
Variations of Gibbs sampler

Recall the basic algorithm of Gibbs sampler:

1. Initialize x = x1 and set k = 1.

2. Update xk → xk+1:

• Draw xk+1
1 from t 7→ π(t, xk

2 , xk
3 , · · · , xk

n),

• Draw xk+1
2 from t 7→ π(xk+1

1 , t, xk
3 , · · · , xk

n),

• ...

• Draw xk+1
n from t 7→ π(xk+1

1 xk+1
2 , · · · , xk+1

n−1, t).

3. Increase k → k + 1 and repeat from 2. until a desired sample size is
reached.

0-0

Some observations:

• The full scan Gibbs sampler that updates all components may be slow.

• Sometimes, the Gibbs sampler moves with reasonable steps only because
some of the components move, but not all of them.

• A partially updated point,

xk+1
1 , xk+1

2 , · · · , xk+1
j , xk

j , . . . , xk
n

may be informative from the point of view of exploring the density.

0-1

Random scan Gibbs sampler

The simplest for updates only one, randomly chosen component, at a time.

1. Initialize x = x1 ∈ Rn and set k = 1.

2. Update xk → xk+1:

• Draw j, 1 ≤ j ≤ n, from uniform distribution over
{
1, 2, . . . , n

}
.

• Draw t from t 7→ π(xk
1 , xk

2 , . . . , xk
j−1, t, x

k
j+1, · · · , xk

n),

• Update
xk+1 = [xk

1 , xk
2 , . . . , xk

j−1, t, x
k
j+1, · · · , xk

n]T.

3. Increase k → k + 1 and repeat from 2. until a desired sample size is
reached.

0-2

Comments:

• If n is large, the sampler may be much faster than the full scan Gibbs.

• Looking at single component sample histories, the “fuzzy worm” may
look like one obtained with Metropolis-Hastings having a low acceptance
rate: long waiting periods before the component is updated.

• Gives relatively quickly an idea of the density.

• Convergence (variance reduction) may be slow.

0-3

Variation

Instead of updating only one component, we may update few components:

• Draw j1, j2, . . . , jk, 1 ≤ j1 < j2 < · · · jk ≤ n, from uniform distribution
over

{
1, 2, . . . , n

}
.

• With x = xk, draw t from t 7→ π(x1, x2, . . . , xj1−1, t1, xj1+1, · · · , xn), and
set xj1 = t,

• ...

• Draw t from t 7→ π(x1, x2, . . . , xjk−1, t1, xjk+1, · · · , xn), and set xjk
= t,

and set xk+1 = x.

With k = n, this algorithm coincides with full scan Gibbs sampler.

0-4

Single component Metropolis-Hastings

The one-dimensional updatings in Gibbs sampling are done with the Golden
Rule that requires a large number of evaluations of

t 7→ π(x + tek).

The one-dimensional updating in Gibbs sampler may be slow if the forward
map x 7→ π(x) is computationally demanding.

A way to avoid multiple evaluations: use a simple proposal distribution.

0-5

Random scan single component Metropolis-Hastings:

1. Initialize x = x1 ∈ Rn and set k = 1.

2. Update xk → xk+1:

• Draw j, 1 ≤ j ≤ n, from uniform distribution over
{
1, 2, . . . , n

}
.

• Draw t from a proposal distribution t 7→ qj(t, xk
j), e.g., one-dimensional

Gaussian. Set

y = [xk
1 , xk

2 , . . . , xk
j−1, t, x

k
j+1, · · · , xk

n]T.

• Check acceptance: if

α =
π(y)qj(xk

j , t)
π(x)qj(t, xk

j)
> ξ ∼ Uniform([0, 1]),

set xk+1 = y, else xk+1 = xk.

3. Increase k → k + 1 and repeat from 2. until a desired sample size is
reached.

0-6

Comments:

• The algorithm is fast

• The one-dimensional proposals are relatively simple to tune so that the
acceptance rate is decent. Readjustments may be needed while the sam-
ple moves on.

• Easy to equip with adaptive step size algorithm.

• This algorithm (or variants of it) has found to be very useful in high-
dimensional problems: dimensionality up from hundreds.

• Most of the problems of random scan Gibbs sampler present.

0-7

More variations:

Gibbs sampler depends on the chosen coordinate system. The sampler is
inefficient at least in the following cases:

• The density is thin and long in a direction not parallel to the coordinate
axes,

• The density is multimodal, and Gibbs sampler may be unable to jump
from one mode to another, if there is no corridor in the support of
the density that can be traversed with moves parallel to the coordinate
directions.

We have seen that SVD and adaptation may help. But could one play with
the proposal direction?

0-8

Hit and run – algorithm

Design an algorithm along the following lines:

• Hit: Choose a random direction from the present sample point,

• Run: Update the sample point with a random move to the chosen di-
rection.

