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Introduction

Many physical processes are described by partial differential equa-
tions and systems of partial differential equations. The coefficients
of these equations, which may depend on spatial and time variables,
describe the properties of the medium where these processes take
place. Solutions of these equations are called fields. The so-called
direct problem consists of finding these fields when we know applied
sources, initial and boundary conditions, and, of course, parameters
of the medium. However, in physics and practical applications, the
problem under consideration is often somewhat opposite. It is the
unknown properties of the medium, described by the coefficients of
the differential equations, that are to be determined. For example,
in geophysical explorations, one wants to know the density and the
Lame parameters that describe the properties of the Earth. These
parameters may be used to find oil and other mineral fields. To find
these parameters, we can utilize the fact that they appear in the co-
efficients of equations of elasticity. Henceforth, elastic waves, which
propagate in the Earth, depend upon these parameters. Therefore,
there is a natural problem of finding elastic parameters from the mea-
surements of elastic fields. This problem is called the inverse problem
of elasticity. Similar problems appear when one wants to find elec-
tric permittivity and conductivity and magnetic permeability from
the measurements of electromagnetic fields, or acoustic velocity from
the sound measurements, etc. These examples show the importance
of inverse problems both for understanding physical phenomena and
practical applications.

Inverse problems do not often have a unique solution. The data
obtained from measurements may be the same for different physical
models. For this reason, the goal of inverse problems is to find all
equivalent models, i.e., those models that correspond to equal mea-
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surements. In spite of the non-uniqueness, the situation in real life
is not as bad as it sounds. Measured data together with some addi-
tional a priori information about the model may be sufficient to find
the unique model that describes the process. Indeed, in many cases,
the non-uniqueness is due only to a natural freedom in describing
the process. For instance, the domain filled with the medium may
be described in different coordinate systems. Clearly, the resulting
solution, which actually describes the same process, will be written
in different forms. Therefore, in solving inverse problems, we need
to take this into account and find their solutions in a coordinate
invariant form. On the other hand, sometimes there are natural
coordinates relevant to a particular inverse problem. These coor-
dinates are often the travel time coordinates as, for example, in the
described geophysical inverse problem. These travel time coordinates
determine the natural distances between points. The distance func-
tion gives rise to a Riemannian structure, so it is natural to consider
the domain as a Riemannian manifold. Therefore, the reconstruc-
tion of the Riemannian manifold and the corresponding metric is an
essential part of solving inverse problems. This reconstruction of the
manifold is a generalization of the reconstruction of the parameters
of the medium in the travel time coordinates.

As seen from the above description, inverse problems have a
wide range of practical applications and their mathematical theory
is based upon an interaction of analysis and geometry with some ad-
ditional algebraic ideas. Therefore, this book is written mainly for
analysts, applied mathematicians and other applied scientists and en-
gineers having an interest in the mathematical foundations of inverse
problems. We believe that this book is also useful for geometricians
who are interested in the interdisciplinary research.

It is clear that a large variety of physical phenomena described
earlier give rise to numerous different types of mathematical inverse
problems. To describe this variety and to understand the special na-
ture of the problems that are described in this book, we will provide a
rather sketchy classification of mathematical inverse problems. Our
classification is based on the difference in various types of mathemati-
cal models that describe the corresponding physical processes, as well
as various types of measured data used to reconstruct the unknown
parameters of the medium. Before providing this classification, we
note that the mathematical theory of inverse problems is still very far
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from its completion. As yet, there are no exact solutions to a number
of practically important inverse problems. To solve such problems,
mathematicians use various approximation methods. Moreover, in
practice, given data is usually incomplete and errorprone. This also
makes it necessary to utilize approximations and numerical tech-
niques to study inverse problems. Corresponding methods are de-
scribed in a number of books, e.g., [EnHaNu], [G], [BkGo]. The
main aim of this book is to develop a rigorous theory to solve several
types of inverse problems exactly, rather than to discuss applied and
numerical aspects of these problems. However, we believe that this
book will be useful for practitioners. This is not only because the
book contains a new invariant approach to solve inverse problems,
but also because of the algorithmic nature of the methods devel-
oped. This means that one of the main features of the book is to
provide some procedures to reconstruct unknown parameters. Simi-
larly, these procedures can be used to construct numerical solutions
of inverse problems.

In the next few paragraphs we will give a classification of inverse
problems and discuss briefly those problems that will be considered
later in the book. First, we distinguish between the one-dimensional,
i.e., with one spatial variable, and the multidimensional inverse prob-
lems. The one-dimensional case has many specific properties that
do not exist in the multidimensional one. Historically, the study
of mathematical inverse problems has been started with the one-
dimensional case. Works of a number of outstanding mathematicians
([Bo], [Lv], [GeLe], [Ma1]-[Ma4], [Kr1]-[Kr4]) in the 1940s and ’50s
resulted in thorough understanding of these problems and provided
several powerful methods to solve them. These methods were fur-
ther developed later (see, for example, such classical books as [Ma4],
[ChSa], [PoTr], [BeBl2], etc).

This book deals mainly with the multidimensional inverse prob-
lems, so that our further classification and references to literature
will deal only with the multidimensional case. However, the methods
developed in this book are perfectly applicable to one-dimensional in-
verse problems. Since these methods are easier to understand in the
one-dimensional case, we provide the one-dimensional variant of the
method in Chapter 1. We believe that this is a good introduction to
study inverse problems in the multidimensional case.

Physical processes in a medium are described by various fields,
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e.g., electromagnetic fields, elastic fields, etc. These fields are often
of vectorial nature. This means that the corresponding equations are
vector equations, or, in other words, systems of equations. However,
sometimes, the physical nature of the process makes it possible to
reduce the vector equations to scalar ones. This occurs, for example,
in gravitation or acoustics. Clearly, the vector case is significantly
more difficult to analyze and the mathematical theory of the vector
inverse problems is substantially less developed (see, however, text-
books [CoKs], [Ki], [Ro1] and historical remarks to Chapter ??. In
this book we will consider only the scalar inverse problems, although
some of the developed methods can be extended to the vector case.

As mentioned, our classification of inverse problems is based on
differentiation between various types of mathematical models that
give rise to the corresponding inverse problems, e.g., one-dimensional
versus multidimensional, scalar versus vector, and also differentiation
among various types of inverse data.

In general, data used in inverse problems contains some given or
measured information about the corresponding fields. Usually, this
information describes the behaviour of these fields on the boundary of
the domain, occupied by the medium, or at infinity. In the first case,
we speak about inverse boundary problems, and in the second, about
inverse scattering problems. Inverse scattering problems are of great
importance due to their role in quantum mechanics and gravitational
theory, and, historically, are the first inverse problems where math-
ematically rigorous results were obtained (see, for example, [CoKs],
[Nw], [Fa3], [LxPh], [Me]). Inverse boundary problems, which have
a wide range of important applications to geosciences, medical imag-
ing, non-destructive testing, process monitoring, etc., are quite dif-
ferent from inverse scattering problems and require rather different
methods and techniques. This book is devoted to inverse boundary
problems.

According to the type of time dependence, physical processes
are divided into stationary and non-stationary ones. Therefore, the
corresponding inverse problems are also divided into stationary and
non-stationary ones. Non-stationary inverse problems are also called
dynamical or evolutionary problems. Depending on the hyperbolic
or parabolic nature of the fields, the dynamical inverse problems are
subdivided into hyperbolic or parabolic ones (see, e.g., [Ki], [Ro1],
[Is1], [Sh1]). Stationary inverse boundary problems are subdivided
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into inverse boundary spectral problems and fixed frequency inverse
problems. Fixed frequency inverse problems use boundary measure-
ments at a finite number of frequencies. Moreover, the vast majority
of results for these problems are obtained when the frequency is equal
to 0, i.e., for the static case. These problems go back to the famous
paper by Calderon [Cl] with fundamental mathematical theory de-
veloped in [SyU], [NvKh] with the crucial role of Faddeev’s Green
function [Fa1]. During the last two decades, this theory has been
significantly extended and developed, see e.g., [Na1], [Na2], [NkU1],
[OPaS], and Notes in Chapter ??. A good exposition of the fixed
frequency inverse problems is given in [Is1].

The main goal of this book is to study the inverse boundary spec-
tral problems. However, the approach to inverse problems, which
will be developed, is a dynamical approach. It is based on the con-
sideration of the corresponding wave equations and involves various
techniques to study an initial-boundary value problem for the wave
equation. Henceforth, many results that are obtained for the in-
verse boundary spectral problems are valid for the dynamical inverse
boundary problems as described in Chapter ??.

Next we will describe, without going into details, the principal
features and ingredients of the approach developed in the book.

1. Control theory for hyperbolic partial differential equations.

2. Geometry of geodesics and metric properties of Riemannian
manifolds.

3. Asymptotic solutions of hyperbolic partial differential equa-
tions and, in particular, Gaussian beams.

4. Coordinate and gauge invariance of inverse problems and cor-
responding groups of transformations.

In our approach, we combine these ideas whose history can be
briefly described as follows:

1. The importance of control theory for inverse problems was first
understood by Belishev [Be1]. He used control theory to develop
the first variant of the boundary control (BC) method, which is the
analytical backbone of the book (see [Be2] for recent developments).



xvi

2. Later, the ideas based on control theory were combined with the
geometrical ones. The importance of geometry for inverse problems
follows the fact that any elliptic second-order differential operator
gives rise to a Riemannian metric in the corresponding domain. The
role of this metric becomes clearer if we consider the solutions of the
corresponding wave equation. Indeed, these waves propagate with
the unit speed along geodesics of this Riemannian metric. These
geometric ideas were introduced to the boundary control method in
[BeKu3] and [Ku4].

