x, t) Gj%(ﬂ)
and p(x,t) € EZ(Q) such that

ug — vAu+diviu®u)=f—Vp in Q,,
u(x, 0) = ¢(x),

u=u onlp

e(u)-v+pr=gn only.
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From the mathematical point of view NS is still a mystery. Existence of a
unique solution in 3D is not yet proved even for (0, T] x R".

It is known that for sufficiently regular solenoidal ¢(x) there exists a weak
Leray-Hopf solution, i.e., a function

u e L=(0, T;L3(R") N L0, T; H'(R"))
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Proving (or presenting a contr—example) of that NS equation possesses in
(0, T] x R" a smooth solution provided that initial data are sufficiently
regular forms one of the
Millennium Prize Problems
stated by the Clay Mathematical Institute.

FROM THE INTRODUCTION TO THE THIRD MILLENNIUM PRIZE PROBLEM:
”...Although these (NS) equations were written down in the 19th Century,
our understanding of them remains minimal. The challenge is to make
substantial progress toward a mathematical theory which will unlock the
secrets hidden in the Navier-Stokes equations.”

Mat:




However, discrete (semidiscrete) analogs of NS equation are actively used
in the Mathematical Modeling.

For example:

u —uk? k k—1 k—1 k
T—VAU +div(u” QuT)=f-Vp in Q,
divu“ =0
and
u —u? k k—1 k k
At — vAu +div(u“ ®@u)=f—-Vp in Q,
divu* = 0.
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For these reasons, an intensive investigations has been devoted to
linearizations of NS equations, in particulat to Stokes

u— vAu=f—-Vp in Q,

u(x, 0) = ¢(x),

u=uy onlp

e(u)-v+pr=gn only

and Oseen
u; — vAu+div(a®@u) =f - Vp in Q,
u(x,0) = p(x), diva=0,
u=uy onlp
e(u)-v+pr=gn only
problems.
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NS equations with rotation

In certain cases (e.g., ocean modeling) NS equations should take into
account Earth rotation. Then, an additional term arises and the equation
comes in the form

u;— vAu+ (u-Vu)+wxu=Ff—-Vp in Q,
where
w = |wles.

is the parameter of the rotation intensity.
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Computer simulation methods

A significant part of the difficulties arising in the process of solving such
problems is related to the incompressibility condition divu = 0.

Typically, this condition is taken into account by projecting of a discrete
solution to the set of solenoidal fields or by introducing appropriate penalty
terms. A detailed exposition of the numerical methods can be found, e.g.,
in the works of (see the List of Literature) J. Chen, A. Chorin, W. E and J.
G. Liu, M. Feistauer, M. Ganzburger, V. Girault, G. Heywood,

R. Rannacher, P. A. Raviart, R. Temam.

Stationary problems are often solved by passing to a minimax formulation
and using the so—called mixed approximations for the velocity and pressure
fields (see, e.g., F. Brezzi and J. Duglas, F. Brezzi and M. Fortin ).
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Linear models in the theory of fluids
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Classical formulation of the Stokes problem: find a vector—valued function u
(velocity) and a scalar—valued function p (pressure) that satisfy the
relations

—vAu=f—-Vp in Q, (237)
divu=0 in Q, (238)
u=up on 09, (239)

where ug is a given function such that divug = 0.




Here A denotes the Laplacian of a vector field:
Au = (Aui) €,

e; are the cartesian unit vectors. .
Multiply (237) by a function v € J°°. Then,

/Vp-vdx:/pdivvdx:o,
Q

Q

and we arrive at the relation
v((u,v)) = (F,v) W e 3%(Q), (240)

where ((u,v)) = [e(u) : e(v)dx. Above identity can be extended by
Q

continuity to the whole j%(ﬂ)




Weak formulation of the Stokes problem

. Find u Gj%(ﬁ), such that u = 0 ondQ and

u((u,v)) = (F,v) W €33(Q)(Q), (241)

This formulation is related to the energy functional

|(v)=u/\vV|2 dx—2/fvdx (242)
Q Q
|2

where | Vv > = | Vv >+ ... + | Vva [°.
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Generalized solution of the Stokes problem minimizes the functional | over
o
13(Q).

Proof. Assume that
u((u,v) = (F,v) WeV.

Since [Ju — v||> > 0, we have
plull® + g fv® = 2u((u,v)) > 0. (243)
On the other hand,
() = g [Jull® = 2(F,u) = g [ju]]® — 2u((u, u)) = —p|u]?
Therefore, we rewrite (243)) as follows:

plvI? = 20((u,v)) = I(u),
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Therefore,
I(v) > l(u) WeV. (244)
Assume that u is the minimizer, then for any v € V

, I(u+ Av) > I(uz)7
pllull® + 220((u, ) + pA? [lv]|* = 2(F,u + Av) >
> flull? = 2(F,u),

and, consequently,

p( )~ (Fv) = 3 VP = w((u,v)) ~ (Fv) =0 WeV.
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Nomenclature

Next, W := W3(Q,RY) and X := Lp(Q,M**9), where M?*9 is the space of
symmetric d X d matrixes (tensors), whose scalar product is denoted by two
dots.

W is a subspace of W that contains functions with zero traces on 9.

Wy + up contains functions of the form w + ug, where w € V.

Analogously, j%(ﬂ) + ug contains functions of the form w + ug, w Gj%(ﬂ)
The operator (v) := 3(Vv + (Vv)T) acts from W to X.
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We will also use the Hilbert space iy (2), which is a subspace of X that
contains tensor—valued functions 7, such that divr € L. The scalar
product in this space is defined by the relation

(m,m) = /(T :n + divr - divy) dx.
Q

o
As before, Lp(2)(R2) denotes the space of square summable functions with
zero mean. Henceforth, we assume that

f e Ly(Q,RY), uoc WiHRQ,RY),




Generalized solution can be defined by the integral identity. It is a function
u €J3(R) + ug that meets the relation

/QVV(U) :V(v)dx = /Qf -vdx Wv ej;(ﬂ) (245)

It is well known that u exists and unique and can be viewed as the
minimizer of the functional

I(v):/(%|V(v)|27f-v) dx

Q

on the set j%(Q) + up. Thus, the problem

inf  1(v)
VEE(QH»UD

presents a variational formulation of the Stokes problem.




Existence of a minimizer follows from known properties of convex lower
semicontinuous functionals.
In addition, the Stokes problem can be presented in a minimax form.

Let L : (Wp + ug) x iz(Q) — R be defined as follows:

L(v,q) = / (%|Vv|2 —f-v— qdivv) dx.
Q

Now, u and p are defined as a saddle—point that satisfies the relations

L(u,q) <L(u,p) < L(v,p) W€ Wo+ug, p € Lao(R).




Extension of solenoidal fields and related results

First, we recall some basic results that has been established when the
solvability of the Stokes problem was investigated. Works of O.A.
Ladyzhenskaya have made a considerable and widely acknowledged
contribution to the mathematical theory of viscous incompressible fluids.
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The first principal result states that a solenoidal field can be extended
inside a domain such that the norm of the extended field is subject to the
norm of the boundary trace (see O.A. Ladyzhenskaya Mathematical
problems in the dynamics of a viscous incompressible fluid. Nauka,
Moscow, 1970 and

O.A Ladyzhenskaya and V.A. Solonnikov Some problems of vector
analysis, and generalized formulations of boundary value problems for
the Navier-Stokes equation, Zap. Nauchn. Sem. Leningrad. Otdel.
Mat. Inst. Steklov. (LOMI), 59(1976), 81-116, 256 ).

For any vector—valued function a € W;/ 2(89) satisfying the condition
fasz a - vdx = 0 there exists a function u € Wy such that diva = 0 and

IVal| < k1(Q)llall1/2,00; (246)

where k1(Q) is a positive constant that depends on Q.
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This lemma implies another proposition, which is of grate importance for
the analysis of problems defined on solenoidal fields.

For any f € Ez(ﬂ) there exists a function @ € Wy satisfying the relation
divi = f and the condition

V[l < x2(Q)]f]l, (247)
where k2(2) is a positive constant that depends on Q.

Lemma 2 implies several important corollaries that we discuss below.
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Inf-Sup condition

Lemma 2 is related to the inequality known in the literature as the Inf-Sup—
or LBB (Ladyzhenskaya—Babutka—Brezzi)—condition that reads: there
exists a positive constant C such that

/ ¢ divw dx
inf  sup o= > C (248)
6@ wew, lloll [IVwll
@70 w#0
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Inf-Sup condition (248) was established in the papers by

I. Babuska The finite element method with Lagrangian multipliers,
Numer. Math., 20(1973) and F. Brezzi, On the existence, uniqueness
and approximation of saddle-point problems arising from Lagrange
multipliers, R.A.L.R.O., Annal. Numer., 8 (1974). They used its
discrete analogs for proving the convergence of finite-dimensional
approximations in various problems related to the theory of viscous
incompressible fluids.
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Lemma 2 implies LBB condition

o
By Lemma 2, any ¢ € L2(R) has a counterpart function v, € Wy that
meets the conditions

divwy = ¢, [[Vvs|| < K2(RQ)[4].
In this case,

sup Jq ¢divv dx > Jq ¢divvy dx _ ol > 1
vewgwzo [V (o]l Vol ol Vvl — r2(R2)

and, consequently, Inf-Sup condition holds with

1

- F\'Q(Q).
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It is easy to observe that the Inf-Sup condition can be presented in the form

/ p divw dx

Q o
2 > C|p|l forall peLyR).
Sl el (@)

sup
weW,

w#0

We may consider the expression in the left—-hand side of the above
inequality as the norm of Vp in the space topologically dual to Wy, namely

< Vp,w >
[Vp] == sup — ==~
weW, ||VWH

Then, we arrive to the Neéas inequality.




Necas inequality

Ipl < k2 [VPI ¥ peLa(R), (249)




A simple proof of the Ne&as inequality for domains with Lipschitz
boundaries can be found in the paper by

J. Bramble. A proof of the inf-sup condition for the Stokes equations
on Lipschitz domains, Math. Models Methods Appl. Sci. 13 (2003),
no. 3, 361-371.

In the later paper, it is also shown that the well-known Korn’s inequality
follows from Inf-Sup condition.

Constants C and k2 play an important role in the numerical analysis of the
Stokes problem as well as in the theoretical one.




Existence of a saddle point

Existence of a saddle point of L(v, q) follows from Lemma 2 and known
results of the minimax theory. In a simplified version these results reads:

__________________________________________________________________________|
Lagrangian L(v,q) possess a saddle point provided that

(a) it is convex and continuous with respect to the first variable
and concave and continuous with respect to the second one;

(b) for a certain q the functional v — L(v, q) is coercive (or the set
of admissible v is compact);

(c) or a certain v the functional q — —L(V, q) is coercive (or the
set of admissible q is compact.)




Since
J(v) = supL(v,a) > L(@v),
a€x
we observe that (b) means that J(v) is coercive. Analogously, (c) means

that the functional —I(q), where

I(q)= inf L < L(q,v
(a) aerf (v,q) < L(q,V),

is coercive.