In principle, we have two different choices for the updating:

1. Gibbs type update: use Golden Rule and accept automatically, or

2. Metropolis-Hastings type update: draw from proposal distribution and
check for acceptance.

0-9

Hit and Run Gibbs form

1. Initialize x = x1 ∈ Rn and set k = 1.

2. Update xk → xk+1:

• Draw a random direction e ∈ Rn, ‖e‖ = 1 from uniform distribution
over all directions.

• Draw t from t 7→ π(xk + te),

• Update
xk+1 = xk + te.

3. Increase k → k + 1 and repeat from 2. until a desired sample size is
reached.

0-10

Hit and Run MH form

1. Initialize x = x1 ∈ Rn and set k = 1.

2. Update xk → xk+1:

• Draw a random direction e ∈ Rn, ‖e‖ = 1 from uniform distribution
over all directions.

• Draw t from a proposal distribution t 7→ q(t).

• Check for acceptance: if

α =
π(xk + te)

π(xk)
> ξ ∼ Uniform([0, 1]),

set xk+1 = xk + te, else xk+1 = xk.

3. Increase k → k + 1 and repeat from 2. until a desired sample size is
reached.

0-11

Note: the Metropolis-Hastings algorithm described above is a random walk
model:

Proposal
xprop = xcurr + te,

so
t = eT(xprop − xcurr),

so the transition kernel depends only on the difference.

More complicated proposals are possible, i.e., proposal kernel may be of the
form

t 7→ q(t, xcurr), t = eTxprop

with the update

xcurr → x⊥curr +
(
eTxprop − eTxcurr

)
e,

where x⊥curr is the component of xcurr orthogonal to e.

0-12

Drawing the direction

In practice, the random direction e ∈ Rn is drawn as follows:

Draw w ∼ N (0, I), and set e =
w

‖w‖ .

Intuitively, this is clear: white noise has no preferred directions, so e has
uniform distribution.

More precisely:

P
{
e ∈ B ⊂ Sn−1

}
= P

{
w ∈ R×B

}

=
(

1
2π

)n/2 ∫ ∞

0

rn−1e−r2/2

∫

B

de

=
1

|Sn−1|
∫

B

de.

0-13

Example: Gaussian with bounds

Implementations of Hit and Run (HR), Gibbs form, for the standard form
problem,

π(x) ∝ exp
(
−1

2
‖Ax− b‖2

)
, Cx ≥ r.

(For clarity, vectors denoted by boldface).

The algorithm consists of two steps:

1. Draw a random direction vector e ∈ Rn, ‖e‖ = 1,

2. Sample a scalar t from the density π(x + te) and update x −→ x + te.

0-14

Algorithm for sampling the scalar t when the direction e is given:

We have
A(x + te)− b = (Ae)t− b̃,

where
b̃ = b−Ax.

Now,

‖A(x + te)− b‖2 = ‖(Ae)t− b̃‖2

= ‖Ae‖2t2 − 2t(Ae)Tb̃ + ‖b̃‖2

=
(
‖Ae‖t︸ ︷︷ ︸

=s

− (Ae)Tb̃
‖Ae‖︸ ︷︷ ︸

=s

)2

+ ‖b̃‖2 − (Ae)Tb̃)2

‖Ae‖2︸ ︷︷ ︸
=constant

.

0-15

Denote

s = ‖Ae‖t, s =
(Ae)Tb̃
‖Ae‖ .

Density to be used for sampling s is

π(s) ∝ exp
(
−1

2
(s− s)2

)
+ bounds.

The bounds for s, assuming that x is given:

C(x + te) ≥ r

implies
t(Ce) ≥ r− Cx.

0-16

Denoting
v = Ce,

and by scaling with ‖Ae‖, we have

sv ≥ q, q = ‖Ae‖(r− Cx
)
. (1)

Make a permutation of the components vi of v and q so that the vis are in
decreasing order. Assume that the ` first elements are positive,

v1 ≥ · · · ≥ v` > 0,

while the entries starting from the k + 1, k ≥ ` are negative,

0 > vk+1 ≥ · · · ≥ vn.

0-17

Writing the inequality (1) component by component and taking the signs into
account, we obtain

vis ≥ qi, or s ≥ qi

vi
, 1 ≤ i ≤ `,

and
vis ≥ qi, or s ≤ qi

vi
, k + 1 ≤ i ≤ n.

In addition, one should check that the inequalities corresponding to zero entries
are valid, that is,

0 ≥ qi, ` + 1 ≤ i ≤ k.

0-18

Lower and upper bounds for s,

smin = max
1≤i≤`

(
qi

vi

)
, smax = min

k+1≤i≤n

(
qi

vi

)
.

The conditional probability density of s is

π(s) ∝ exp
(
−1

2
(s− s)2

)
, smin ≤ s ≤ smax,

and the random draw has to be done from this density.

0-19

To do the draws properly, we have to consider three possibilities, each one
treated below separately.

1. s > smax. This means that we have to draw from the left tail of the
Gaussian distribution.

2. s < smin. This time, we need to draw from the right tail of the distribu-
tion.

3. smin ≤ s ≤ smax, the maximum thus being within the interval.