3. The close relation between the wave equation and the corre-
sponding Riemannian metric becomes particularly clear when we
consider some special classes of asymptotic solutions of this equa-
tion, like Gaussian beams. This asymptotic solution of the wave
equation has the form of a wave packet. It propagates like a parti-
cle along a geodesic of the Riemannian metric, which prompts the
name “quasiphoton” for this solution. This property makes Gaus-
sian beams a very convenient technique to solve dynamical inverse
problems. This observation was made in [BeKa1] and [KaKu1].

4. In the study of inverse boundary problems for general elliptic
differential operators, it is necessary to take into account their non-
uniqueness. In fact, there is a group of transformations of the op-
erator, which preserve the boundary spectral data. This group of
transformations was first analyzed in [Ku1], [Ku2].

In this book, we study the inverse boundary spectral problem for
a general self-adjoint second-order elliptic differential operator on a
compact manifold with boundary. In particular, our considerations
cover the case of elliptic operators in bounded domains in Euclidean
spaces. Moreover, we show that the developed approach is applicable
to the study of the dynamical inverse boundary problems for the
corresponding wave and heat equations.

The book consists of two unequal parts. The first part, Chapter
1, is devoted to the one-dimensional inverse boundary spectral prob-
lem on a finite interval. In this part, we introduce the principal ideas
and techniques of the approach. The one-dimensional inverse prob-
lems are very interesting by themselves and have numerous impor-
tant applications. In connection with this, we give a self-contained
exposition of the approach for this case. Those readers who are inter-
ested only in the one-dimensional inverse problems can read Chapter
1 only. In the one-dimensional case, these principal ideas become
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much simpler and clearer than in the multidimensional case. There-
fore, the study of the one-dimensional case is very instructive for
further development of the theory in the multidimensional case.

The main part of the book, Chapters ??–??, are devoted to the
multidimensional inverse boundary problem. In Chapter ??, we will
give a solution for the Gel’fand inverse boundary spectral problem
for a general second order self-adjoint elliptic differential operator
on a compact manifold with boundary. To this end, we will develop
an approach to the multidimensional inverse problems based on the
boundary control method. We will describe the group of gauge trans-
formations of an operator that do not change the boundary spectral
data. We will show that any orbit of this group contains a unique
(Riemannian) Schrödinger operator. We will describe an algorithm
to construct this Schrödinger operator and the underlying differen-
tial manifold from the boundary spectral data of any operator in the
orbit.

Chapter ?? is devoted to various generalizations and extensions
to other inverse boundary problems of the approach developed in
Chapter ??. There are four main subjects discussed in this chapter.
First, we will analyze the relations between the inverse boundary
spectral problems and the dynamical inverse boundary problems for
the wave and heat equations. This will make it possible to reduce the
dynamical inverse problems to the inverse boundary spectral ones.
Second, we will show that it is possible to solve the dynamical in-
verse problem for the wave equation directly, without reducing it to
the inverse boundary spectral problem. The corresponding method
is analogous to the method developed in Chapter ??. However, there
is a significant difference. Namely, if we possess boundary data only
on a finite interval of time, then we can reconstruct the operator only
in a collar neighborhood of the boundary. The width of this collar
neighborhood is determined by the metric generated by the operator.
Third, we will consider the inverse boundary spectral problem with
data given only on a part of the boundary. This kind of problem
is often encountered in practice. Fourth, we will consider the in-
verse boundary spectral problems in bounded domains of Euclidean
spaces. Using the results in Chapter ??, we will describe the groups
of transformations in this case. Furthermore, we will show that ad-
ditional a priori information about the structure of operators makes
the inverse problem uniquely solvable. This takes place, for exam-
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ple, for some isotropic operators. We also provide a reconstruction
algorithm. Considerations in Chapter ?? are given in less detail than
those in Chapter ??.

Chapter ?? is of an auxiliary nature. Here we provide an an-
alytical and geometrical background of the approach developed in
Chapters ?? and ??.

This book is mainly aimed at readers with a background in analy-
sis. This determines the choice of material and the level of exposition
in Chapter ??. We expect our readers to know the basics of dis-
tribution theory, Sobolev spaces and partial differential equations.
When presented material goes beyond the standard textbooks, we
will prove the corresponding results. Otherwise, we will provide only
the rigorous formulations of the statements with references to the
literature in Notes at the end of the chapter. Chapter ?? contains a
rather wide range of ideas and techniques from modern analysis and
geometry. The authors believe that this diversity reflects the inter-
disciplinary nature of the mathematical theory of inverse problems
and corresponds to the current state of their development.

Each chapter consists of several titled sections subdivided into
subsections, which we still call sections. Numeration of formulae
and statements, i.e., theorems, lemmas and corollaries, is unified
throughout a chapter. In references to a formula, the first number
refers to the chapter and the second to the numeration of this formula
in the chapter. There are exercises in Chapters 1–??. They are not
very difficult. Usually they refer to those parts of exposition, that
can be proven by considerations similar to those that are given earlier
in the text. There are also sections in Chapters ?? and ?? that are
marked by F. These sections may be skipped in the first reading.
At the beginning of each chapter, there is a short description of its
structure and contents. At the end of each chapter, there is also
a section called Notes. It provides references to the results used in
the chapter and also gives references to the relevant literature on the
subjects covered in the chapter. This sections also contains some
historical commentaries about the results discussed in the chapter.
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ersalo for numerous discussions on inverse problems that have been
very useful in writing this book.

We are thankful to our students, Pekka Tietäväinen and Robert
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Chapter 1

One-dimensional inverse

problem

In this chapter, we will study the one-dimensional inverse boundary
spectral problem. In sections 1.1.1–1.1.3 we will give a precise formu-
lation of this problem. In the rest of section 1.1 we will describe the
admissible transformations that preserve the boundary spectral data
and reduce the inverse problem for a general operator to that for
a Schrödinger operator. In section 1.2, we will consider the initial-
boundary value problem for the corresponding wave equation. In
particular, we will obtain a formula for the Fourier coefficients of the
waves in terms of the boundary spectral data. In section 1.3, we will
describe the necessary controllability results for the wave equation
and give a solution to the inverse problem for the Schrödinger oper-
ator. To do that, we will introduce the so-called slicing procedure.
In section 1.4, we will describe the one-dimensional Gaussian beams.
We will later apply them to obtain an alternative solution of the
inverse problem.

1.1. Inverse problem and main result

1.1.1. In many applied sciences, there appear elliptic ordinary dif-
ferential operators with real smooth coefficients,

Ay = −a(x)y′′(x) + b(x)y′(x) + c(x)y(x), a > 0, (1.1)

for a function y(x) with x varying in the interval [0, l]. For example,
in modeling harmonic oscillations of an inhomogeneous string, we
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deal with the equation

Ay = −ay′′ + by′ + cy = ω2y.

Here a, b and c are related to the density ρ, Hooke constant µ and
stiffness f by the formulae

a = µρ−1, b = −µ′ρ−1, c = f,

and ω is the frequency of oscillations.

In the direct problems, we know the material parameters and our
goal is to find y(x). However, for many practical purposes, the goal
is just the opposite. We have information about solutions y(x) and
would like to use this information to find the material parameters.
Such problems are called inverse problems. In practice, information
about the solutions y(x) comes from the measurements, and different
types of measurements give rise to different types of inverse problems.
In this chapter, we will study the one-dimensional inverse boundary
spectral problems related to operator (1.1).

1.1.2. To define an operator A of form (1.1) rigorously, it is neces-
sary to make some assumptions on its coefficients and also functions
y(x). In this chapter, we assume that a, b, and c are real-valued,
smooth, i.e., infinitely differentiable, functions on the closed interval
[0, l]. The operator A is then defined on the functions y ∈ H 2([0, l]),
which means that y, y′ are continuous and y′′ ∈ L2([0, l]), which
satisfies the Dirichlet boundary conditions

y|x=0 = y|x=l = 0. (1.2)

The functions satisfying all these conditions form the domain of the
operator A, which is denoted by D(A),

D(A) = {y ∈ H2([0, l]) : y(0) = y(l) = 0}. (1.3)

Any operator of form (1.1), which is often called a Sturm-Liouville
operator, can be rewritten as

Ay = −m−1g−1/2(mg−1/2y′)′ + cy (1.4)

with some positive smooth functions m(x) and g(x).
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Exercise 1.1 Find m(x) and g(x) in terms of a and b.

The function m(x) determines a weighted space L2([0, l], dV ),

dV = mdVg = mg1/2dx

with the inner product of the form

〈y, z〉 =

∫ l

0
y(x)z(x)m(x)g1/2dx. (1.5)

Remark Representation (1.4) for the operator A and the volume
elements dV and dVg are taken in the form suitable for the multi-
dimensional case. In particular, the metric, or length element, on
the interval [0, l] that corresponds to the operator A has the form

ds2 = g(x)dx2.

Integrating by parts, we can show that

〈Ay, z〉 = 〈y,Az〉, (1.6)

for any y, z ∈ D(A). This means that A is symmetric in L2([0, l], dV ).
Moreover, it is known that any operator A of form (1.4), (1.3) is self-
adjoint in L2([0, l], dV ). Its spectrum consists of the isolated eigen-
values λ1 < λ2 < · · · < λk < · · · , λk → +∞. The corresponding
eigenfunctions ϕk(x), ϕk ∈ D(A) satisfy

Aϕk = λkϕk,

or,

−a(x)ϕ′′
k(x) + b(x)ϕ′

k(x) + c(x)ϕk(x) = λkϕk(x), x ∈ [0, l],

ϕk(0) = 0, ϕk(l) = 0.

can be chosen to form an orthonormal basis in L2([0, l], dV ), i.e.,
〈ϕk, ϕl〉 = δkl.
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1.1.3. We are now in the position to formulate the inverse boundary
spectral problem for the operator A.