In other words, for a continuous convex-concave Lagrangian existence of a
saddle point mainly depends on the coercivity properties of the two dual
functionals generated by it.




Let us apply these results to the Stokes problem. It is easy to see that for
any q € L2(R) the mapping

vi— L(v,q) = / (g|Vv|2 —f-v— qdivv) dx.
Q

o
is convex and continuous (in W) and there exists am element g € [,()
(e.g., g = 0) such that L(v,q) — +oo if ||v|lv — +0c0. The mapping
o
q — L(v,q) is affine and continuous (in L»(€2)) for any v € V. Therefore,
existence of a saddle point is guaranteed provided that the coercivity
condition

lim inf  L(v,q) = —o0 (250)

lal| —-+oco vEWg+ug

is established. By Lemma 2 we can prove this fact.




Consider the functional

I(q) := _inf L(v,q)

veWp+ug

and the variational problem

I(p) = sup I(a) (251)
qcL2(RQ)

for the pressure function. Note that the functional | has no explicit
integral-type form and is defined as a supremum-—functional. The solvability
of this problem follows from the coercivity condition (250). To prove (250)
we apply Lemma 2.




Coercivity of the variational problem for the pressure function

Indeed, by Lemma 2 for any q € Iiz(Q) we find vq € Wy such that
divwg =q and |Vvg| < k2|q]

Take v = pivq+ ug and recall that divug = 0. Then,

. v .
el L00) < [ (5 9w u) - o) adiv v vo) e <

1%
< _/9 (§|Vuo|2 —f. ug) dx + p(v||Vue|| + CQHfH)HVVqH—i—

2
[ 4% 2 2 v 2
— < — —f.
+ 2519wl =l < [ (5Vu0l? = -uo) it

l/LK'/z
+ (eI ol + Calfmalal + (P52 < 1) Jal?,

where Cgq is a constant in the Friederichs inequality.




We see that
I(@) < ciuo, f,v) + pu(v||Vuo| + Calf|)r2(lal +
vuK3
(P~ 1)l

Set here p = —15. Then

7.
VK,2

inf L(v,q) <ci1+caql - lal> = =00 as|lq]| — +oo.

veWq+ug 2uk3

Thus, we observe that the constant K, arises in the quadratic term that
provides the required coercivity property of the pressure functional.




Estimates of the distance to the set of solenoidal fields

Now we are concerned with the estimates of the distance between a
function v € H! and the space of solenoidal functions.
Estimates in Lo-norm. An estimate of the distance between v and the space

Q) = {v € W(R) | divw = 0}

in Lo—norm follow from the solvability of the Dirichlét problem for the
Lapalce operator. It is as follows:

inf ||V — vo|| < Cg||divv]],
VoeJ%

where Cf is the constant in the Friederichs inequality.
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Proof. Indeed, since the problem

Ay =T,

has a solution ¢ € W3(R) for any f € Ly(R), we conclude that for any f
there exists v = V¢ such that

divve = f and [Ive]] < CeIf|l-
Set f = divv. Then,
div(vf — V) =0,

so that vg = vf — V belongs to J} and we observe that

19— vol| < Crdiva.




[e]
Estimate in H'-norm. Let now v € H!. Set f = divu. Since

/didex:/ v-vds =0,
o9

Q
we see that f € EZ(Q). Then, by Lemma 2, one can find us € Wy such that
divus = divw, and |Vug|| < k2()|divv].
In other words, there exists a solenoidal field wg = (V — uf) € W such that

V(v —wo)| = [[Vur| < r2(2)[/divv]|.
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This fact can be presented in another form

inf V(¥ —v)|| < K2(Q)]|dive]]. (252)
ve 5 ()

o
Thus, for the functions with zero traces the distance to J3(R) in a strong
norm is also measured via ||divv]|, but with a different factor: x2().
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Comments on the value of C

Note that C can be estimated throughout the constant C¢ and the constant
Cp in the Poincare inequality. Indeed,

C= inf £&(q),
a€Lx(9), a0
Jo adivw dx

&)= sup oo
wewg, w0 [[all [[Vw]|

For q €W () := iz(Q) NW3(R) we have

£la) — Jo Va-wdx _ |vq [wl|
(@) = sup < Lo
wewy, w0 Q| [[Vw]] lall wewp, w0 [[Vw]|
[Vall
= all
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Let Cp be the smallest constant in the inequality

lall < Cel|Vall, qew (),

ie.,
e Ival _ 1
qEW(R), a0 [lal Ce
Then
. . CF
C= inf E(q) < inf  &(q) < —.
~ Cr

acls(9), a0 aEW(Q), 40




LBB-condition can be written in the form

Ipll < €M IVRL V p e L2(R),

what amounts

IVel
[l

we see the meaning of this constant: C is the infimum of H™! norms of
functions such that |p|| =1 and [ pdx = 0.
Q

If Q € R" then




Proof.

/ p divw dx

Q
sup — =
welw, oWl
w#0
Z/pwt,tdx /pwt,tdx
t=19 ¢ Q
sup ——— < Z sup -
wew,  Iow =R T
w#0
Wi # 0




Since

n

[Vw|? = /( > wi)dx > /wf,tdx vt=1,2,..n

o]
-
)
|
-
]

o]

we have

Q Q
sup Z sup
B P T Y

]

/pndx
< sup pll =nip
T ZH | = nlpl .




If n=1 then C=1.
Let Q = (a,b). Due to Proposition 1 we see that C < 1. Let p be an

arbitrary function from the set Z2(Q). Then, the function

X

wlP) = /pdeWo.

a

Really, w®(a)=0, w(P)(b)= [’pdx= 0 and w(P’=p € Ly(a,b). Thus,

/pw’ dx /pw(p)’ dx /p2 dx

sup % = =2 = [l
wew, Wl [wte | el

w#0

Thus, C > 1 and we arrive at the required result.
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These estimates give a certain presentation on the value of C. However, we
are mainly interested in the estimate from below, what imposes a task more
complicated than the finding the constant in the Friederichs inequality.

In principle, one could determine C by the following arguments. Let

wp € W be a function such that

Aw, = Vp, wy, =0 on 09Q.

Then,

f/Vw,,:Vvdx:/prdx Yv € Wp
Q Q

and, thus, we have

/|VW,,\2 dx:/pdivadx Yv e Wp.
Q Q
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Therefore,

/ pdivw dx

. Q
C = pGIEz(Q) Wseui)N0 Tl Towl >
p#0 w70
/pdivadx
> inf %= nf [Vwall
P AP 11 B
p#0 p#0

Thus, finding C requires the minimization of this quotient with respect to

all p € IO_Z(Q) , where wp is taken as the solution of the above defined linear
problem. Certainly, such a task (for some Q) might be solved by only
analytical methods.




C for square domains

We will use the above relation to minimize the quotient on a subspace of

ZZ(Q) what may give a presentation on the value of C.
Let
Q=Q:={xeR"||xie(—mm),i=12,.n}.

We are interested in the value of the quotient

inf [Vp]'
etz IPllg

Represent p as a series with respect to the trial functions

@ e @ _ . . .
p;’ =sinixsinjy, p;’ =sinix cosjy,

3) _ . P (4) . .
pij = cosix sin}y, pij = COSIX cos)y,

where i,j=0,1,2, ...
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Then

=g

i,j=0 s=1

Here, the first nonzero coefficients are

Q

p sinjy dxdy,

p cosjy dxdy,

Q/
1 .
a, = 2.2 /p cosix dxdy ,
Q
9/

1 1 .
aw = 22 p dxdy, ai(g) = ﬁ/p sinix dxdy,




Other coefficients are as follows:

1 P
ai(jl) = ;/p sinix sin jy dxdy ,
Q
2) 1 . .
a;’ = —; [ psinix cosjydxdy,
71'
Q
3) _ 1 . .
a.’ = — | pcosix sinjydxdy,
ij ﬂ_2
Q
@ _ 1 ix cosjy dxd
a = 2 p cosix cosjy dxdy .
Q

We have

ad 2 2 2 2
2 2 Z 1 2 3 4
=0

ij=

where )\00 = 07 )\01 = 2, )\10 =2 and )‘U =1 fOI‘ all i,j Z 1.




Let us take a finite number of elements in the Fourier series for p:

Zzau Py,

i,j=0 s=1

)

where a;’ are the above defined coefficients. Since

/ p divv dx

IVe] = sup
vewy  [[VVllg

we need to introduce the system of trial functions in Wo(Q). It is given by
the system of eigenfunctions for the problem

Aw = pw wlog = 0.
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11 2 3
This system is

bup = sin S0t m) sin 5y 4 m).
In this case,

Papl = %cos %(x+7r) sin g(erﬂ)’

Pap2 = gsin %(X+7T) cos g(y+7r)_

Take a finite number M of basic functions in the representation of v,
namely we set

M M
M M My M M
vV=yv (vi,v2'), vp = Z bosdas, V' = Z CapPap -
a,f=1 a,B=1

The set of all such functions we denote WB". In this case, we can

obtain a lower bound for the required norm. Really, we have
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/ p divw™ dx / p divv dx

[9pI™ = sup & < Vp] = sup L
WMewM [VvM[|Q veW, ||VV||Q

Thus, we may hope to estimate the value of the quotient

inf IVPI.
pela(Q) ||pHQ

by taking N,M — 400, M = kN & is essentially larger than 1 (typically
8-20). Numerical results for different N are exposed below.




Minimizer p, for n =8, 36 and 120.
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Deviation estimates for the Stokes problem

In order to clarify the main ideas of our approach we rewrite the classical
Stokes system in a somewhat different form:

dive = Vp — f in Q, (253)
divu = 0 in Q, (254)
o =vVu in , (255)
u=20 on 0RQ. (256)

This system involves one additional variable o that corresponds to the field
of stresses. Now we may regard the Stokes problem as the problem of
finding a triplet of functions (u, o, p).
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Primal and Dual Problems

Functional formulations of the above problem are given in natural ”energy”
set for this velocity—stress-pressure setting, which is

£:=13(9) x T x L2(R).
Problem 7. Find u €J}(Q) such that
J(u) < J(v) forall v ej%(ﬂ),

J(v) = / (%|Vv|2 - f-v) dx.

Q

where

We denote the exact lower bound of this problem by infP.
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Introduce the Lagrangian L j%(ﬂ) X X(Q) — R:

L(V,T):/(T:VV—%|T|2> dx—/fvdx
Q Q

that together with Problem P generates the dual problem

sup inf L(v,T)
Teivez(ﬂ)

which is Problem P7: find o € ¢ such that

(o) = sup I(r), I"(r) = _7/ I dx

TEXf

where

S={TexQ)] /T:dex:/fwdx for all w €J3(R)
Q

0
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From the general theorems of convex analysis it follows

Theorem (1)

There exists a unique minimizer u of problem P and unique maximizer o of
problem P*. These two functions meet the equalities

I"(o) = supP* = infP = I(u), (257)
o = vVu. (258)
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Basic error estimate

The basic error relation for the Stokes problem is given by the following
theorem (S. Repin, 2002).