0-20

1. s > smax. The maximum value of this tail is achieved at s = smax. We
scale the density so that this maximum value equals one:

π̃(s) = exp
(
−1

2
(s− s)2 + p

)
, p =

1
2
(smax − s)2.

Find interval where this density is bigger than a threshold value δ > 0.
Write

π̃(s) = δ,

take logarithm of both sides to obtain
1
2
(s− s)2 − p = log

1
δ
,

and solve for s, bearing in mind that s < s,

s = s∗ = s−
(

2p + 2 log
1
δ

)1/2

.

Hence, the effective draw interval is

max(smin, s∗) ≤ s ≤ smax.

0-21

2. s < smin. This time, we need to draw from the right tail of the distribu-
tion. The maximum is attained at s = smin, and the scaled density now
is

π̃(s) = exp
(
−1

2
(s− s)2 + p

)
, p =

1
2
(smin − s)2.

Again, we seek the effective interval, that in this time is

smin ≤ s ≤ min(s∗, smax),

where

s∗ = s +
(

2p + 2 log
1
δ

)1/2

.

0-22

3. smin ≤ s ≤ smax, the maximum thus being within the interval. In this
case, the scaled density is directly

π̃(s) = exp
(
−1

2
(s− s)2

)
,

and solving the equation
π̃(s) = δ

leads to the solutions

s = s∗± = s±
(

2 log
1
δ

)1/2

,

so the active interval for s in this case is

max(smin, s∗,−) ≤ s ≤ min(smax, s∗,+).

0-23

Assume now that we have updated the interval to be the effective interval.
The random draws according to Golden Rule algorithm:

Divide the interval in N subintervals, and denote

smin = σ0 < σ1 < · · · < σN = smax.

Evaluate the scaled probability density at the division points,

pj = π̃(σj), 0 ≤ j ≤ N.

Then, define the non-scaled discretized approximation of the integral

∫ σk

−∞
π̃(s)ds ≈ h

k∑

j=1

pj = Φk, 1 ≤ j ≤ N, h =
smax − smin

N
.

0-24

The sampling is then done by the following steps:

1. Draw t ∼ Uniform([0,ΦN]),

2. Find
i = min

1≤k≤N

{
k | Φk > t

}
.

3. set s = σi−1.

0-25

Example

Comparing Full Scan Gibbs and Hit and Run.

Gaussian density

π(x) ∝ exp
(
− 1

2σ2
‖Ax− b‖2

)
,

where
A = DU,

D =
[

1
0.01

]
, U =

[
cos θ − sin θ
sin θ cos θ

]
.

and σ = 0.01.

0-26

Test for convergence:

Plot the relative number of sample points within the ellipse of p% probability.

W =
1
σ

(AX − b) ∼ N (0, 1),

so xj within an ellipse of probability p% if

‖wj‖ =
1
σ
‖(Axj − b)‖ < α(p) =

√
2 log

(
100

100− p

)
.

Sample size 150 000.

0-27

Algorithm

This version is with bound constraints

large = 1000;
X = zeros(ny,nsample);
x = x_init;
X(:,1) = x;

for n = 2:nsample
% Hit: draw the direction
e = randn(ny,1);
e = (1/norm(e))*e;

0-28

% Run: draw the step length
bb = b - A*x;
Ae = A*e;
normAe = norm(Ae);
sbar = Ae’*bb/normAe;
v = C*e;
q = normAe*(r - C*x);
Iplus = find(v>tiny);
Iminus = find(v<-tiny);
smin = max([-large;q(Iplus)./v(Iplus)]);
smax = min([large;q(Iminus)./v(Iminus)]);
if smax - smin < tiny

% the effective interval is reduced
t = smin/normAe;

else
% The interval is reasonable; draw from the density
if sbar > smax

% draw from the left tail

0-29

p = 0.5*(smax - sbar)^2;
sstar = sbar - sqrt(2*(p+log(1/cutoff)));
smin = max(smin,sstar);

elseif sbar < smin
% draw from the right tail
p = 0.5*(smin - sbar)^2;
sstar = sbar + sqrt(2*(p+log(1/cutoff)));
smax = min(smax,sstar);

else
% maximum is between the bounds
p = 0;
sstarp = sbar + sqrt(2*log(1/cutoff));
sstarm = sbar - sqrt(2*log(1/cutoff));
smax = min(smax,sstarp);
smin = max(smin,sstarm);

end
s = linspace(smin,smax,bin);
pdf = exp(-0.5*(s-sbar).^2 + p);

0-30

phi = cumsum(pdf);
xi = phi(bin)*rand;
jj = min(find(phi>xi));
t = s(jj)/normAe;

end
x = x + t*e;
X(:,n) = x;

end

0-31

Sample histories of the first component

0 5 10 15
−2

0

2

4

6

8

10

0 5 10 15
−3

−2

−1

0

1

2

3

4

5

Full scan Gibbs (left) and Hit and Run (right). Notice the difference with the
burn-in.

0-32

Convergence to probability ellipses

0 5 10 15
0

10

20

30

40

50

60

70

80

90

100

Gibbs
Hit and Run

0-33