Problem 1 Let all eigenvalues, λ1, λ2, . . . , be known as well as the
values at the boundary points x = 0 and x = l of the scaled derivatives
of the normalized eigenfunctions g−1/2(0)ϕ′

1(0), g
−1/2(0)ϕ′

2(0), . . .
and g−1/2(l)ϕ′

1(l), g
−1/2(l)ϕ′

2(l), . . . . Is it possible to find the coeffi-
cients m, g and c from these data?

Problem 2 Let all eigenvalues λ1, λ2, . . . , be known as well as the
values at one boundary point, say x = 0, of the scaled derivatives of
the normalized eigenfunctions g−1/2(0)ϕ′

1(0), g
−1/2(0)ϕ′

2(0), . . . . Is
it possible to find the coefficients m, g and c from these data?

The data used in the formulations of Problems 1 and 2 are called the
boundary spectral data.

Definition 1.2 The collection

{λj , g
−1/2(0)ϕ′

j(0), g
−1/2(l)ϕ′

j(l) : j = 1, 2, . . . }
is called the boundary spectral data of operator A corresponding to
Problem 1. The collection

{λj , g
−1/2(0)ϕ′

j(0) : j = 1, 2, . . . }
is called the boundary spectral data of operator A corresponding to
Problem 2.

Remark The factor g−1/2 in the formulation of the boundary spec-
tral data appears due to the equation

dy

ds
= g−1/2 dy

dx
.

This makes the definition of the boundary spectral data suitable for
the multidimensional case also.

In the following, we will concentrate on the more complicated
Problem 2. However, in the multidimensional case, we will be mostly
preoccupied with the multidimensional analog of Problem 1. 1

1In the one-dimensional case, problems 1, 2 are practically equivalent. In fact,
if we know the boundary data λn, αn = g−1/2(0)ϕ′

n(0), n = 1, 2, . . . , of Problem
1 and λn 6= 0 for all n, then βn = g−1/2(l)ϕ′

n(l) can be found using formulae βn =
Cα−1

n λn

Q

k 6=n(1−λn/λk)−1. Due to the non-uniqueness of the inverse boundary
spectral problem, constant C can be arbitrary positive (or negative) constant.
The sign of the constant depends on the solution of an auxiliary problem.
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1.1.4. As we are going to show, Problems 1 and 2 do not have a
unique solution, m, g, and c. Indeed, we can change m, g and c, so
that the boundary spectral data remains unchanged. To see this, let
us consider two types of transformations: changes of coordinates and
gauge transformations.

i) Changes of coordinates. Let X̃ be a diffeomorphism, X̃ : [0, l] →
[0, l̃], i.e., X̃ ∈ C∞([0, l]), X̃ ′ > 0, X̃(0) = 0, X̃(l) = l̃ with its inverse
X̃−1 denoted by X. This diffeomorphism corresponds to the change
of coordinates from x to x̃ = X̃(x). In the new coordinates x̃, the
function y becomes the function ỹ = y ◦X, i.e. ỹ(x̃) = y(X(x̃)). To
preserve the inner product, we introduce new functions m̃, g̃,

m̃(x̃) = m(X(x̃)), g̃(x̃) = g(X(x̃))[X ′(x̃)]2. (1.7)

Then

〈y, z〉 =

∫ l

0
y(x)z(x)dV =

∫ el

0
ỹ(x̃)z̃(x̃)dṼ = 〈ỹ, z̃〉, (1.8)

where dṼ = m̃g̃1/2dx̃. In these coordinates, the operator A becomes
the operator Ã,

Ãỹ(x̃) = −m̃−1g̃−1/2(m̃g̃−1/2ỹ′)′ + c̃ỹ, (1.9)

where c̃ = c ◦X. More precisely, this means that

(Ay)(X(x̃)) = Ãỹ(x̃).

In particular,

Ãϕ̃k = λkϕ̃k.

Clearly, ϕ̃k satisfy the Dirichlet boundary conditions at x̃ = 0 and
x̃ = l̃ and, henceforth, ϕ̃k are the eigenfunctions of operator Ã.
Due to identity (1.8), ϕ̃k, k = 1, 2, . . . , remain orthonormalized, i.e.
〈ϕ̃k, ϕ̃l〉 = δkl. Moreover,

g̃−1/2(0)ϕ̃′
k(0) = g−1/2(0)ϕ′

k(0), g̃−1/2(l̃)ϕ̃′
k(l̃) = g−1/2(l)ϕ′

k(l),

for all k = 1, 2, . . . . This means that the boundary spectral data of
A and Ã are the same.
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1.1.5. ii) Gauge transformations. Let κ be a smooth positive func-
tion, κ ∈ C∞([0, l]), κ > 0. This function determines a transforma-
tion Aκ of the operator A, which is called a gauge transformation,
of A

Aκu = κA(κ−1u). (1.10)

Operator Aκ has form (1.4) with m, g and c replaced by mκ, gκ, and
cκ,

mκ = κ−2m, gκ = g, cκ = A(1) (1.11)

where 1 is the constant function 1(x) = 1.

Exercise 1.3 Prove equations (1.11).

Then the functions ψk,

ψk = κϕk, k = 1, 2, . . . , (1.12)

where ϕk are the eigenfunctions of A, satisfy the equations

Aκψk = λkψk, k = 1, 2, . . . ,

as well as the Dirichlet boundary conditions. This means that λk and
ψk are the eigenvalues and eigenfunctions of the operator Aκ, which is

self-adjoint in L2([0, l], dVκ), where dVκ = mκg
1/2
κ dx. Moreover, the

functions ψk form an orthonormal basis in the space L2([0, l], dVκ).
Henceforth, the boundary spectral data of Aκ are given by λk and

g−1/2
κ (0)ψ′

k(0) = κ(0)[g−1/2(0)ϕ′
k(0)], (1.13)

g−1/2
κ (l)ψ′

k(l) = κ(l)[g−1/2(l)ϕ′
k(l)],

where k = 1, 2, . . . If κ(0) = κ(l) = 1, then the boundary spectral
data of A and Aκ, used in Problem 1, are the same and, if κ(0) = 1,
then the boundary spectral data of A and Aκ used in Problem 2 are
the same.

Summarizing, we see that any function κ ∈ C∞([0, l]), κ > 0
determines a transformation of an operator A that given by formula
(1.10). This transformation is called the gauge transformation cor-
responding to κ.

When κ satisfies additional boundary conditions κ(0) = κ(l) = 1
or κ(0) = 1, we call the corresponding gauge transformation the
normalized gauge transformation related to Problems 1 or 2.
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1.1.6. In the previous section, we described two types of transfor-
mations of an operator A. Next, we use them to make A as simple
as possible. Our goal is to obtain a Schrödinger operator,

A0 ≡ − d2

dx2
+ q(x). (1.14)

Lemma 1.4 For any operator A of form (1.4) there exists a gauge
transformation, followed by a change of coordinates that transform
A into a Schrödinger operator

A0 = − d2

dx̃2
+ q(x̃)

on the interval [0, l̃]. For this end, we should take

κ(x) = m1/2(x), (1.15)

x̃ = X̃(x) =

∫ x

0
g1/2(x′)dx′, (1.16)

so that
l̃ = X̃(l).

Proof. According to formula (1.11), gauge transformation (1.15)
makes mκ = 1, gκ = g. According to formulae (1.7) and (1.9), the
change of coordinates (1.16) keeps m̃ = 1 and makes g̃ = 1. 2

Exercise 1.5 Find the potential q in terms of m, g and c.

We note that we can change the order of the transformations,
making first the change of coordinates (1.16) followed by the gauge
transformation which corresponds to κ̃(x̃) = κ(X(x̃)).

1.1.7. Later, we will describe a method of the reconstruction of
the potential q of a Schrödinger operator from the boundary spectral
data. Lemma 1.4 shows that any operator of form (1.4), (1.3) can
be transformed into a Schrödinger operator. Unfortunately, gauge
transformations (1.15) are not, in general, normalized. This means
that the boundary spectral data of the Schrödinger operator A0,
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which is used for the reconstruction of q, differs from the given bound-
ary spectral data of the original operator A of form (1.4).

However, there is a method to find the boundary values of m from
the boundary spectral data of A. To this end, we use the asymp-
totics of the eigenvalues λk and eigenfunctions ϕ̃k of the Schrödinger
operator A0 which corresponds to the operator A, (see Notes at the
end of the chapter)

λk =

(
πk

l̃

)2

+O(1),

ϕ̃k(x̃) =

√
2

l̃
sin

(
kπx̃

l̃

)
+O(k−1), (1.17)

ϕ̃′
k(x̃) =

√
2

l̃

kπ

l̃
cos

(
kπx̃

l̃

)
+O(k−1).

Using the transformations described in Lemma 1.4, we see that

ϕ̃k(X̃(x)) = m1/2(x)ϕk(x).

Therefore, the boundary spectral data for the operator A has the
form

ϕ̃′
k(0) = m1/2(0)[g−1/2(0)ϕ′

k(0)], (1.18)

ϕ̃′
k(l̃) = m1/2(l)[g−1/2(l)ϕ′

k(l)].