Theorem (2)

For any v Gj%(ﬂ) and any T¢ € X, we have

vV (v—u)ll* + % Ime—all* = 2 (J(v) — I"(7¢)) - (259)
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Proof of Theorem 2

Since u is the solution of problem P, we obtain

J(v) = J(u) = /(g\vwz ~ Y IVuP —f(v-w) dx =

Q

:/(%|V(v—u)|2 +I/Vu:V(v—u)—f-(V—u)) dx =

= %/|V(v —u)* dx for all v 63%(9)
Q

Since J

—~

u) = inf P, we conclude that

IV(v—u)|? = J(v) — infP for all v €13(Q) .

N R
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The next step is to derive a similar relation for the dual problem. For this
purpose, we note that the maximizer o of problem P* satisfies the relation

/G:(Tf_g)dxzo for all 7¢ € Xs.
Q

By virtue of this relation, we find that

* * * * 1
sup P — I"(r¢) = I"(0) ~I"(r0) = o |7 —or|* 7r€Xr.

Since inf P = sup P* we sum the two equalities and obtain

v[[V(v—u)|? + % I7¢ = all* = 2(J(v) =" (7).




Stokes problem is a particular case of the abstract problem we investigated
in Lecture 5:

Find u € Vg + up such that

(AAu, Aw) + (,w) =0 VYw € V.

In this case Vy :j%(Q), V is a subspace of H! containing solenoidal fields,
A =V (tensor—gradient), U =X, Ay = vy, and




Thus, we can apply the estimate

1 1+ .
2 AW =) < 1+ /D(Avy) + S 2T e+ AYIE (260)
where | y [P= [ wlyPdx and
Q

£+ Ay.w) J(Vw :y — fw)dx

[6+Ny[=sup — =D — qup & —
e L e Ay
J(Vw : y — fw — qdivw)dx
sup <
el V7w il
J(Vw : y—fw— qdivw)dx
< sup vq € L3(Q).

o) (A
weHL(Q)
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If
y € Zain(Q) = {y € X | divy € L}(Q,R")}

and q € H!, we have

J(Vw : y—fw—qdivw)dx J(f=Vq+divy) - wdx
Q
sup = sup
o (A o I Vw |
weH1(Q) weHL(Q)
Since
_ ~1/2
lwl| < Ca|[Vwl|| = Car """ || Vw ||,
we obtain

[£+Ay] < Car'?||f — Vq + divy||
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Further,
1 1
D(Vv,y) = 5VVVZVV+§U y:y—Vv:y |dx=
Q

= oy~ vV
Now, from (260) we obtain

1+ 3
28y

v 1 .
YV v < (@B Iy -+ 5P - vardivy?,

or

1+8

V2 [V(u—v) > < (1+8)|ly—vVv|*+ 2= Co|[f — Va+divy|.
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Deviation estimate for solenoidal approximations

By the minimization with respect to 3 we derive the first basic estimate for
the Stokes problem:

\ v|[V(u—v)|| < |ly — V| + Callf — Vq -+ divy]. \ (261)

Here v is any conforming approximation of u and y is any tensor—function
in X4;v(R) and q € H! is an ”image” of the pressure function.

This and the next estimate for non-solenoidal approximations has
been derived in '99, English translation is presented in S. Repin. A
posteriori estimates for the Stokes problem, J. Math. Sci. (New York),
109 (2002).
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Non-solenoidal approximations

If the function v € Vg + ug does not satisfy the incompressibility condition,
then the estimate of its deviation from u can be obtained as follows.
By Lemma 2 for the function Vg := V — ug one can find a function

wo Ej%(ﬂ) such that
9o — o)l < 2(@) vl

Then,

v[[V(u =)l = v[[V(u—Vo —uo)|| <
< v|[V(u — (Wo + uo))[| +»[V(vo — wo)]-

Use (261) to estimate the first norm in the right-hand side of this inequality.
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We obtain

v[[V(u = V)| < [[vV(Wo + uo) — y|| + Col|divy + f — Vql| +
+v||V(Vo — wo)|| < [[vVV —y|| +
+Cal|divy + f — Vq|| + 20|V (Vo — Wo)]|.

Hence, we arrive at the estimate

~ ~ . v L
v[[V(u—v)[| <[lvV(v) -y +Calldivy+f—Vaq||+ f,, [[divv]]. (262)

Three terms in the right-hand side of the estimate present three natural
parts of the error, namely errors in the constitutive law, differential
equation and incompressibility condition.




Another form of the Majorant

Set y = m + ql, where I is the unit tensor and 1 € Xqiv(R)(R2). Then the
Majorant comes in the form

_ . . v,
v|V(u—v)[|< HVV(V)*n*qH\HCQHd'VnHH+fy [[divvl]. (263)
Thus, if the constants cq and C are known (or we know suitable upper

bounds for them), then (262) and (263) provides a way of practical
estimation the deviation of v from u.
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Practical implementation

To use the above estimates in practice we should select certain finite
dimensional subspaces
)3 and Qk

for the functions y (or n ) and q, respectively.

Minimization of the right—hand side of the estimates with respect to y and
q gives an estimate of the deviation, which will be the sharper the greater is
the dimensionality of the subspaces used.
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Estimates for the pressure field

Let q € Io_g(Q) be an approximation of the pressure field p . Then
(p—q)e EZ(Q) and the Inf-Sup condition implies the relation

Jo (P — q) divw dx

sup
p —all [[Vw]]

weVy, w#0

Thus, for any small positive € there exists a nonzero function wyq € Vo such
that

[ = a)divwiagx > (€ = €)lp — all| Tw.
Q
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Since
/ g(u) : e(wpq) d / (F - wpq + pdivwyg) dx,
Q Q

we have

/ (p — q)divwygdx =

Q

= [{ve(—9) - clge) + (ve(9) (W) +Va - wgq—F i)} o

= /VE((U —V) : g(wpq) dx + / (ve(V—y) : e(wpq) dx

Q Q

o [ s el + T why — o wi) o
Q

where V is an arbitrary function in Wy + ug and y as an arbitrary
tensor—valued function in X .




Above relations lead to the estimates

1
poall < e
Ip=all < o Twal

[ [ eta =3 et + (o) ) - clwi)

Q
+ / (—Wpq - divy + Vg - wpq — F-wpg) dx

1

=c-9

[vlle(u =) + [[ve(¥) — y|| + Calldivy + f — Vq[].

The first term in the right—-hand side of this inequality is estimated by (262).
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Deviation estimate for the pressure function

Since € may be taken arbitrarily small, we obtain the following estimate for
the deviation from the exact pressure field:

1 v
Lo all < Yidiv
5P —all < &lldivv] + (264)
1 Ca, ..
+¢llve@) —yll + & ldivy +f — Va] .
C C
It is easy to see that the right—hand side of (264) consists of the same terms
as the right—hand side of (262) and vanishes if and only if, v=u,y =0

and p = q . However, in this case, the dependence of the penalty multipliers
from the constant C is stronger.
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Problems with condition divu = ¢.

In many cases, divergence—free condition is replaced by
divu=¢ inQQ,

where ¢ is a given function in ZQ(Q). For such functions, we have the
problem: find u that is equal to ug on 992 and

—dive +Vp=f inQ,

oc=ve(u inQ,
Let ug € Wy, divuy = ¢. By setting u = ti + ug and g = ug — ug, we
present the boundary—value problem as follows: find u Ej %(Q) + tg
such that

—divd+Vp=Ff inQ, f=f+ vdive(ug) e HY,

o =ve(u) inQ.
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Assume that u is approximated by a certain v € Vg 4+ ug. Let v be
presented in the form v =V + uy. Now. we apply (262)) to a ”shifted”
system and obtain

[e(u—v)[| = [[e(@ V)| <
. 2
< |lve(@) — y|| + [divy + F — Vaq[ + T:BHdivVH.

Set here y = —v'V(uy) + 1, where 7 is a function in X gy.
Then

divy + f = —vdive(uy) + divy + f = divy + f
and ve(v) —y = ve(v —uy) —y = ve(v) — n. Therefore,

le(u—v)|| <

2
< |lve(v) — mll + [divy +f — Va] + ——— |divv — ¢].
Ciee




Problems for almost incompressible fluids

Models of almost incompressible fluids are often used for constructing
sequences of functions converging to a solution of the Stokes problem.
In this case, the incompressibility condition is replaced by a penalty
term: find us € V satisfying the integral identity

1
/ (VVU5 :Vw + gdivu(; divw)dx = /f -wdx, we W,
Q Q
and the boundary condition us = ug on 9.

It is not difficult to show (see, e.g.,R. Temam. NS Equations), that us
tends to u (solution of the Stokes problem) in H! norm and

[e]
ps = f%divu(s € L2(2) converges to the respective pressure function p
inLyasd — 0.
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By (262) we can easily obtain an estimate of the difference between u and
us. Let us set in(262) y = 75 := vVus and q = ps = —%divu(;. In this case,
lvVus — 75| = 0 and

Idivrs +f —Vps] =

=0.

fn (—vVus : Vw + f - w + psdivw) dx
= sup
wevg [Vwl|

Thus, we conclude that
1 1
—{|V(u — < ——||di
SV (= us)l < - divus .

We observe that the deviation from the exact solution of the Stokes
problem is controlled by the norm of the divergence of the regularized
problem. Similar estimate can be obtained for the approximations
constructed by means of the Uzawa algorithm.
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Functional a posteriori estimates for the Stokes and some other problems
were also derived by nonvariational techniques
(see S. Repin. St.-Petersburg Math. J, (2004)).

In particular, such estimates were derived for the Oseen problem

—vAu+diva®u)=f—-Vp inQ,
divu=0 in Q,
u=0 on 092.




Generalizations

A posteriori estimates of the above discussed type can be derived in the
abstract form for the whole class of problems where a solution is seeking in
a subspace.

Typically, we have the following diagram:

HE w &~ u (v,v)

()
H o Bowy &
Basic problem. Find p € H and u € V), that satisfy the relation
(ANu, Aw) + (f = B"p,w) =0 VYw € Wy,

where

Vo = KerB := {ve Wy | Bv =0} .
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Assume that
vllyl® < (Ay,y) <wvalyl?, yeu,

Let the operator B possesses the following property: there exists a constant
a such that for any

gelmB:={zcH|3veW,: Bv=2z}
one can find ug € Wy such that
Bug =g and [ugllw < oflgl.

Note that such a condition is a generalization of Lemma 2.

Under the above assumption we obtain an estimate of the deviation from u.
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Estimate of the deviation from u

I Afu =) [I<
1
V1

where || y [:= (Ay,y)"2, || y [l.:= (A" 'y, y)"/? We sce that the terms of
the estimate present errors in the basic relations

< 2y/v2a||BV||+ || AN —y || + [f+ANy—-Bq].

(No+f—B*p,w) =0 Yw € Vy,
o = Alu,
Bv = 0.
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For the Stokes problem Av = Vv, A = v, where I denotes the identity

operator and Bv = —divv. It is easy to see that in this case v1 = vy = v,
| AN~y .= [Ty —y]|
y [l«= N yl|-

Since || A(u — V) ||= vV||A(u — V)||, we find that the general estimate
coincides with (262)).