These formulae together with formulae (1.17) show that

m(0) = lim
k→∞

2λ
3/2
k

πk[g−1/2(0)ϕ′
k(0)]2

,

m(l) = lim
k→∞

2λ
3/2
k

πk[g−1/2(l)ϕ′
k(l)]2

.

Combining these formulae with the equations (1.18), we obtain the
boundary spectral data for the Schrödinger operator A0, which cor-
responds to an arbitrary general operator A.

Summarizing considerations of sections 1.1.6, 1.1.7, we see that
we can reduce the inverse boundary spectral problem for a general
operator to the inverse boundary spectral problem for the corre-
sponding Schrödinger operator A0.
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1.1.8. Now we are in the position to formulate our main result for
the one-dimensional inverse boundary spectral Problems 1 and 2.
The key result is the following theorem.

Theorem 1.6 Assume that {λ1, λ2, . . . , ϕ
′
1(0), ϕ

′
2(0), . . . } are the

boundary spectral data at x = 0 of a Dirichlet Schrödinger operator,
A0 = − d2

dx2 +q on an interval [0, l]. Then these data determine l and
q(x) uniquely.

Theorem 1.6 gives an affirmative answer to Problem 2.

This theorem is proven in sections 1.2 and 1.3 below. In fact, we
will describe a procedure how to find l and reconstruct q. Obviously,
Theorem 1.6 also gives an answer to Problem 1 in the case of a
Schrödinger operator.

In the case of a general operator of form (1.4), we will first con-
struct the corresponding Schrödinger operator. The operator A lies
in the class of operators that can be obtained from this Schrödinger
operator A0 by a gauge transformation with κ(0) = m1/2(0), κ(l) =
m1/2(l), followed by a change of coordinates. All operators of this
class have the same boundary spectral data and, henceforth, are
indistinguishable from the boundary data. Moreover, Theorem 1.6
implies the following theorem for the general operators.

1.1.9.

Theorem 1.7 Two operators A and B of form (1.4), (1.3) have
the same boundary spectral data, if and only if they can be obtained
from one another by a change of coordinates and a normalized gauge
transformation.

Proof. i) The part “if” of the theorem is already proven in sections
1.1.4, 1.1.5.

ii) To prove the part “only if”, we first note that, due to (1.11),
mA(0) = mB(0), where we have denoted by mA, lA, etc. the cor-
responding quantities for the operator A and by mB, lB, etc. the
corresponding quantities for the operator B. Hence, the boundary
spectral data of the corresponding Schrödinger operators A0 and B0

are the same and, by Theorem 1.6, A0 = B0.

In view of the remark at the end of section 1.1.6, the operator
A0 is obtained from A by the following consecutive transformations.
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First we make a change of coordinates and obtain an operator Â.
Then we make a gauge transformation corresponding to κA with

κA(0) = m
1/2
A (0) and obtain A0. Analogously, to obtain B0 from

B, we first make a change of coordinates and obtain an operator
B̂. Then we make a gauge transformation corresponding to κB with

κB(0) = m
1/2
B (0).

Since Â and B̂ are gauge equivalent to the same Schrödinger
operator A0 = B0, they are still defined on the same interval [0, l].
We have

A0 = κAÂκ−1
A = κBB̂κ−1

B ,

which yields that

B̂ = (κ−1
B κA)Â(κ−1

B κA)−1 = κÂκ−1.

Since mA(0) = mB(0), this is a normalized gauge transformation.
Therefore, the operator B is obtained from A by change of coordi-
nates, a normalized gauge transformation and one more change of
coordinates. Finally, we observe that the resulting transformation
can be obtained as a combination of one normalized gauge transfor-
mation and one change of coordinates. 2

1.1.10. The previous discussion shows that there is no chance to re-
construct all coefficients of a general operator (1.4) from its boundary
spectral data. However, in many cases that are important for appli-
cations, we have some additional information about the form of the
operator A. Sometimes, this information is sufficient for the unique
reconstruction of A, when the class of gauge equivalent operators
contain only one operator having the specified form. An obvious ex-
ample is the Schrödinger operator. Other examples are given by the
operators

A = −c2(x) d
2

dx2
, B = − d

dx
µ(x)

d

dx
,

which appear, e.g., in the study of the inverse problem for an inho-
mogeneous string.

Exercise 1.8 Show that the boundary spectral data of the operators
A and B determine c and µ uniquely.
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1.2. Wave equation

1.2.1. This book is devoted to the inverse boundary spectral prob-
lems. However, our approach to solving this problem is based on the
properties of the corresponding wave equation. For an operator A of
form (1.1) or (1.4), the corresponding wave equation is

∂2
tw + Aw ≡ ∂2

t w − a(x)∂2
xw + b(x)∂xw + c(x)w =

= ∂2
t w −m−1g−1/2∂x(mg−1/2∂xw) + cw = 0, x ∈ [0, l] (1.19)

where w = w(x, t). A well-known and important property of the
wave equation is the finite velocity of the wave propagation. For
equation (1.19), this velocity, v(x) is given by formula,

v(x) = a1/2(x) = g−1/2(x). (1.20)

The velocity v determines the travel time τ between any two points
x1 and x2, 0 ≤ x1 ≤ x2 ≤ l,

τ(x1, x2) =

∫ x2

x1

dx

v(x)
=

∫ x2

x1

g1/2(x)dx. (1.21)

From the point of view of physics, τ(x1, x2) is the time necessary for
a perturbation at the point x1 to reach the point x2. The travel time
can be interpreted as the physically meaningful distance between
points. We can use the travel time, τ(x) = τ(0, x) from the boundary
point 0 to a variable point x as a new coordinate. The coordinate
transformation from x to τ(x) is exactly the change of coordinates,
which transforms a general operator to a Schrödinger one. Using
also gauge transformation (1.15), which has the physical meaning
of re-scaling of the dependent variable, we transform wave equation
(1.19) into the wave equation

∂2
t u+ A0u ≡ ∂2

t u− ∂2
τu+ qu = 0, (1.22)

for the function u(x, t) = κ(x)w(x, t).

1.2.2. The remaining part of Chapter 1 is mainly devoted to the
consideration of Problem 2 for the Dirichlet Schrödinger operator
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A0 of form (1.14), (1.3). Let us consider the initial-boundary value
problem for equation (1.22),





∂2
t u− ∂2

xu+ q(x)u = F (x, t),
u|x=0 = 0, u|x=l = 0,
u|t=0 = ∂tu|t=0 = 0,

(1.23)

with F ∈ L2([0, l] × [0, T ]) for any T > 0.
We start our considerations with the case F ∈ C∞

0 ([0, l]× [0, T ]).
It is known that, in this case, initial-boundary value problem (1.23)
has a unique solution u ∈ C∞([0, l] × [0, T ]) and u(x, t) = 0 for
x > t, when F (x, t) = 0 for x > t. The last property follows from
the finite velocity of the wave propagation, which is equal to 1 for
wave equation (1.22) (see Notes in the end of the chapter). In the
following, we need some less regular solutions. For this end, we prove
estimates for the solution.

Lemma 1.9 Let u(x, t) be the solution of the initial-boundary value
problem (1.23) for F ∈ C∞

0 ([0, l] × [0, T ]). Then

Hu(t) ≤ C(T )‖F‖2
L2([0,l]×[0,T ]), 0 ≤ t ≤ T, (1.24)

|u(x, t)| ≤ C(T )‖F‖L2([0,l]×[0,T ]), 0 ≤ x ≤ l, 0 ≤ t ≤ T, (1.25)

where

Hu(t) =
1

2

∫ l

0
(|∂tu(x, t)|2 + |∂xu(x, t)|2 + |u(x, t)|2)dx. (1.26)

Proof. Using the wave equation in (1.23) and integration by parts,
we obtain

dHu

dt
= <

∫ l

0
(∂tu(x, t) ∂2

t u(x, t) + ∂t∂xu(x, t) ∂xu(x, t)+

+∂tu(x, t)u(x, t)
)
dx =

= <
∫ l

0
∂tu(x, t)(F (x, t) + (1 − q(x))u(x, t))dx+

+<(∂tu(l, t)∂xu(l, t) − ∂tu(0, t)∂xu(0, t)).



1. One-Dimensional Inverse Problem 13

The last term in this equation is equal to zero due to the boundary
conditions in (1.23). Then,

dHu

dt
≤ 1

2
‖F (·, t)‖2 + (Cq + 2)Hu, (1.27)

where

Cq = max
x∈[0,l]

|q(x)|. (1.28)

This inequality can be rewritten as

d

dt

(
e−(Cq+2)tHu

)
≤ 1

2
e−(Cq+2)t‖F (·, t)‖2. (1.29)

In view of the initial conditions in (1.23), Hu(0) = 0, so that inequal-
ity (1.29) implies that

Hu(t) ≤ 1

2

∫ t

0
e(Cq+2)(t−t′)‖F (·, t′)‖2dt′ (1.30)

≤ C(T )‖F‖2
L2([0,l]×[0,T ]).

In particular,

∫ l

0
|∂xu(x, t)|2dx ≤ C(T )‖F‖2

L2([0,l]×[0,T ]), (1.31)

so that, by the Cauchy inequality,

|u(x, t)| ≤
∫ x

0
|∂xu(x, t)|dx ≤ C(T )‖F‖L2([0,l]×[0,T ]). (1.32)

2

Estimate (1.25) makes it possible to define the solution of initial-
boundary value problem (1.23) when F ∈ L2([0, l] × [0, T ]). Indeed,
let Fn → F in L2([0, l] × [0, T ]) and Fn ∈ C∞

0 ([0, l] × [0, T ]). Denote
by un(x, t) the solution of initial-boundary value problem (1.23) with
F replaced by Fn. Then, by inequality (1.25), there is a function
u(x, t) ∈ C([0, l] × [0, T ]) such that

un(x, t) → u(x, t), 0 ≤ x ≤ l, 0 ≤ t ≤ T.

This function u(x, t) is called the solution of initial-boundary value
problem (1.23). The previous considerations imply the following re-
sult
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Corollary 1.10 For F ∈ L2([0, l]× [0, T ]) there is a unique solution
u ∈ C(([0, l] × [0, T ]) for which estimates (1.24), (1.25) are valid.
Moreover, if F (x, t) = 0 for x > t then u(x, t) = 0 for x > t.

Remark. It is known that, when F ∈ L2([0, l]× [0, T ]), the function
u(x, t) coincides with the unique weak solution of initial-boundary
value problem (1.23). Moreover, estimate (1.24) means that this
weak solution belongs to the energy class. The properties and unique-
ness of the weak solutions can be found in details from references
given in Notes.

1.2.3. The initial-boundary value problem for the equation (1.22),
which is related to the inverse boundary spectral problem, is the
problem





∂2
t u− ∂2

xu+ q(x)u = 0,
u|x=0 = f(t), u|x=l = 0,
u|t=0 = ∂tu|t=0 = 0,

(1.33)

for f ∈ L2([0, T ]). We denote u(x, t) = uf (x, t) to indicate the
Dirichlet boundary value of u. Function f is also called the boundary
source.

When q = 0, the solution uf
0(x, t) of this problem, for 0 < t < T ,

is given by the formula

uf
0 (x, t) =

∞∑

j=0

[f(t− x− 2lj) − f(t+ x− 2l(j + 1))], (1.34)

when we continue f(t) to be 0 for t < 0. We point out that, for
t < T , the sum in the right-hand side is finite. Indeed, all terms for
j > T/l vanish.

To construct the solution for the initial-boundary value prob-
lem (1.33), we consider the solution uf

1(x, t) of the following initial-
boundary value problem,





(∂2
t − ∂2

x + q(x))uf
1 = −quf

0 ,

uf
1

∣∣
x=0

= 0, uf
1

∣∣
x=l

= 0,

uf
1

∣∣
t=0

= ∂tu
f
1

∣∣
t=0

= 0.

(1.35)

By Corollary 1.10, uf
1 ∈ C([0, l] × [0, T ]). Then the unique solution

of initial-boundary value problem (1.33) is given by the formula,

uf (x, t) = uf
0(x, t) + uf

1 (x, t). (1.36)
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Denote by C([0, T ], L2([0, l])) the space of functions of t with values
in L2([0, l]), which depend continuously on t. We denote the norm
of the space L2([0, l]) by ||· ||.

Lemma 1.11 For any f ∈ L2([0, T ]), initial-boundary value prob-
lem (1.33) has a unique solution uf (x, t) ∈ C([0, T ], L2([0, l])), such
that

‖uf (·, t)‖ ≤ C(T )‖f‖, t < T.

Proof. Each term in the right-hand side of formula (1.34) is in

the space C([0, T ], L2([0, l])). Since the sum in (1.34) is finite, uf
0 ∈

C([0, T ], L2([0, l])) and

‖uf
0 (·, t)‖ ≤ C(T )‖f‖.

Then the right-hand side in (1.35), i.e., the function −quf
0 ∈ L2([0, l]×

[0, T ]). By Corollary 1.10, uf
1 ∈ C([0, l]×[0, T ]) and satisfies estimate

(1.32) with F = −quf
0 . Therefore,

|uf
1 (x, t)| ≤ C(T )‖quf

0‖L2([0,l]×[0,T ]) ≤ C1(T )‖f‖.

2

1.2.4. In this section, we will construct Green’s function G(x, t, t′),
t′ > 0, for problem (1.33). G(x, t, t′) is the weak solution of (1.33)
with the boundary source f(t) = δ(t − t′), where δ(t) is the Dirac
delta-function,





∂2
tG− ∂2

xG+ qG = 0, 0 < x < l, t > 0,
G|x=0 = δ(t− t′), G|x=l = 0,
G|t=0 = ∂tG|t=0 = 0.

(1.37)

Lemma 1.12 Let G(x, t, t′) = G(x, t− t′) be

G(x, t, t′) = δ(t− t′ − x)−

1

2

∫ x

0
q(x′)dx′ ·H(t− t′ − x) +G0(x, t− t′). (1.38)
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Here H(t) is the Heaviside function and G0(x, t) a continuous func-
tion satisfying the initial-boundary value problem,





∂2
tG0 − ∂2

xG0 + qG0 = (−1
2q

′(x) + q(x)
2

∫ x
0 q(x

′)dx′)H(t− x)
G0|x=0 = G0|x=l = 0
G0|t=0 = ∂tG0|t=0 = 0.

(1.39)

Then G(x, t, t′) is the unique solution of initial-boundary value prob-
lem (1.37) for 0 ≤ t ≤ l.

Proof. Step 1. By Lemma 1.11, initial-boundary value problem
(1.39) has a unique solution G0(x, t) ∈ C([0, l] × [0, l]). Moreover,
G0(x, t − t′) is the unique solution of problem (1.39) with H(t − x)
replaced by H(t − t′ − x). It is clear that G(x, t, t′) of form (1.38)
satisfies the initial and boundary conditions required in (1.37). The
fact that G satisfies the wave equation (1.37) can be verified by direct
substitution.

Step 2. Let G(x, t, t′) be the solution of problem (1.37). Then,

G̃0(x, t, t
′) = G(x, t, t′)−δ(t − t′ − x)+

1

2

∫ x

0
q(x′)dx′ ·H(t− t′ − x),

satisfies system (1.39) with H(t−x) replaced by H(t−t′−x). There-
fore, by Lemma 1.9,

G̃0(x, t, t
′) = G0(x, t− t′),

which proves the uniqueness. 2

In view of Corollary 1.10, G0(x, t) = 0 for x > t. Therefore,
representation (1.38) implies that G(x, t, t′) = 0 for x > t − t′. We
use Green’s function only for 0 ≤ t ≤ l, when there is yet no reflection
from the right end x = l.

Green’s function G(x, t) can be used to represent the solution of
initial-boundary value problem (1.33) with an arbitrary f ∈ L2([0, T ]),

uf (x, t) =

∫ t

0
G(x, t, t′)f(t′)dt′ = (1.40)

= f(t− x) +

∫ t

0
G1(x, t

′)f(t− t′)dt′,



1. One-Dimensional Inverse Problem 17

which is valid for t < l. Here

G1(x, t) = −1

2

∫ x

0
q(x′)dx′ ·H(t− x) +G0(x, t). (1.41)

The function G1 is continuous with respect to (x, t) in the domain
x < t and G1(x, t) = 0 for x > t.

When f ∈ C∞
0 ([0, T ]), we can differentiate representation (1.40)

with respect to t. Then,

∂n
t u

f (x, t) = f (n)(t− x) +

∫ t

0
G1(x, t

′)f (n)(t− t′)dt′, (1.42)

so that uf (x, t) ∈ C∞([0, T ], L2([0, l])).

1.2.5. In this section, we will obtain a spectral representation of
the solution uf (x, t) of initial-boundary value problem (1.33).

The orthonormalized eigenfunctions ϕk(x), k = 1, 2, . . . , of the
Schrödinger operator A0 form an orthonormal basis in L2([0, l]).
Since the solution uf (x, t), f ∈ L2([0, T ]), lies in L2([0, l]) for any
t, we can represent it in the form

uf (x, t) =

∞∑

k=1

uf
k(t)ϕk(x). (1.43)

Here

uf
k(t) =

∫ l

0
uf (x, t)ϕk(x)dx (1.44)

are the Fourier coefficients of uf (·, t). A simple but very important

result is a representation of uf
k(t) in terms of the boundary spectral

data of A0.

Lemma 1.13 Let uf (x, t) be the solution of initial-boundary value
problem (1.33) with f ∈ L2([0, T ]). Then, for k = 1, 2, . . . ,

uf
k(t) =

∫ t

0
f(t′)sk(t− t′)dt′ϕ′

k(0), (1.45)

where

sk(t) =





sin
√

λkt√
λk

, λk > 0,

t, λk = 0,
sinh

√
|λk|t√

|λk|
, λk < 0.