NONLINEAR MODELS IN THE THEORY OF FLUIDS
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Bingham fluids

In these models

W(e) = u‘sD ‘z—i—ﬁK*

aD‘ = Wi(e) + Wa(e) (265)

Here W is the Newtonian potential of a viscous fluid and W3 is the plastic
potential. By the Moreau—Rockafellar theorem we have

OW(g) = OW1(g) + OW2(e). (266)
If | eP | # 0 then the relation reads

\/EK* D

|8D| g .

OW(e) = 2ue® + (267)
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Let us define OW(e) for the case ‘ED ‘ = 0. Evidently, Wy(e) = 0. To find
OW3 we recall that by definition, 7 € 9Ws(¢e) iff

V2K, | =° ‘ — V2K,

EDIZTZ(EE—E).

Note that

1
TI(&—&)Z;tI‘T(tI’&—th)—FTDZ&D,

Therefore,

V2K,

1
aeD‘ > Ztrr(tre—tre) + 701 2” Vel
n




Let ‘ =P | =0, then
1
0> Htr‘r (tree —tre).
From here, it follows that
trr =0.

Therefore,

V2K,

Without a loss of generality we may assume that || = 1. To maximize
D

BB Then, we observe that

aeD. ETD:aeD V.

T

the right-hand side we take =P :=
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Hence, OW»(¢) for ’ED ’ = 0 consists of all 7 such that 7 = 7° and

‘TD( < V2K.. (268)

This relation reflects the physical nature of a viscoplastic fluid. In the
stagnation zone the deviatoric part of its stress is not uniquely defined and
can be any provides (268) is satisfied. Later we will see the examples
exposing such a behavior of a solution.
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Bingham flow in a basin

We consider a flow problem in a fixed domain, i.e., Q¢ = Q and the
”no—slip” conditions u = ug are imposed on the boundary.
Classical solution is defined as (u, o, p) such that

u e C(RY NW3(Q;RY), (269)
o € C(; MI*") N W3 (; MI*™), (270)
p € C(Q), (271)
M L@ RrY) (272)
ot e

f e La(2;RY), (273)

Consider Dirichlét boundary conditions.
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LetveHl(Q RY) = {ve H(Q;RY) | v=10o0ndQ}. Multiply
)

—+u;8—:fdiva':f

by v and integrate by parts.

/(8u +u.8u v—vdiva)dx:/fvdx7

ot Oxi
Q Q
Ou Ou
/(aJru.ax) vdx+/a' s(v)dx—/fvdx
Q Q
This relation may be rewritten as
du du
/( ot +u 8x.) vdx + /(a +pl) :e(v)dx = (274)
Q Q

= /(fv + pdivv) dx Vv € H'(2;RY)




By the constitutive relations,
o + pl = OW1 + OW, = 24e°(u) + OW,(e(u))

what means that
o + pl — 21e®(u) € OW,(g(u))
The latter means that

V2k, | =P ‘ — 2k,

(u)| >

> (o +pl —2ue®(u)) : (2 —e(u)) Va e MI*"
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Set @& = (u + v). Then,

V2k, | 2° ’ —V2k.

£ (u) ‘ > (o + pl — 21 (u)) : (v).
and we obtain

/(0' +pl) :e(v)dx <

Q

< [ @ueP(w) s =2

Q

D‘_

2k |£°(u) ’)dx
Now (274) yields inequality

" Ou Ou ' D D
; . 2ue :
,/(E)t +u (?x.) vdx + /( pe (u) e (v)+
Q

+ V2K, ( ‘f‘ ‘ dx>/(fv+pdivv)dev€HI(Q;Rd)

Q
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If a trial function is taken from a narrower set
°1
v=w+u —u , w, Up GJZ(Q)
so that
divv =0, a =¢e(w+up)
Then (275) comes in a simpler form

/{(% + u;%) (W +ug —u) + 2P (u) : €®(w + up — u)+
Q

+ V2K, (

£%(w+ up) ’flsD(u) ’)}dxz /f - (w+up— u)dx Vwejé(ﬂ).
Q

(275)




Denote @t = up + w, then we arrive at the variational inequality that
describes the motion of an elastoplastic media

/{ éx. (0 —u)+

+ 2% (u) : (i — u) + V2k.(| °

(@)

- ‘6D(u) ‘)} dx >

> /f (G — u) dx Vil € up+ j%(Q) (276)
Q




Stationary flow

Stationary model is a particular case of the above that arises if du/0t = 0.

Here, we need to find u Ej%(Q) + ug such that
Ou
/ {uia—xi (v —u)+ 2ue(u) : e(v — u)+
Q

+ﬁk*(|6(v)|—|5(u)|)}dx2/f-(v—u)dev €IXQ) +u. (277)
Q

If, in addition, v is small (slow flows) then we arrive at the problem

/{m e(v — u) + V2. (| £(v) | — | =(u) )} dx > (278)

z/f-(v—u)dx Vvej%(ﬂ)—kuo
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Existence and uniqueness

Consider the problem: find u Gj%(Q) + ug such that
/ZME(U) ce(v—u) + V2K.(|e(v) | — | e(u) [)dx >
Q

z/f-(vfu)dx W €J3(Q) +uo, (279)
Q

where f € Ly(2,R?), up €J1(Q).
Uniqueness of the solution is easy to prove
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Regularity of weak solutions

Regularity of weak solutions in the theory of Non Newtonian viscous fluids
was investigated in the works of M. Fuchs, G. Seregin, M. Bildhauer and
other authors. Readers can find a consequent exposition of these results in
the book

M. Fuchs and G.A. Seregin. Variational methods for problems from plasticity
theory and for generalized Newtonian fluids. Lect. Notes in Mathematics
1749, Springer-Verlag, Berlin (2000)
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Let ug, up Gj%(ﬂ) + ug be two different solutions. Then
[Hueen) - ev ) +
Q

V2K, (| 2(v) | = [2(ur) ) — F - (v — ur)}dx > O
[Huetun) - etv = ) +
Q
+V2K.(Je(v) [ — | e(u2)[) = F- (v — u2)}dx > 0
Set v = uy in the first and v = u;y in the second.

/us(ul —u2)-g(uz —up)dx >0
Q

/

Thus,

e(ur —uz) *dx < 0

Mat-5.210




Existence

Existence follows from that the problem is equivalent to the variational
problem

I(u) = inf {I(v) : v €J3() + uo}, (280)
where

I(v):/{u|s(u)|2+ﬁK*|s(v)\—f-v}dx

This equivalence follow from the well known result (see, e.g.,
J.-L. Lions and G. Duvaut. Enequalities in mechanics and physics).
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Vaariational problem

inf J(v) = J(v.); J(v) = Jo(v) +j(v), (281)

vekK

where K is a convex closed set, Jo : V — R is a convex differentiable
functional, j : V — R is a convex functional, VV has the same solution as the
variational inequality

(Jo(vs), vs — v) + j(vs) —j(v) <0, Yv € K (282)

Mat:




In our case

Jo(v):/,u|e(u)|2dx—/f~vdx
Q

Q
W) = V2K, [ |e(u)|éx
Q

K=J3Q)+uw, V=H(QR"

and we arrive at

I(v):/{u|5(u)|2+\/§K*|5(v)\—f-v}dx

which is convex, continuous, and coercive. These properties imply
existence.




Approximate solutions

Let Vi, Cj%(ﬂ) and dim V}, < +oo, find up € Vi, + ug,

/,us(uh) - (e(vn) — &(un)) dx+

Q

+ [ V2K, (Je(vn) | — |e(un) [)dx > [ - (v — un)dx
/ /

Yvh € Vb +ug  (283)
Variational formulation: find up € Vi, + ug such that
I(un) = inf {I(vh) : vh € Vi + up} (284)
Serious difficulty is the condition

divv, = 0.
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Example. Antiplane flow in a pipe

Consider a long tube of the cross-section Q with the income and outcome
pressure:

p(x1,x2,0,t) =0, p(x1,x2,L,t) = —cL (285)
On the side surface
u sexp,y=0, (286)
We are looking for a solution of the form

u; = 07u2 = 07 us = W(X17x27t)

1
0 0 7W71

1

g(u) = 0 0 -wp




Since
0 0 %W 1
e(u) = 0 0 iw,
w1 w2 0
we have
21 g O _
|E(U)| 2 |VW‘ ? axl (0707W1)7
du Ou du
87)(2 (0,0,W,z), 87)(3 = (0,0,0)7 Uiaixi 0
ou .
uiax; =0,divu=0 (287)




Remark

ol
If set in (277) v = (0,0, W), where W € H (), W = W(x1, x2),
ug = 0 and f = (0,0, c), then we arrive at the problem

/{pr-(VWwa)Jrk*(IVvﬂ —|Vw]|)}dx >
Q

> /C(W—w)dx W € F:I(Q).

We see that stationary slow flow of a viscoplastic fluid in a pipe is described
by a variational inequality.
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In this case,

0 0 7'31(X1,X2,t)
o+pl=1= 0 0 T32(x1, X2, t)
T31(x1,X2,t)  T32(X1, X2, t) 0
and 7 = 7°.

Let po = 1. Take the third equation of the motion:

ow
B = o3 + 0322+ 0333, (288)
Here 0 =7 — pl and o33 = —p.
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Therefore, we have

ow
- — 289
It 0311+ 0322 %3 (289)
Since 031,032, and w depend only on xi, x2, we rewrite 289 as follows:
op
== = t
6X3 a(X17X25 )

Thus,
p(Xl, X2, X3, t) = a(xl, X2, t) + X3b(X17 X2, t) .
Boundary conditions (285) say that

p(Xl,Xz,O,t) = a(Xl,Xz,t) =0,
p(x1,x2,L,t) = Lb(x1,x2,t) = —cL = b = —c.

Hence, the pressure is found as p = —Cxs.

Mat-5.210 Special Course in




Now the motion is governed by the single equation

ow _ doz | Jos
ot~ oxq Ox2

+c (290)
Recall that

[ (u) P = 2| Vw 2
Rewrite the constitutive relation

) o | e(u) >0

£
2/15([]) + \/EK*W

o+pl=
=72 7% |<V2K. for |£(u)|=0

in terms of the problem considered.




We have
1
(2 + V2K, 7)§w7i | Vw |> 0,
v
o3 = f‘ Wl i=12. (291)
T35, | TP < V2K, | Vw |=0
where | P \2 = 27312 + 27322 Therefore,
K.
(;H—IV |) for | Vw [>0,
o3 = (292)

T3, VTanl+TR?2<K, for |Vw|=0




We observe that

| o3 [:= \ ("%1 +‘7§2) =

Now (292), the equation

ul Vw | +K,, for | Vw |> 0,

VTh+ 715 <K, for |[Vw|=0

8—W:divo'g, + c.

ot

and the condition

Wl =0 (293)

describes the solution.