(1.46)
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Proof. We will give the proof only for f ∈ C∞
0 ([0, T ]) and leave

the generalization to f ∈ L2([0, T ]) as an exercise. Using (1.44) and
integration by parts, we see that

d2

dt2
uf

k(t) =

∫ l

0
∂2

t u
f (x, t)ϕk(x)dx =

=

∫ l

0
{∂2

xu
f (x, t) − q(x)uf (x, t)}ϕk(x)dx =

= [∂xu
f (l, t)ϕk(l) − uf (l, t)∂xϕk(l)]−

−[∂xu
f (0, t)ϕk(0) − uf (0, t)∂xϕk(0)]+

+

∫ l

0
uf (x, t){∂2

xϕk(x) − q(x)ϕk(x)}dx, (1.47)

where the second equality follows from wave equation (1.22). The
boundary conditions for uf (x, t) and ϕk(x) and the fact that ϕk is
the eigenfunction of A0 that corresponds to the eigenvalue λk, mean
that equation (1.47) takes the form

d2

dt2
uf

k(t) = −λku
f
k(t) + ϕ′

k(0)f(t). (1.48)

The initial conditions in (1.33) yield that

uf
k(0) =

d

dt
uf

k(0) = 0. (1.49)

Solving equation (1.48) with initial conditions (1.49), we obtain for-

mula (1.45) for the Fourier coefficients uf
k(t). 2

Exercise 1.14 By Lemma 1.11, the map f 7→ uf (·, t) is a continu-
ous map from L2([0, T ]) into L2([0, l]) for any 0 < t < T . Use this
fact to show the validity of (1.45) for f ∈ L2([0, T ]).
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1.2.6. Lemma 1.13 makes it possible to calculate the inner prod-
ucts of any two waves from the boundary, i.e., solutions of initial-
boundary value problem (1.33). Indeed, let uf (x, t) and uh(x, t) be
the solutions of (1.33) that correspond to the boundary sources f
and h. Then, for any t, s ≥ 0,

〈uf (·, t), uh(·, s)〉 =

∞∑

k=1

uf
k(t)uh

k(s), (1.50)

where the Fourier coefficients in the right-hand side of (1.50) are
given by formula (1.45).

1.3. Controllability and projectors

1.3.1. Representation (1.43), (1.45) makes it possible to find the
wave uf (·, T ) for arbitrary f . Let us change our point of view and
try to answer the following question.

Given a function a ∈ L2([0, l]), we want to find a source f ∈
L2([0, T ]) such that uf (·, T ) = a. Problems of this type are often
called problems of controllability. They play a crucial role in the
considerations of this book.

First, we note that, due to the finite velocity of the wave propa-
gation, which is equal to 1 in our case,

supp uf (·, T ) ⊂ [0, T ]. (1.51)

Hence, for the positive answer to the controllability problem, it is
necessary that supp a ⊂ [0, T ].

When q = 0, representation (1.40), where G1(x, t) = 0 for t < l,
shows that uf (x, T ) = f(T − x), T < l. This gives an immediate
answer to the controllability problem for an arbitrary a ∈ L2([0, T ]),
i.e., for a ∈ L2([0, l]), supp a ⊂ [0, T ], the solution is given by

f(t) = a(T − t).

This result can be extended to the general case.

Lemma 1.15 For any 0 ≤ T ≤ l and any a ∈ L2([0, T ]) there exists
a unique boundary source f ∈ L2([0, T ]) such that

uf (x, T ) = a(x). (1.52)
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Proof. Using representation (1.40), we rewrite equation (1.52) in
the form

a(x) = f(T − x) +

∫ T

0
G1(x, t

′)f(T − t′)dt′, 0 ≤ x ≤ T. (1.53)

Changing variables to y = T − x, equation (1.53) takes the form

a(T − y) = f(y) +

∫ T

0
G1(T − y, t′)f(T − t′)dt′

Denote G1(T −y, T−t′) by GT (y, t′). Then, due to the note after the
proof of Lemma 1.12, GT (y, t′) = 0 for t′ > y. Moreover, by Lemma
1.12, GT (y, t′) is continuous as a function of (y, t′) for y > t′. Now
we can rewrite equation (1.53) as a Volterra equation of the second
kind,

f(y) +

∫ y

0
GT (y, t′)f(t′)dt′ = a(T − y).

This equation has a unique solution f(y), 0 ≤ y ≤ T . It can be
obtained by iterations,

fn(y) = a(T − y) −
∫ y

0
GT (y, t′)fn−1(t

′)dt′,

where f0(y) = 0. 2

For T > l, the solution of controllability problem (1.52) is no
longer unique. However, we can still prove the existence.

Corollary 1.16 For any T > l and any a ∈ L2([0, l]), there exists a
boundary source f ∈ L2([0, T ]), such that

uf (x, T ) = a(x). (1.54)

Proof. By Lemma 1.15, for any a ∈ L2([0, l]) there exists a unique
f ∈ L2([0, l]), such that

uf (x, l) = a(x).

Introduce the function

f̃(t) =

{
0, for 0 < t < T − l,
f(t− (T − l)), for T − l < t < T,
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f̃ ∈ L2([0, T ]). Since q is time-independent,

u
ef (x, t) = uf (x, t− (T − l)),

for any t > 0. In particular,

u
ef (x, T ) = uf (x, l) = a(x).

2

1.3.2. In this section, we will introduce one of the main tools that
we use throughout this book to solve the inverse boundary spectral
problem. This is the so-called slicing procedure.

To define a slice, we first fix a point x0 on the boundary which,
in the one-dimensional case, may be either x = 0 or x = l. Then we
take two arbitrary positive number τ2 > τ1 ≥ 0. The corresponding
slice, M(x0; τ1, τ2), is the set of all points in the domain, for which
the travel time to x0 lies between τ1 and τ2.

Since the coordinate x in wave equation (1.22) is the travel time
coordinate,

M(0; τ1, τ2) = [τ1, τ2] ∩ [0, l], (1.55)

M(l; τ1, τ2) = [l − τ2, l − τ1] ∩ [0, l].

For general wave equation (1.19),

M(0; τ1, τ2) = {x : τ1 ≤
∫ x

0
g1/2(x′)dx′ ≤ τ2} ∩ [0, l],

M(l; τ1, τ2) = {x : l − τ2 ≤
∫ l

x
g1/2(x′)dx′ ≤ l − τ1} ∩ [0, l]. (1.56)

Since we deal with Problem 2 only, we use notation M(τ1, τ2) =
M(0, τ1, τ2).

Any slice M(τ1, τ2) corresponds to a subspace L2(M(τ1, τ2)) ⊂
L2([0, l]). It consists of all functions with support in M(τ1, τ2). The
orthoprojector, Pτ1,τ2 = PM(τ1 ,τ2) in L2([0, l]) onto L2(M(τ1, τ2)) has
the form

(Pτ1 ,τ2a)(x) = χτ1,τ2(x)a(x), (1.57)
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where χτ1,τ2 = χM(τ1,τ2)(x) is the characteristic function of the slice
M(τ1, τ2),

χτ1,τ2(x) =

{
1, for x ∈ M(τ1, τ2),
0, for x /∈ M(τ1, τ2).

Then the orthoprojector Pτ1,τ2 determines the Gram-Schmidt matrix
Mτ1,τ2 ,

(Mτ1,τ2)jk = 〈Pτ1 ,τ2ϕj , ϕk〉, j, k = 1, 2, . . . . (1.58)

We will show shortly that, for any slice M(τ1, τ2), the Gram-Schmidt
matrix (1.58) can be constructed from the boundary spectral data.
The procedure of constructing this matrix from the boundary spec-
tral data is called the slicing procedure.

1.3.3. We precede the construction of the Gram-Schmidt matri-
ces Mτ1,τ2 with the demonstration of their importance for the so-
lution of the inverse boundary spectral problem. In fact, in the
one-dimensional case, the knowledge of 〈Pτ1,τ2ϕj , ϕj〉 as a function
of (τ1, τ2) for any j is sufficient for the reconstruction of the potential
q.

Lemma 1.17 Assume that for some j and any τ > 0, we know
〈P0,τϕj , ϕj〉, where ϕj is a normalized eigenfunction of the Schröd-
inger operator A0. Then these data uniquely determine l and q(x),
0 < x < l.

Proof. By the definition of P0,τ ,

〈P0,τϕj , ϕj〉 =

∫ min(τ,l)

0
ϕ2

j (x)dx.

By this formula, 〈P0,τϕj , ϕj〉 < 1 for τ < l and 〈P0,τϕj , ϕj〉 = 1 for
τ ≥ l. This observation makes it possible to find l. For τ < l we use
the formula

d

dτ
〈P0,τϕj , ϕj〉 = ϕ2

j (τ). (1.59)

As ϕj(x) has no multiple zeros for 0 < x < l, equation (1.59) deter-
mines function ϕj(x), 0 ≤ x ≤ l to within a multiplication by ±1.
Then, outside a finite number of points,

q(x) =
∂2

xϕj(x) + λjϕj(x)

ϕj(x)
.
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Since q(x) is smooth, this determines q on the whole interval [0, l].
2

1.3.4. In this section, we will construct the Gram-Schmidt matrix
Mτ1,τ2 from the boundary spectral data.

Theorem 1.18 Let {λj , ϕ
′
j(0) : j = 1, 2, . . . } be the boundary spec-

tral data of a Schrödinger operator A0. Then these data determine
the Gram-Schmidt matrix Mτ1,τ2 for any 0 < τ1 < τ2 < l.

Proof. The proof will be divided into several steps.
Step 1. By the definition of Mτ1,τ2 ,

Mτ1,τ2 = M0,τ2 −M0,τ1 .

Therefore, it is sufficient to construct M0,τ for arbitrary τ > 0.
Step 2. Let us take any orthonormal basis {αk(t); k = 1, 2, . . . }

in L2([0, τ ]). Denote by uαk(x, t) the solutions of initial-boundary
value problem (1.33) with f(t) = αk(t), k = 1, 2, . . . .