Cylindrical pipe

Consider stationary flow in a cylindrical pipe.

g3 1=77=(77p777«p)7 Tlp = O3p,

Problem is axisymmetric and

ow
O3p = 0, — =0.
P 8@
Problem is stationary:
o _
at
In the axisymmetric case
div(o3) = divy = 9y
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Now, the motion equation reads

Mo Mo o _g — 1Omo) |
op p p Op
K. 0w ow
Mo = 9p
. o~ ow
Mo | 15 1< K for ‘ |:0
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(294)

(295)




From the viewpoint of physics it would be natural to await the following
behavior of the media:

1. If the ”pressure grade” c is small, then there is no motion at all:
plastic properties of the media dominate and does not allow any
motion.

2. If ¢ becomes large enough, then the motion starts in places where the
effective stresses achieve the critical value, i.e. near the boundary.
Central part moves as a solid body.
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Formal analysis confirms these expectations. Integrate (294)), then we
observe that

ne=—cp+ =2 (296)

= - 2
Mo 2P (297)
For which ¢ no motion arise?
| m0(P) | < | mp(R) |= 5 R < K.,

2K,

Hence, these values are: ¢ <

R




Indeed, in such a case we have a function 7, that satisfies the equation and
ow .
constitutive relations related to the branch | N |=0. Since w |55 =0 we
I

conclude that w = 0.

Let ¢ > ?* We are looking for a solution such that

1. for R < p < R the media is deformed and | aa—‘z >0

2. for 0 < p < R, the media is rigid and | z—‘z |=0.




Then R. is defined by the relation

[m(R) |= SR =K. = R. = 25 <R

For R, < p < R it should be Z—‘:: < 0, so that

. " K. d7w o dw K
M = | M | 37‘” | dp dp *
dp
The latter relation leads to the conclusion that
dw Cc 5
- « = —= — K* = — c
" 2/) =  uw p=—zr +Cs
O:K*R—%R2+C3:> C3:§R2—K*R. (298)

Consequently uw = K.(p — R) — %(p2 —R).
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*

the solution is as

Therefore, we arrive at the conclusion that for ¢ >

follows:
VR R -SR2-R)| 0<p<R
1L * 4 * >~ >~ * g
wW —=
- Rr)- S -RY R.<p<R
L4 N «<p<R.
Thus,
%:0 for 0 <p<R.
and

i|:1—;p:| for R, <p<R.
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FUNCTIONAL A POSTERIORI ESTIMATES FOR GENERALIZED
NEWTONIAN FLUIDS
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For the considered class of problems it is convenient to derive estimates of
deviations from exact solutions by the variational method. First, we
establish the estimate

%/|€(v “u)P dx < J(v) - J(u), (200)
Q
where v is an arbitrary function in j%(Q) + ug. Indeed,

IJ(v) — J(u) = /(% le(v—u) P + ve(u) : e(v — u)+

Q

HVEK. (W) = (@)))dx [ (v e

Q




To estimate J(u) from below, we construct a set of variational problems
whose functionals are defined on the functional class wider than

j%(Q) + ug. These problems we shall call " disturbed”.

Let us define two functions q € EZ(Q) and 72 € X and the functional

Iv) = / (g le(w) > + 72 : e(v) — " (T2) — f-v — qdiv(v — uo)) dx,

Q

where 9* : M¥*? — R is the functional conjugate to (k) := v/2K.|x| in the
sense of Young—Fenchel, i.e.,

V(R = sup (K"K —b(k)}.

reMdxd
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Now, the following variational problem Pg -, arises: Find @i € Vg + up such
that

J@@)=infP:= inf J(v).

vEVy+ug

Here, in principle, U = tiq,~,. However, for the sake of simplicity we shall
not do this assuming that the bar above means that a quantity depends on
the above functions.

Problem P is uniquely solvable and

inf P < inf P. (300)
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Existence and uniqueness of o follows from the properties of the convex
functional J and closed set Vg 4 ug. In accordance with the definition of ¥*,

for any v € j%(ﬂ) + up we have the inequality

](v):/ (% le(v) [P+ 72 : s(v)fq/)*(rg)) dxf/f«vdx < J(v).
Q

Q

Therefore,

inf  J(v) < inf Jv) < inf J(v) = infP.

v Gj§(9)+uo v Ej%(ﬂ)wLuo

v € Vg + ug




Now, we observe that

%/|s(v —u)|? dx < J(v) —inf P. (301)

However, the value of inf P is unknown! To overcome this difficulty we
attract dual variational problem P*.

If inf P = sup P*, then inf P can be replaced by a lower estimate of sup P*.
Estimates obtained on this way will depend on the functions 7, and q and
also on the variables of the dual problem. Note that there are different
variational problem that may be viewed as dual to P. The problem is to
find in this collection a proper variant that leads to estimates convenient for
practice and having a good accuracy. For the class of problems considered,

the following variant is possible.




Define the Lagrangian

L(v;T1) = /(e(v) (it T2) - % |71 2 — ¢*(72))dx

Q
—/f~vdx—/q~div-(v—u0)dx.
Q Q

Then,

J(v) = sup L(vimu),
T1EX

so that Problem P is equivalent to the minimax problem

inf  sup L(v;71). The respective dual problem is
veVotup rcx

sup inf L(v;T1).
T1ex vEVp+up




Note that
. oo o T(T]) if 71 € if (Q)7
ve{/r(])fkuO L(V’ Tl) o { —0o0 if T1 Q if (Q)7
where
- 1 .
I(m1) = / (E(Uo) (r1+T2) - 3 |71 |2 =4 (r2) — F - uo)dx,

Q

and ¢ is an affine subset in X that consists of the functions T satisfying
(in a generalized sense) the condition div(T + 72) = Vq —f, i.e,,

£1() = {rex(@)] /e(w) (7 + 72) dx

:/(f»w+qdivw)dx, WGVQ}.
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Thus, we arrive at the following formulation of the Dual Variational
Problem.

Problem P* For given 75 € ¥ and q € I(iz(Q) find a function &1 € ¢ ()
such that

(1) =supP* := sup 1I(71).
‘rleff
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Problem P* has a unique solution &, satisfying the conditions

inf P = J(@) = sup P* =1(1), (302)

(303)




—1 is strictly convex and ¢ is a convex and closed subset of ¥. Therefore,

Problem P* has a unique solution.
Note that sup P* < inf P. This fact follows from the relation

supinfL < infsupL
u satisfies the integral identity
/(ue(ﬁ) re(w)+712:e(w)) dx = /(f -w + qdivw)dx w € V.
Q Q
From here, it follows that
/f - fidx = /(V (@) P — ve(@) : e(uo)+

Q Q
+72:e(t—ug) +f-up — qdiv(t — ug))dx.
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Therefore,

= (% le(@))?+ 72 e(ﬁ)—z/)*(rz)) dx—/(qdiv(ﬁ — up) + f - )dx

Q

Q
= /(7’2 : E(uo)f% |e(@) [2—*(T2) + ve(uo) : a(ﬁ)) dxf/f~u0dx.
Q Q

Since ve(ui) € Z¢, we know that

1(ve(@)) < sup P~
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e(u))
:/ (uo) : (ve( u)+7-2)—f\e(u)| — " (12) dx—/f updx <
Q
Ssup’P §|nf'P:

= / (7-2 :e(ug) — % le(@) > — " (72) + ve(ug) : e(ﬁ)) dx — /f - up dx.

Consequently, ve(a) = o1 and

inf P = supP*.
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Estimates of deviations from exact solutions for solenoidal fields

Let v Ej%(ﬂ) + up. For it and 7y € & (2) the inequality
v 2
/ 2 le(v—u)|"dx < (304)

< J(v) —inf P = J(v) —sup P* < J(v) — I(¥)

holds. Estimate the right—hand side of (304) as follows:
o T v 2, 1 2
JW) = I(7¥) < = \e(v)| + 2 | 7% | —e(ug) : 7 ) dx

/(w )+ (72) — &(uo) : ‘rz)dx—i—/f (up — v)dx.
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Let q € EZ(Q). Since Ty € ¢ (Q) and v Ej%(Q) + ug, we have

/f ~(up —v)dx = /(f - (up — v) + qdiv(up — v))dx

= /r-:(uo —v): (T¥ + 72)dx.

Q

As a result, we obtain the following estimate:

% le(v — u)||2 < Mi(v, 7%, 72) := D1(e(v), 7¥) + D2(g(v), T2), (305)
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Here we have introduced compound functionals

Di(e(v), T¥) := / (% |e(v) |2 + i | T |2 —e(v): T]f) dx =
Q

= 5 llve(v) — Tl
D2(e(v),T2) := /(w(s(v)) + 4 (12) —e(v) : T2) dx.
Q
It is clear that both functionals D1 and D> are nonnegative. Moreover,
Di(e(v),7¥) =0
if and only if

Ty = ve(v).




By the properties of the conjugate functionals
Dz(g(v),72) =0

if and only if

T¥ € OY(e(v)).
Now, it is easy to understand the meaning of the estimates (305). Present
the main system in the form

—div(o1 +02)=f—Vp inQ, (306)
divu =0 in Q, (307)

o1 =ve(u),o2 € OY(e(u)) inQ, (308)
u=up on 9. (309)
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Ifv Gj;(ﬂ) + ug, and Ty € ¢ (Q)), then
—div(T¥ + 72) =f — Vg and divv = 0,

so that for v, 7y, 72 and g the relations (306), (307) and (309) are
satisfied.

Our estimate shows that in this case, the energy norm of the deviation from
the exact solution is controlled by the quantities

Dl(e(v), T]f) and Dz(e(v), 7'2),




Certainly, the condition 7y € ¢ () is rather obligatory and it would be
useful to somehow eliminate it. This can be done by the same method as
we have discussed for linear problems.

As a result, we obtain the estimate

% le(v—u)|* < (1 + B)Da(e(v), 1) + Da(e(v), 72)

1
¥ L [div(r1 + 72) +f — Va2, (310)

that holds for any function v ej%(ﬂ) + ug, any pair of functions
(T1,72) € Z X X, and any 8 > 0. The right-hand side of (310) is the
majorant of the norm of the deviation from the exact solution that we
denote by Ma(8,v, T1,72,9).




If the sum 71 + 72 has a higher regularity, so that
(114 72) € Zan(Q)
and, in addition, q € H', then the last term of the Majorant is estimated by
an explicitly computable integral:
*llé‘(v u)|* < (14 B)Da(e(v), 71) + Da(e(v), 72)+

1
+1t8

C3||div(71 + 72) + f — Vq|®.  (311)

2vf3




For any S € Ry, v 63%(9) +u, T1EX, 72X and g € iz(Q) the

functional M>(3,v, T1,72,q) majorizes the quantity ||e(v — u)|>.

For any 8 € R, infimum of this functional on the set

(J3(R) + up) x T x T x L2(Q)

is equal to zero and it is attained if and only if v=u, 71 = 01, 72 = 02
and q = p.
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Example 1.
For the Stokes problem K, =0, 1)(¢) = 0. Set 72 = 0. Then,
D2(e(v), T2) =0 and (310) comes in the form we have already obtained.

Example 2.
For the Bingham model 1(¢) = K, | € |, and
0, if|T(x)| < K,

vi(r(x) = {+oo, it|7(x)] > K.
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Therefore,

Da(e(v), 72) = / (ke | €(v) | - e(v) - T2)dx,
Q

if almost everywhere the function 7, satisfies the condition | 72(x) |< K.
In the opposite case, D2(e(v), 72) = +o00. Then, (310) comes in the form:

5 lle(v—w)|* < / (% | ve(v) = 71 [ +K. | e(v) | —e(v) : 72 )dx
Q
+%]div(n+n)+f—Vq[2. (312)

If the functions 71, 72 and g are taken such that q € H!
div(7T1 + 72) € L2(R2), then the last term in (312) is estimated by the
integral.
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Bingham fluid may have too zones: the congestion zone Qo (where

€(u) =0) and the flow zone Qi (where | e(u) |> 0).

Assume that the right-hand side of (312) vanishes for certain functions v,
71, T2 and . Then, in Qo we have e(v) = 0, and, consequently, 71 = 0 and
divry + f — Vq = 0 for some 75, satisfying the condition | 72(x) |< 1.

At the same time, in the flow zone Q; the relations

T2 = ks £(v)

TeW) T 71 =ve(v), div(ti+72)+f—-Vqg=0

hold.




Lecture 9

GENERAL APPROACH TO A POSTERIORI ERROR CONTROL FOR
NONLINEAR VARIATIONAL PROBLEMS
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Lecture goal

In subsequent lectures we will present the general theory of a posteriori
error control for convex variational problems. In the framework of this
theory we are able to derive computable upper bounds for the errors for
problems of the type

jgf/J(v,/\v), J(v,Av) := G(Av) + F(v),

where A : V — Y is a linear continuous operator from a Banach space V to
another Banach space Y and J: Y — R and F : V — R are convex l.s.c.
functionals.
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In particular, if
Av=Vv, G(y)=(Ayy), F(v)=(fv),
then we arrive to the variational formulation of the problem
divAVu +f = 0.

Many other problems have the above form, were

G is the energy functional whose form is dictated by the
dissipative properties of a media.

F is the functional associated with external forces and (or)
boundary conditions.
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Diffusion type problems,

Linear elasticity,

Biharmonic problems,

Kirhghoff and Mindlin plates,

Problems in deformation theory of elastoplasticity,

p-Laplace equation,

Stokes problem,

Nonlinear problems in the theory of viscous fluids and many other
problems can be presented in the above general form.

In such models, the structure of the ”energy functional” G plays crucial
role in all the parts of the mathematical analysis: existence and
differentiability properties of minimizers and estimates of deviations from
the minimizers.

Mat:




To understand the basic principles of the functional
approach to the derivation of a posteriori bounds of the
approximation errors we need to make a concise
overview of some parts of the duality theory in the
calculus of variations.




A consequent exposition functional type a posteriori error estimates for
nonlinear variational problems can be found in the papers

S. Repin. A posteriori error estimation for variational problems with
uniformly convex functionals, Math. Comput., 69(230), 2000, 481-500.
S. Repin. Two-sided estimates for deviation from an exact solution to
uniformly elliptic equation. Trudi St.-Petersburg Math. Society,
9(2001), 148-179 (in Russian, translated in American Mathematical
Translations Series 2, 9(2003)

and in the book

P. Neittaanmaki and S. Repin. Reliable methods for computer
simulation. Error control and a posteriori estimates. Elsevier, NY,
2004.
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Selected topics of the duality theory in the calculus of variations

To understand the structure of functional a posteriori estimates for the
considered class of problems we need first discuss three additional topics:

m Dual and bidual functionals ;

m Compound functionals ;

= Uniformly convex functionals.




Dual (polar) functionals

Hereafter V* contains all linear continuous functionals defined on V. The
elements of V* are marked by stars,

(v*,v) is called the duality pairing of the spaces V and V*.

Let J: V — R, then J* defined by the relation

J(v*) = sup{{v",v) — J(v)}
veVv
is called dual to J.
If J is a smooth function that increases at infinity faster than any linear
function, then J* is the Legendre transform of J. The above general
definition comes from Young and Fenchel. The functional J* is also called
polar to J.
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The functional

J7(v) = sup {(v',v) —J7(v')}

vkeVv*

is called the bidual to J (or bipolar).

Straightforwardly from the definition, it follows that J* and J** are convex
functionals (they are defined as upper bounds of affine functionals).
Formally, one can also define

I () = sup{(v",v) — J""(v)}.
vev
However, this definition brings nothing new. It is proved that

JTW) =J"(v), wrevh.
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Mutually dual functionals

Let J: V — R := {R, —c0, +oo} and G* : V* — R be two functionals
defined on a Banach space V and its dual space V*, respectively. These two
functionals are called mutually dual if

(G)"=J and J"=G".
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Examples

To illustrate the definitions of conjugate functionals, we present below
several examples for functionals defined on the Euclidean space EY. In this
case, V and V* are isometrically isomorphic. Their elements are
d-dimensional vectors denoted by & and £, respectively, so that

(€. =& ¢ =¢¢,.

These examples have a practical meaning because for a wide class of integral
type functionals (in the mechanics they are the energy functionals) finding
the dual energy functional is reduced to finding dual to its integrand !
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In other words, if the ”primal energy functional” has the form

G(v) := /g(l\v)dx

Q

where g is the ”internal energy” or ”dissipative potential”, then the
so—called ”complementary energy” is given by the integral functional

where g* is conjugate to g in the algebraic sense.
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Example 1 (Diffusion problems)

Let A = {ajj} be a real, positive definite matrix and

1 1
g(&) = EAf €= Eaijﬁify
Then 1
g(€) = s {€ 6 3ac-¢].

gcEd

This supremum is attained on an element &, such that
* —1 %
§ =A5 = & =A ¢
Therefore, we have a pair of mutually conjugate functionals

g(6) = 2AC ¢ and g'(€') = A €€
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In diffusion type boundary—value problems we arrive at the functional (with
y =Vv)

%/Ay-ydx y € L2(Q,R"),
Q

which is mutually dual to

1

N

/A*ly* -y dx y* e Ll}(Q,R")
Q
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Example 2 (Linear elasticity)

Let L = {Ljkm} be a real, positive definite tensor of the 4-th order and T be
a tensor of the second order (d x d-matrix). Then,

1 1
g(e) = ELE re= §Lijkm€ij€km.
Then

_ " 1

g (") = sup {e :s—fAs:s}.
€€Md><d 2

This supremum is attained on an element €y such that

~1
T =Leg = eo=L "€".

Therefore, we have a pair of mutually dual functionals

gle)=-Le:e and g'(e") = %Lfls* ce”.




In linear elasticity problems we arrive at the energy functional in terms of
strains e(v) = 3(Vv + (Vv)")

%/]LE cedx e L3(Q,M"™"),

Q

which is mutually dual to the ”complementary energy” functional written
in terms of stresses €*(x) => 7(x)

%/]Lfl'r crdx T e L2(Q,M™M)
Q




Example 3 (Nonlinear elasticity, p-Laplacian)

Consider the functional

L

where p > 1 and |€] = (& - 5)1/2. It is easy to verify that the quantity
£ € — %|€\" attains a supremum if & = &,, where &, satisfies the relation

€ &l ¢ =0,
which yields [€*] = |€,|P~! and £* - &, = |&,|P. Therefore,

* [ ek * 1 p 1 p 1 *p*
E(E)=¢ &~ Lle =(1—5)|e0| = e,




Thus, we obtain another pair of mutually conjugate functionals

g(6) = %\5\" and (€)= %\s*r’*,

1 1
where S = 1.

Remark

This relation admits generalizations. Namely, let ¢ : R — R be a proper
convex function that is, in addition, odd and let ¢* : R — R be its
conjugate. Then

(lulv))™ = @™ ([lu™llv-)-
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In certain nonlinear boundary—value problems we arrive at the functional
(withy = Vv or y = g(v))

%/Iyl”dx y € LP(Q, R"M™")),
Q

which is mutually dual to

1 ’ * D> * * n nxn
=[P ey el @R,
Q
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Example 4 (Action of external forces )

Let g(&) be a linear functional, i.e.,

g&)=10-¢ (cE.

It is easy to see that

* k) * o . _ 0 6*:£7
g(&)—::sd{ﬁ £E—L-&} {+oo )

Denote by X, the characteristic functional of the set {¢} C EY. Then,
another pair of mutually conjugate functionals is as follows:

g(é)=1¢-¢ and g"(&")=Xpn(£").
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Thus, for the functional G : L> — R
G(v) := /fvdx, feLl’(Q)
Q
the respective dual functional is G* : L> — R

G'(v)=0ifv' =T, G*(v") = +oo inother cases.
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Example 5 (Variational inequalities)

Let g(&) = |€|. Then
Szp{ﬁ* € — €}

may be finite or infinite depending on the value of |£*|. If |€*| > 1, then,
obviously, it is infinite. If |£€*| < 1, then, on the one hand,

S:p{ﬁ* - €y < sgp{1|€| - €[} =0.

On the other hand, sup;{£* - & — ||} > £" - 0 — 0 = 0. This means that
g"(€") =0 if |€*| <1 and, thus,

g(&) = €], g°(€7) = Xp-(0.1)(£7), where B*(0,1)={€" € E*| [¢"| < 1}.
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Thus, for the functional G : L} — R

G(v) = [ vldx,
Q

the respective dual functional is G* : L — R

G'(v')=0if [v'(x)| <1lae.in®, G"(v')= +oco inother cases.

210 Special Course in Computational Mec!




Properties of dual functionals

Property 1

IfJ:V—Rand G:V — R are such that
J(v) > G(v), WeV,
then
J'(v) <G*(v), W"eV.

Proof. We have

J7(v7) = sup{(v",v) — J(v)} < 325{@*7\') = G(v)} =G"(v").

vev
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Property 2

For any A > 0,

(M) (v*) = AJ° ("7> :

Proof. This property is justified by direct calculations:

(M) (v') = sup{ (v*v) — M(v)) =

{5 —smp = (%)
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Property 3

Let J: V — R and J,(v) = J(v) + o, where o € R. Then
(V) =1 (") —a.

Proof. It follows from the obvious relation

sup{ (v*.v) ~ J(v) ~ o} = sup{(v'.v) ~ J()} ~ .

vev




Property 4

Let vo € V and G(v) = J(v — vp). Then
G'(v') =J"(v") + (v, vo).

Proof. Since

sup{(v*,v) — J(v — vq)} = sup{{v",w + vo) — J(w)}
vev wev

= i:e{(v*,w> —J(w)} + <V*,V0> = J*(V*) + <V*,V()>,

we arrive at the required relation.