In view of Lemma 1.15, the finite linear combinations of functions
uαk(·, τ), k = 1, 2, . . . , form a dense set in L2([0,min(τ, l)]). More-
over, by means of the construction in section 1.2.6, we can find the
inner products 〈uαk(·, τ), uαj (·, τ)〉, j, k = 1, 2, . . . . In general,

Ukj = 〈uαk(·, τ), uαj (·, τ)〉 6= δkj, (1.60)

so that uαk(·, τ) are not orthonormal.
Step 3. Using the Gram-Schmidt orthogonalization procedure

for the matrix {Ukj}∞k,j=1, we can find finite linear combinations of
uαk(x, τ),

vl(x) =

p(l)∑

k=1

dklu
αk(x, τ),

which form an orthonormal basis in L2([0,min(τ, l)]). Since initial-
boundary value problem (1.33) is linear,

vl(x) = uβl(x, τ), (1.61)

where

βl(t) =

p(l)∑

k=1

dklαk(t).
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Step 4. Since {vl(x), l = 1, 2, . . . } form an orthonormal basis in
L2([0,min(τ, l)]), then, for any a ∈ L2([0, l]),

P0,τa =

∞∑

l=1

〈a, vl〉vl(x). (1.62)

In particular, this formula implies that

〈P0,τϕj , ϕk〉 =

∞∑

l=1

〈ϕj , vl〉〈ϕk, vl〉. (1.63)

Furthermore, the inner products 〈vl, ϕj〉 are the Fourier coefficients
of vl(x) with respect to the basis {ϕj(x), j = 1, 2, . . . }. By Lemma
1.13,

〈vl, ϕj〉 =

∫ τ

0
βl(t

′)sj(τ − t′)dt′ϕ′
j(0),

where sj(t) are given by formulae (1.46). 2

Hence Theorem 1.6 is proven.

1.3.5. To conclude section 1.3, we will show that the Gram-Schmidt
matrix Mτ1,τ2 determines the inner products 〈Pτ1 ,τ2u

f (·, t), ug(·, s)〉
for any sources f , g and t, s > 0. This result is used later to provide
another solution of the one-dimensional inverse boundary spectral
problem.

Lemma 1.19 For any sources f, g ∈ L2([0,∞)),

〈Pτ1 ,τ2u
f (·, t), ug(·, s)〉 =

∞∑

j,k=1

(Mτ1,τ2)jku
f
j (t)ug

k(s), (1.64)

where uk
j (t) and ug

k(s) are given by formulae (1.45).

Exercise 1.20 Prove formula (1.64).

1.4. Gaussian beams

1.4.1. In this section, we will introduce the second main tool, which
is also used later to solve the multidimensional inverse boundary
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spectral problem. As it was shown in section 1.3, the slicing proce-
dure is sufficient to reconstruct the potential q. To illustrate the dif-
ference between the one-dimensional and the multidimensional cases,
we mention two things. Both of them are of geometric character.

i) In the one-dimensional case, the slice M(τ1, τ2) is known a priori
for each τ1 and τ2. This follows from the fact that, in the one-
dimensional case, any operator can be transformed to a Schrödinger
operator. Then, in the travel-time coordinates, the corresponding
slice is just the interval τ1 ≤ x ≤ τ2. In the multidimensional case,
it is, in principle, impossible to transform a general second-order
operator to the form

−
(

(
∂

∂x1
)2 + · · · + (

∂

∂xm
)2

)
+ q,

so that the boundary spectral data remain intact. Henceforth, the
geometry of slices are a priori unknown.

ii) In the one-dimensional case, the slices M(τ1, τ2) shrink to x0, if
τ1 < x0 < τ2 and τ1, τ2 → x0. This makes it possible to isolate
the point x0. We have used this localization to find q(x). In the
multidimensional case, when τ1, τ2 → τ0, the corresponding slices
M(τ1, τ2) do not, in general, tend to one point. There is a way
to develop an analogous slicing procedure to get localization in the
multidimensional case. However, we prefer to overcome this difficulty
by using some special solutions of the wave equation that have the
localization property. In this section, we will construct some special
solutions of the wave equation which, at any time t, are localized
near a point x = x(t). These solutions are called Gaussian beams
or quasiphotons. The point of localization, x = x(t), moves along a
characteristic of the wave equation.

1.4.2. Consider initial-boundary value problem (1.33), where the
source f is of the form

f(t) = fε(t; a) = (πε)−1/4 exp {−(iε)−1θ(t− a)}χa(t). (1.65)

Here

θ(t) = −t+
i

2
t2, (1.66)
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is called the phase function and a and ε are positive constants, and
the function χa(t) is given by the formula,

χa(t) = χ

(
t− a

a

)
,

where χ(t) is a usual smooth cut-off function,

χ(t) =

{
1, for |t| < 1/2,
0, for |t| > 1

, 0 ≤ χ(x) ≤ 1, χ ∈ C∞(R).

Definition 1.21 The Gaussian beam uε(x, t; a) is the solution of
initial-boundary value problem (1.33) with the source fε of the form
(1.65), (1.66).

Usually, Gaussian beams are defined as a special class of asymp-
totic solutions of the wave equation. We use only Gaussian beams
of a special type. Their asymptotic properties are described in the
following theorem.

Theorem 1.22 Let uε(x, t; a) be a Gaussian beam. Then for t <
l + a

uε(x, t; a) = (1.67)

(πε)−1/4χa(t− x) exp {−(iε)−1θ(t− x− a)}(1 + iεu1(x, t− a))+

+Rε(x, t; a),

where

u1(x, t) =
1

2θ′(t− x)

∫ x

0
q(x′)dx′. (1.68)

The remainder Rε(x, t; a) satisfy the estimate

‖Rε(·, t; a)‖ ≤ Cε2, (1.69)

where the constant C may depend on a and t < l + a.
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Proof. We construct the Gaussian beam by using the anzatz,

UN
ε (x, t) = (πε)−1/4 exp {−(iε)−1θ(t− x)}

N∑

n=0

un(x, t)(iε)n. (1.70)

Following the ideology of asymptotic methods, we consider ε as an
independent small parameter.

Step 1. When we substitute UN
ε (x, t) into wave equation (1.22)

and obtain a polynomial of ε with coefficients depending on (x, t),

∂2
t U

N
ε − ∂2

xU
N
ε + q(x)UN

ε =

= π−1/4ε−5/4 exp {−(iε)−1θ(t− x)}
N+1∑

n=0

vn(x, t)(iε)n, (1.71)

where

vn = i{2θ′(t− x)(∂x + ∂t)un(x, t) − (∂2
t − ∂2

x + q(x))un−1(x, t)},

for n = 0, 1, . . . , N + 1, and u−1 ≡ 0, uN+1 ≡ 0.
Next we will find the N +1 unknown functions u0, . . . , uN , using

the N + 1 equations v0 = 0, . . . , vN = 0. Note that we do not pose
any conditions for vN+1. This will minimize the right-hand side of
equation (1.71) when ε → 0. The requirement that vn(x, t) = 0 for
n = 0, 1, . . . , N , yields a recurrent system of equations for un(x, t),

∂un

∂t
(y, t) =

−1

2θ′(−y)

{
2
∂2un−1

∂y∂t
− ∂2un−1

∂t2
− q(y + t)un−1

}
(1.72)

where we use the coordinates y = x− t and t.
To satisfy boundary condition (1.65), we require that

u0(y,−y) = 1, un(y,−y) = 0, for n = 1, . . . , N. (1.73)

which in coordinates (x, t) correspond to the conditions

u0(0, t) = 1, un(0, t) = 0, for n = 1, . . . , N.

Equations (1.72) are ordinary differential equations in t for the func-
tions un(y, t), where y is considered as a parameter. Therefore,
system (1.72), (1.73) constitutes a Cauchy problem for un. Since
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u−1 ≡ 0, we can solve these equations recurrently, starting from
n = 0. In particular, we obtain that u0 ≡ 1 and u1 have form (1.68).

Next we use UN
ε to construct the Gaussian beam uε(x, t; a) and

prove estimate (1.69).
Step 2. Consider the function χa(t − x)U 2

ε (x, t − a) that corre-
sponds to N = 2. This function is the solution of the initial-boundary
value problem,

(
∂2

t − ∂2
x + q

)
[χa(t− x)U 2

ε (x, t− a)] = Fε,a(x, t), (1.74)

χa(t− x)U 2
ε (x, t− a)

∣∣
x=0

= fε(t, a), χa(t− x)U 2
ε (x, t− a)

∣∣
x=l

= 0,

χa(t− x)U 2
ε (x, t− a)

∣∣
t=0

= ∂t[χa(t− x)U 2
ε (x, t− a)]

∣∣
t=0

= 0,

for any t ≤ l. Here Fε,a(x, t) is a function that satisfies the inequality,

‖Fε,a‖L2([0,l]×[0,l]) ≤ Caε
2. (1.75)

Estimate (1.75) follows from two observations.
First, for any M > 0,

| exp {−(iε)−1θ(y)}(1 − χ(y))| ≤ CεM

and the same is true for all derivatives of this function. Therefore,
multiplication of U 2

ε (x, t) by χa(t− x) gives an error of order εM for
any M > 0 to (1.33).

Second, due to the constructions of step 1, U 2
ε satisfies the equa-

tion

(
∂2

t − ∂2
x + q

)
U2

ε = π−
1

4 ε−
5

4 exp {−(iε)−1θ(t− x− a)}v3(x, t)(iε)3.

Step 3. Comparing initial-boundary value problem (1.33) with
f = fε(t, a) of form (1.65) and initial-boundary value problem (1.74),
it follows from Lemma 1.11 that,

‖uε(·, t; a) − χa(t− ·)U 2
ε (·, t− a)‖L2([0,l]) ≤ Caε

2,

for any t ≤ l.
At last, we observe that in the sum (1.70) with N = 2, the last

term satisfies

‖ε− 1

4χa(t− x) exp {−(iε)−1θ(x− t+ a)}(iε)2u2(x, t)‖L2([0,l]) ≤ Caε
2
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for any t ≤ l.

Summarizing, we obtain representation (1.67), (1.68) with the
remainder estimate (1.69). 2

Using the representation of the Gaussian beam given by Theorem
1.22, we see that

‖uε(·, t; a)‖ = 1 +O(ε2), for a < t < l. (1.76)

Exercise 1.23 Prove estimate (1.76).

1.4.3. In this and the next sections we will combine the slicing
procedure and the technique of Gaussian beams to find q(x).

Lemma 1.24 Let uε(x, t; a) be a Gaussian beam. Then, for any t,
τ , a, ε, such that

0 < a < t < l, τ < t− a, 0 < ε < 1,

we have

〈P0,τuε(·, t; a), uε(·, t; a)〉 = O(ε2), τ < t− a,

〈P0,τuε(·, t; a), uε(·, t; a)〉 = 1 +O(ε2), τ > t− a, (1.77)

〈P0,τuε(·, t; a), uε(·, t; a)〉 =
1

2
+
ε3/2

2
√
π

∫ τ

0
q(x)dx+O(ε2), τ = t− a.

Note that the left-hand side is continuous with respect to t, τ , a, ε.
On the other hand, the right-hand side is discontinuous with respect
to t, τ , a. This means that asymptotic formula (1.77) is not uniform
with respect to t, τ , a. It actually describes the behaviour of the
inner product as a function of ε, ε→ 0, for fixed parameters t, τ , a.

Proof. The first two inequalities of formula (1.77) for τ < t− a and
τ > t− a, can be obtained by the following considerations.

First, in view of the exponential factor exp {−(iε)−1θ(t− x− a)},
the Gaussian beam uε(x, t; a) decays exponentially when ε → 0 and
x 6= t− a. Second, by formula (1.76), the L2-norm of the Gaussian
beam is 1 +O(ε2).
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To prove formula (1.77) for τ = t− a, we use the asymptotic ex-
pansion given by Theorem 1.22. Due to estimate (1.69) of Rε(x, t; a)
and the exponential decay for the Gaussian beam,

〈P0,t−auε(·, t; a), uε(·, t; a)〉 =

=

∫ t−a

−∞
|U1

ε (x, t− a)|2dx+O(ε2). (1.78)

Here U1
ε is given by formula (1.70) with N = 1. By means of repre-

sentation (1.67), (1.68), the integral in the right-hand side of formula
(1.78) can be written in the form

(πε)−1/2

∫ 0

−∞
e−y2/ε(1 − 2ε=u1(y + t− a, t− a))dy +O(ε2) =

=(πε)−
1

2

∫ 0

−∞
e−

y2

ε (1 − ε=
(

1

θ′(−y)

∫ y+t−a

0
q(x)dx

)
)dy+O(ε2),(1.79)

where y = x−t+a. Using representation (1.66) for the phase function
θ, we see that

=
(

1

θ′(−y)

∫ y+t−a

0
q(x)dx

)
= y

∫ t−a

0
q(x)dx+O(y2). (1.80)

Combining estimates (1.79), (1.80), we obtain that

(πε)−1/2

∫ 0

−∞
e−y2/ε

[
1 − ε=

(
1

θ′(−y)

∫ y+t−a

0
q(x)dx

)]
dy =

=
1

2
+
ε3/2

2
√
π

∫ t−a

0
q(x)dx+O(ε2).

Summarizing the previous calculations, we prove formula (1.77) for
τ = t− a.

2
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1.4.4. We are now in the position to describe a procedure to solve
the inverse boundary spectral problem.

i) By means of the slicing procedure described in section 1.3.4, we
find the Gram-Schmidt matrix M0,τ for any τ > 0.

ii) By means of the procedure described in section 1.3.5, we calculate
the inner products

〈P0,τuε(·, τ + a; a), uε(·, τ + a; a)〉.

iii) Using these inner products, we obtain from Lemma 1.24 that

∫ t

0
q(x)dx = lim

ε→0

2
√
π

ε3/2

{
〈P0,tuε(·, t+ a; a), uε(·, t+ a; a)〉 − 1

2

}
(1.81)

for 0 < t < l − a.

iv) Differentiating integral (1.81), we find q(x) for 0 ≤ x ≤ l − a.
Since a > 0 is arbitrary, q(x) is found for 0 ≤ x ≤ l.

Notes. There are numerous textbooks on the spectral theory of
the Sturm-Liouville operators. The properties of the eigenvalues and
eigenfunctions of these operators, and, in particular, their asymp-
totic properties, which are used in sections 1.1.2 and 1.1.7, can be
found, e.g., in [Ki], section 4.3, [LeSa], Chapter 1, [ReRg], Section
10.2, [ChCoPaRn], Chapter 3. The precise formulation of the initial-
boundary value problem for the wave equation and its main proper-
ties, such as existence, uniqueness, regularity and finite velocity of
the wave propagation, can be found, e.g., in [Ld], Chapter 4, [Ev],
Section 7.2. These textbooks deal with the multidimensional case
and we use them also as our standard references for the multidimen-
sional wave equation. The theory of the one-dimensional Gaussian
beams, which is described in section 1.4, is self-contained. For those
readers who are interested in further developments of this theory, we
can recommend [BaBuMo], Chapter. 3. The basic theory of Volterra
equations used in Chapter 1 can be found, e.g., in [ChCoPaRn].

The one-dimensional inverse boundary spectral problem goes back
to the classical works [Am], [Bo], [Lv], [GeLe], [Kr1]–[Kr4], [Ma1]–
[Ma4]. There are now numerous efficient methods to solve this prob-
lem and also other types of the one-dimensional inverse problems.
We refer only to some major classical and modern textbooks on
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the subject, such as [PoTr], [Ma1], [Ma2], [LeSa], [Nz], [Le], [ChSa],
[BeBl1], [Ki]. Our approach, which is developed in this chapter, has
its roots in the method of Krein-Blagovestchenskii, [Kr1]–[Kr4] and
[Bl1]–[Bl3].
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Hörmander’s theorem and Holmgren’s theorem. Comm. Part.
Diff. Equations 20 (1995), no. 5-6, 855–884.

[Ta2] Tataru, D. Boundary observability and controllability for evo-
lutions governed by higher order PDE. J. Math. Anal. Appl. 193

(1995), no. 2, 632–658.

[Ta3] Tataru, D. Unique continuation for operators with partially
analytic coefficients. J. Math. Pures Appl. (9) 78 (1999), no. 5,
505–521.

[Tr] Triebel, H. Interpolation Theory, Function Spaces, Differential
Operators. 2nd edit. Johann Ambrosius Barth, Heidelberg, 1995.
532 pp.

[U] Uhlmann G. Inverse boundary value problems for partial dif-
ferential equations. Proceedings of the International Congress of
Mathematicians, Vol. III (Berlin, 1998). Doc. Math. 1998, 77–86.

[We1] Weston, V. Invariant imbedding for the wave equation in three
dimensions and the applications to the direct and inverse prob-
lems. Inverse Problems 6 (1990), no. 6, 1075–1105.



50 BIBLIOGRAPHY

[We2] Weston, V. Invariant imbedding and wave splitting in R3. II.
The Green function approach to inverse scattering. Inverse Prob-
lems 8 (1992), no. 6, 919–947.

[Ya] Yamamoto, M. Uniqueness and stability in multidimensional
hyperbolic inverse problems. J. Math. Pures Appl. (9) 78 (1999),
no. 1, 65–98.



51

Table of notation

Notation Meaning See page

R,C Real and complex numbers
<,= Real and imaginary parts
N ,M Manifolds, ∂M 6= ∅ ??

Hs(M),Hs
0(M), Sobolev spaces ??, ??

‖ · ‖s, ‖ · ‖(s,∂M) Sobolev s-norms ??

〈· , · 〉, ‖ · ‖ Inner product, norm in L2 3,??
Cp, Lp([0, T ];Hs) Hs-valued functions 15, ??

|||· ||| Norm of L1([0, T ];L2(M)) ??

C∞
0 , C∞◦

Smooth function spaces ??

TxN , T ∗
x
N , SN , S∗N Tangent space, etc. ??,??,??

(v,v)g , (p,q)g , (p,v) Inner products, duality ??, ??

(· , · ) Also, inner product of Rm ??

{· , · } Poisson brackets ??

Bρ(y) Ball in (M, g) ??

gik,Γi,kl, R
i
jkl Metric, Christoffel, curvature ??,??,??

γz,w, γz,ν Geodesics ??

exp, exp∂M Exponential mappings ??,??
l(z0) Length of γz,ν ??

τ(x, ξ), τ∂M (z) Critical values on geodesics ??,??
ω(z0), ω∂M Cut loci ??,??

∇vw,
Dw

ds Covariant derivative ??,??
M(τ1, τ2) Slices 21
MT ,M(Γ, τ),M(z, τ) Domains of influence ??,??,??
DT (Ω),KΓ,T Cone, double cone ??, ??

QT ,ΣT Time-domains ??

A,A0,Aκ Operators 6,7,??
a(x, D), p(x, D) Differential expressions ??,??
dVg, dVcan Volume elements ??,??
PΓ,τ , Pz,τ , Pτ1 ,τ2 Projections onto M(Γ, τ) 21,??
uε, U

N
ε Gaussian beams ??, ??

θ(x, t), un(x, t) Phase and amplitudes ??

f ε,Mε Boundary source of uε, etc. ??,??
R, rx, R

T , rT
x

Boundary distance functions ??

Π,Λ,B, L,Λλ Boundary maps/forms ??

σ(A), σ0(A) Orbits of gauge group ??,??