Property 5

If G(v) = mini=1,... .n{Ji(v)}, then G*(v*) = maxi=1,... n{Ji(v*)}.
Proof. We have
G'(v) = sup{(v'.v) —  pin {H(v)}}

:325{@ )+ rpax{ Ji(v)}}
= 3:5' _max {(v,v) = Ji(v)}

= rlnastup{<v v) —Ji(v)} = = max {J (v}
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Property 6
If G(v) = maxi=1,....n{Ji(v)}, then G*(v*) < mini—1,.. n{J(v")}.

g
0
5
* 2
5
] :
e

Proof. By definition, we have

G'(v') = sup{(v".v) — max {5(v)}}

.....

= sup{(v',) +_min {~h(v)}}

vev

= sup_ min {(v vy — Ji(v)} )

vev i=1,...,N
Now we apply supinf < infsup relation to (v*,v) — Ji(v). Then,

G*(v") < min sup{(v V) — J(v)}—_mm {J( ")}

i=1,...,N i=1,...,N
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Subdifferential

The functional JV — R is called subdifferentiable at vg if there exists an affine
minorant ¢ € AM(J) such that J(vg) = 4(vo). A minorant with this property is
called the exact minorant at vg.

Obviously, any affine minorant exact for J at v has the form

Lv) = (v, v —vg) + J(vo), £(v) <J(v), WveV.

The element v* is called a subgradient of J at vo.




The set of all subgradients of J at vg forms a subdifferential, which is
usually denoted by 9J(vg). It may be empty or contain one element or
infinitely many elements.

An important property of convex functionals follows directly from the
above definition. For a convex functional J at a point vg where it is finite,
the exact affine minorant is evidently exist!

In other words, there is at least one element v* € J(vo) that ”creates” an
affine minorant such that

(viv) —a <J(v), WeV,

(v*,vo) — a = J(wvo).
By subtracting, we obtain
J(v) — J(vo) > (v',v — vq).

The inequality (313) presents the basic incremental relation for convex
functionals.
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Compound functionals

Let J and J* be a pair of mutually dual convex functionals.

|
The functional Dy : V x V* — R of the form
Dy(v,v) :=J(v) + J*(v*) — (v',v).
is called it the compound functional associated with these pair of

functionals.

We will see that compound functionals play an important role in the a
posteriori analysis of linear and nonlinear variational problems.
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Compound functionals are always nonnegative. Indeed,

J(v) = 325((v*,v) —J(v)) > (vi,v) —J(v) WeV

and

J'(v) +J(v) — (vi,v) >0 Vv, v*

Computational Mec!




Mat:

Compound functionals may vanish only on special sets, where v and v*
satisfy certain relations.

Theorem

Let J be a proper convex functional and J* be its polar. Then, the following
two statements are equivalent:

J(v) + I (v*) — (v',v) =0, (313)
v € 9J(v) and v € 9" (v7). (314)

Relations (314) are also called duality relations for the pair (v,v*).
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Assume that v* € 9J(v)., i.e,

J(w) > J(v) + (v, w — v), Yw e V.

Hence,
<V*7V>_J(V) > <V*,W> _J(W)a Yw e V

and, consequently,

(v v) = J(v) = sup{{v",w) — J(w)} = J"(v"),

wev

what leads to the conclusion that J*(v*) + J(w) — (v*,w) < 0.
But the left-hand side is nonnegative, so that we obtain

Dy(v*,v) = 0.




|
Assume that v € 8J*(v*). Then

FWw) > () + (W - v,
and we continue similarly to the previous case:
(v, v) = J7(v7)

(w*,v) —J"(w™), Yw" eV’

(v) = J(v).

Thus, we again arrive at the conclusion that it can only be if Dy(v*,v) = 0.

2
2

Mat-5.210 Special Course in Computational Mechanics, Autumn 2006,




e
Assume that Dy(v*,v) = 0. Since

(') = sup{(v",w) — J(w)},

wev
we obtain
0=J(v)+J"(v")—(v*,v) > J(v)—J(w) — (v',v—w), Vw € V.
Rewrite this inequality in a more familiar form:
J(w) — J(v) > (v, w — v), Yw eV,

which means that J(v) + (v*,v — w) is an exact affine minorant of J (at v)
and, consequently, v* € dJ(v). The proof of the fact that v* € 8J*(v*) is
quite analogous.
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Properties of compound functionals

First, we note that, Dg(y, y™) is convex with respect to y and y*, but, in
general, Dg(y,y") is a nonconvex functional on Y x Y*.
This fact is easily observed in the simplest case Y = R if set

1

o*

1 «a * o™
Gly) = _ vl G'(y)=—<lyI* .

Only for e = 2 we have a convex functional
* 1 2 1 *12 * 1 *\2
D == = —yyt =S (y— i
sy, y") = ST+ 5y  —yy =50y —y7)

For other a € (1,400) Dg is nonconvex on R x R.
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However, they have an important property, which is to some extent similar
to convexity.

For any y1,y2 € Y and yi,y; € Y*,

Da (32,72 < 1(Da(y1,yi) + Daly,y3)+

+Dc(yz,yf)+Dc(yz,yi‘))
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From the definition it follows that

Do (v, M%) = G(y)+ G (M) — (i y)
< 3 (Dg(y,y;) + Dg(y,y3))
and
D (™2%,y") = G(¥32) +G'(y") - {y", 27")
< 3 (Dg(y1,¥") + Dg(y2,¥"))-

Therefore,

Do (252, ylgyz) < % (DG(Y1, y1;y2 ) + Dg(ya, yﬁzryz )) _

and we arrive at the required estimate.




Important property

If G and G* are Gateaux differentiable, then

(y"—G'(y),G"(y")—y) > Dal(y,y")

Note, that from this relation we conclude that Dj vanishes if the duality
relations are satisfied.




Uniformly convex functionals

Let a proper ls.c. functional T : Y — R be subject to the conditions

T(y) >0, VyeY, T(y)=0 < y=0y.

A convex functional J : Y — R is called uniformly convex in B(0y, 6) if there
exists a functional Ts such that Ts # 0 and for all y1,y2 € B(0y,d) the
following inequality holds:

3 () ol —y2) < 5 (1) +3(32) (315)

The functional T enforces standard convexity inequality. For this reason,
it is called a forcing functional.
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It is clear that any uniformly convex functional is convex in B(Oy, ). Now
we establish two important inequalities that hold for uniformly convex
functionals.

IfJ: Y — R is uniformly convex in B(Oy,§) and Gateaux differentiable in
B(0v, d), then for any y,z € B(0v,d) the following relations hold:

J(z) > Iy)+ Y (y),z—y) +2Ts(z—y)
and

(@)= Y(y),z—y) > 2Ts(z—y) +2T5(y — 2).
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We have Ts(z—y) < %J(Z)"‘%J(Y)_J (ZJFTY)

Since J is convex and differentiable

(5526 557) = G5

and, therefore,

2Ts(z —y) <3(z) — I) — (J(¥). 2~ y).

We can rewrite it replacing z by y

2Ts(y —z) < J(y) — J(2) + <J’(z),z - y>

and obtain the second inequality. OJ




Deviations from the minimizer

Let a functional J be uniformly convex in B(0y,d) and ym € B(0v,d) be the
minimizer of J.

Ts(z— ym) < = (J(z) — I(ym)), Vz € B(Oy,0). (316)

Since J (¥%) > J(ym), we obtain

N =

To(z—ym) < 3dlom)+ 5302) — 3 (Y27 <




Estimate (316) is the first step in deriving a posteriori error estimates of
the functional type by means of the variational techniques. It shows that
deviations from the minimizer (measured in terms of the functional Ts) are
controlled by the difference of the functionals.
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Corollary 1

Rewrite (315)) in the form

Taz = ym) + 3 (¥52) — 3(ym) < 5 (U2) — J0ym)).

By virtue of (316), we have

(2577) sty 22 ()

and, therefore, we arrive at the strengthened estimate

Talz — ym) + 275 (2527 < 2 (4(2) — J(ym). (317)
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Corollary 2

Assume that J is twice differentiable in the vicinity of ym and satisfies the
finite increment relation

1) = 0w+ (Vom) =)+
1

A o 2) 2 20

where £ € (0,1). Since J'(ym) = Ov+, we have another estimate:

T&(Z - Ym) + 1<J” ((1 + %)Ym + %Z) (Z - ym):z - Ym> <

8
<3 (@)~ Jym) . (318)

Mat-5.210 i in Computational Mechani




Example 1

Consider a self-adjoint operator A € L(H, H) defined on a Hilbert
space H with scalar product (.,.). Assume that it satisfies the
condition

o1 [y|* < G(y) = (Ay.y) < ez [ly|*,  VyeH.
For J(y) = G(y) + (4, y), ¢ € H we have

%G(y) + %G(z) e (y ;L z) _

~—

1 1 1
= 7(Ay7y) + 7(szZ) - g(A(y +z),y + Z) =

4 4

(A(z—y),(z—Y)),

the functional G is uniformly convex in any ball with

0 =

1

T(z—y)= g(A(z -y),(z—Y))




Thus, from (316) we have

((2) = I(ym)), Vz

N[ =

5(AG ~ym), (2= ym) <

However (318) gives a better estimate

1
5 Az~ ym), (2~ ym)) < I(2) — I(yim). (319)
Note that for quadratic type functionals this estimate holds as equality.

Indeed,

1
3 (2) = I(ym) = (Aym + £,z = ym) + 5 (A(z = ym), 2 — Ym).
and the minimizer ym satisfies the relation
(Aym +£,y) =0, VyeY.

Therefore, (319) holds as equality.
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Theorem

Let J; and J> be uniformly convex in B(0Oy,0) with functionals T15; and
T2s5, respectively.
Then the functional

p1d1 + poda,

where 1, po > 0, is uniformly convex in B(0y, §) with

Ts = p1T1s + p2Tas.

Proof.
The proposition follows directly from definition of uniform convexity . (]
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Example 2

Consider the functional
1
Iy) = 5(Ay,y) + (Ly) +W(y),

where W(y) is a convex and l.s.c. functional. Applying the above Theorem
with M1 = M2 = 1,

h) = 2(Avy) +(Ly)  hly) = (),

we see that J is uniformly convex with functional T defined in Example 1.
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Let J1 and Ja be uniformly convex in B(Oy, §) with functionals T15 and T2,
respectively. Then the functional

J(y) = max{Ji(y), J2(y)}

is uniformly convex in B(0vy, ) with

Ts = min{T1s, Tas}.




Proof. We have

%J(y) + %J( )—J(E) = %maX{JI(Y)aJZ(Y)}+
+ % max{J1(z),J2(2)} — max {J1 (3%) ,J2 (%37) } -

Assume that




If we have an opposite situation, i.e.,

max {J1 (37) , 92 (%3%) } = )2 (5) ,
then 1 1
EJ(Y) + EJ(Z) —J(%%) = Ta(z—y).

Thus, in both cases the lower bound is given by the functional

min {T15(z — y), Tas(z — y)}.




Example 3. Power growth functionals

Let
G(y) = 1 / ly|* dx  F(v) = / fudx,
Q Q

where a > 1. Then Problem P is to minimize the functional

Ja(v) ::/ (LY ™ + fv) dx

over the space V= {ve H*(Q) | v=00n0Q}.
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Problem P* is to maximize the functional
L) =~k [ 1y
Q
over the set

Qi ={y Y = LD‘*(Q,]R")H/y*-dex:/fwdx Yw e V
Q Q
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For v > 2 uniform convexity of G(y) follows from the first
Clarkson’s inequality

/‘—“Z” Iadx+/|¥\ad><§ %/(|y1|a+|y2|a)dx7

Q Q Q

which is valid for all y1, yo € Y.

See S. L. Sobolev. Some Applications of Functional Analysis in
Mathematical Physics. Hence, we observe that in this case

1

To@) = = lzl%a-

and




For 1 < a < 2, the functional G is also uniformly convex. This fact follows
from the second Clarkson’s inequality

a—1 a—1

[y o) ([

Q Q
a—1

< ;/(|y1|°‘+\yz\°‘)dx
Q

However, in this case, the functional Ts depends on the radius § of a ball
B(0v, ) that contains y1 and y», so that the estimate holds with

—2 o
Ts(z) =01k 2|2y

where kK = ﬁ and ko is the integer part of ——

1
a—1"




Now we introduce a general scheme for deriving a posteriori error estimates
by using duality theory of the calculus of variations. We consider
variational problems of the form

inf {F(v) + G(AV)},

where F : V — R is a convex lower semicontinuous functional, G : Y — R is
a uniformly convex functional, V and Y are reflexive Banach spaces and
A :V — Y is a bounded linear operator.




General variational problem

Consider the general variational problem: find u in a Banach space V such
that
J(u, Au) = igf{J(v,/\v), (320)

where J(v) = F(v) + G(Av), F is a convex, lower semicontinuous functional,
G is a uniformly convex functional and A : V — Y is a bounded linear
operator.

V and Y are reflexive Banach spaces endowed with the norms ||.||,, and |||,
respectively.
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Dual spaces are denoted by V* and Y* with duality pairings (.,.) and
{.,.), respectively. The spaces Y and Y* are endowed with the norms ||.||
and ||

We assume that

IAw]| > o [wll, Vw eV, (321)

where ¢g is a positive constant independent of w.
In addition to A, we introduce its conjugate A* : Y* — V*. This amounts
to say that

(y" AV = (N'y",v) Wy € Y*, veV. (322)

J(v,Av) := F(v) + G(Av) . is assumed to be coercive on V, i.e.

J(v,Av) — +oo if |v|,, — Hoo.




Primal and Dual Problems

Problem P. Find u € V such that

J(u,Au) = infP := inflJ(v, Av). (323)
ve

The problem dual to (323lis (see e.g.
I. Ekeland and R. Temam Convex analysis and variational problems.
North-Holland, Amsterdam, 1976.)

Problem P*. Find p* € Y* such that
_ J*(A*p*,—p*) :supp* ‘= sup _J*(A*y*,—y*), (324)
yrev*

F(Ny", —y") =F(Ny) + G (-y"),

where F* and G* are the functionals conjugate of F and G, respectively.
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Theorem (1)

If the functional F is finite at some ug € V and the functional G is continuous
and finite at Aug € Y, then there exists a minimizer u to Problem P and a
maximizer p* to Problem P*. Besides,

inf P = sup P~ (325)
and the following duality relations hold
(i)  F(u)+F(Ap") - (A"p",u) =0,
(i)  G(Au)+G"(=p") + (p", Au)) = 0. (326)

Above relations are equivalent to

() A*p* € OF(u),  (ii) — p* € IG(Au).




Problems with uniformly convex functionals

We recall (see Lecture 4) that a continuous functional G : Y — R is
uniformly convex in a ball B(0,d) :={y € Y || |ly|| < d } if there exists a
continuous functional ®s : Y — R, such that ®5(y) = 0 only if y = Oy is
and

G(U32) + ®;(y2 — y1) < 3 (G(y1) + G(y2)) Vy1,y2 € B(0,6).

Usually, ®5 is given by a continuous strictly increasing function of the norm
lIyll-

General form of a posteriori estimates for uniformly convex variational
problems was established in

S. Repin. A posteriori error estimation for variational problems with
uniformly convex functionals, Math. Comput., 69(230), 2000, 481-500.
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General form of the functional a posteriori estimate

Theorem (2)

Assume that the above conditions on F and G are satisfied and

(i) G is uniformly convex on a ball B(0, ),

(ii) the solution u of Problem P and an element v € V are such, that
Au, Av € B(0,9).

Then, for anyy* € Y*

&5 (A(v —u)) < Mg (v,y") := De(A"y",v) + Dg(y",Av) (327)
where

De(AN*y*,v) =
Dg(y", Av) :=

(F(v) + F*(A"y") = (Ny",v)),
(G(AV) + G (=y") + (y", Av)) ).

1
2
1
2




Since F is convex and G is uniformly convex we obtain

5 (N(v — u)) + G(A(%52)) + F(%5*) <
L[(FW) + G(M)) + (F(u) + G(Aw))] .

The element u is a minimizer, therefore

G(Au) + F(u) = J(u) < G(A(*3*)) + F(*3*)

and we have
&5 (A(v —u)) + G(Au) + F(u) <
3[(F(v) + G(A)) + (F(u) + G(Aw))].
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From the above we observe that
®; (Re) < 1[(F(v) + G(Av)) — (F(u) + G(Au))] =
= %(J(v,l\v) —J(u,Au)) Wv e B(0,9).
In view of Theorem 1,
J(u,Au) = inf P =supP* = —F*(A"p") — G*(—p").
Since p* is a solution of the dual problem, we have
—J(N'p*,—p") > = (N'y", —y") Wy e Y,
so that

J(u, Au) > —F*(Ny") — G*(—y™).
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Therefore

;5 (Ne) T(F(v) + G(AV) + F*(A*p*) + G*(—p")) <

<
< 3 (F(v) + G(A) + F*(A'y") + G"(—y")) -
However, by (322) we observe that

{y",Av)) — (N'y",v) =0 Vy" e Y ve V.

We add this zero term to the above relation and obtain the required
estimate.

O
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Comments

The right-hand side of (327 is the sum of two compound functionals
Mr:V xV—=R and Mg:Y"xY —R.

They are nonnegative and vanishes if and only if v and y* satisfy the
relations (326) (i)—(ii).

|
Therefore, Mg(v,y") is, in fact, a measure of the error in the duality

relations for the pair (v,y").
It vanishes if and only if v=u and y* = p*.
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Let the functional F be uniformly convex on V with a forcing functional 5.
Then the ”forcing functional” has the form we have

s (Ne) + ps(e) < L1(J(v,Av) — J(u,Au)) (328)

and, as a result, (327) is replaced by the strengthened estimate

@5 (Ne) + ps(e) < Mg (v,y*) Vy* € Y*. (329)




It is not difficult to verify that

Mg (v,y") = Mg(v,p) =

= 3 (FW)+F (Ny") = (Ny*,v) +G(Av) + G (—y") + ({y*, Av))) —

3 (F)+F (N'p") = (N'p", v) +G(Av) + G (—p") +{(p*, Av))) =
=Ny —y") =" (Np",—p") == 0.

Therefore, for any v the right-hand side of (327) is minimal if y* = p*.
Consequently, to make the estimate effective we have to find some y*
close to p* in Y*. A simple way to obtain a function ”close” to p* it
to use duality relations. To this end, we set y* = o*(v), where

—o*(v) € 0G(Av) C Y*.




In this case,
Mg(o*(v),Av) =0

and we get the estimate

&5 (Ae) < Me(N" o™ (v),v) (330)

whose right—hand side depends on v only.
However, the estimate (330) cannot be directly applied in one practically
important case which we consider below.




Example. Diffusion problem with Robin conditions

Consider the variational problems for the functional

1 5
J(v, Vv) = /(§|w|2 + EMz)dx—&— /(%W — gv)ds.
Q 5 Q

Our problem is to minimize J on the set of functions vanishing at 0:Q.
Minimizer u of this variational problem is related to the system

—Au+6u=0, in Q,

du

— —-g=0 0 Q.

an +ou—g s on 02
On 022 the solution satisfies the so—called Robin boundary condition. Let
us show that the respective functional a posteriori estimate for the problem
with Robin type boundary conditions easily follows from the above general
estimate.
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We set
Av := Vv,
G(Aw) = / %|Vv|2dx
Q
and

)
F(v) :/§|v|2dx+ /(%|v|2— gv)ds.
Q

5,9




Since

/y* - Vvdx = /fdivy*vder /(y*n)vds7

Q Q )

we observe that A*y* = {—divy” |o,y" - n |s,0}.
In the considered case,

(", y) ::/y*~ydx;

Q
* * * 1 1 *
G*(-y )=sup/(—y y - ilylz)dX=/§|y %dx.
Y Q Q




Therefore,

* * * 1 1 * *
G(M) +G"(~y") + (v ) = [T+ Iy [+ Fv -y )ae
Q

Next, in general,
((I\*y*,v) =< —diVy*,V >H*1(Q) + < y* -n,v >H*1/2(829) .

However, if we assume that y* is sufficiently regular, then

(N"y",v) Z/—divy*vdx—l—/y* - nvds.
Q

X)




Now,

F*(Ny") = sup{/ —divy vdx + / -nvds — F(v)} =

8,9
sup{/ —divy vdx + / nvds—/ v|?dx — /(—|v| — gv)ds <
629 9,
_— 2 a2
sup /(fdlvy v— f|v| )dx +  sup /((y -n)o — =|o|” + go)ds
) 2 0ELy(8,9) 2

vELy(Q
Q




sup /( divy*v — f|v| /l |divy* |*dx,
veLy (@) J 26
2 1 * 2
sup /((y m)o = GloP +gods = [ ooly”on+glids.
0€ELy(829) 2 o pet
2

Hence,

* * ok 1 %2 1 * 2
< _— - . .
F(/\y)_/25|d|vy|dx—|—/2a|y n+gl°ds

Q o)




Now,
6 2 Q2
Fv) = [ ohPdcs [(GN - gv)ds,
Q 9,0
UNy™,v) :/ —divy vdx + /(y - n)vds,
Q 8,9
F*(A*y") < l|¢:|iv *|2dx+/i| *.n+gl’ds
Y= 25" 20 shas
Q 8,9
Therefore,
* 1 * 2
F(v) + F*(N'y") — 25 (divy™ + 6v)“dx+
Q

« 2 1 * 2 *
/(2|v\ oely gl (v g)v)ds
9,9
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We obtain

F(v) + F*(N"y") — (Ny",v)) < / %(divy* + 5v)2dx+

/ i|y* ‘n+g— avl’ds.
2a
5,92

* * * 1 *
G(Av) + G™(—y") + (y", Av) :/vaﬂ 2dx.
Q

Two terms above give the error Majorant.

Mat-5.210




We observe that the Majorant vanishes if and only if

divy* +6v=0 in Q,
y n+g—av=20 on 9,9,
y'=—-Vv in Q.
These relations mean that
—Av+ov=0 in Q,
% +av=g on 392,

i.e., since v vanishes at 012 it is but the exact solution.
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