Particle filters

Recall the setting for Kalman filtering:
Evolution-observation model:

$$
\begin{aligned}
X_{j+1} & =A X_{j}+V_{j+1}, \quad j=0,1,2, \ldots \\
Y_{j} & =B X_{j}+E_{j}, \quad j=1,2, \ldots
\end{aligned}
$$

The first equation is used for prediction, the second equation for correction of the prediction.

Kalman filtering is based on the assumption that everything is Gaussian.
Normality: Mean and covariance determine the density.

Assumptions of the noise processes and the initial process:

1. Normality:

$$
V_{j} \sim \mathcal{N}\left(0, \Gamma_{j}\right), \quad E_{j} \sim \mathcal{N}\left(0, \Sigma_{j}\right)
$$

2. Independency: Variables V_{j}, E_{j}, all mutually independent.
3. Initial density:

$$
X_{0} \sim \mathcal{N}\left(x_{0}, D_{0}\right)
$$

and X_{0} is independent of the noise processes.

Limitations

The Kalman filtering is not applicable if

- the model is not linear with additive noise
- any of the assumptions 1.-3. fail.

Non-Gaussian densities: exploration by sampling.
Dynamic sampler requires two steps

1. Propagation of the sample points, called particles.
2. Resampling of the particles when the observation data arrives.

General evolution-ObSERVation model

We consider the more general model

$$
\begin{aligned}
X_{j+1} & =F\left(X_{j}, V_{j+1}\right), \quad j=0,1,2, \ldots \\
Y_{j} & =G\left(X_{j}, E_{j}\right), \quad j=1,2, \ldots
\end{aligned}
$$

The functions F and G are assumed known.
For simplicity, it is assumed here that F and G are time invariant. More generally, they could be different at each step.

For simplicity, we assume also that

- V_{j+1} is independent of X_{j},
- E_{j} is independent of X_{j}.

Initialization

As in Kalman filtering, we assume an a priori probability density $\pi\left(x_{0}\right)$ for X_{0}.

Step 1: Generate a sample

$$
S_{0}=\left\{x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{N}\right\}
$$

by drawing from the density $\pi\left(x_{0}\right)$.
Observe: if the initial density is complicated (e.g. non-Gaussian), the generation of the initial sample may require the use of MCMC methods.

Propagation

Suppose that we have a sample

$$
S_{k}=\left\{x_{k}^{1}, x_{k}^{2}, \ldots, x_{k}^{N}\right\}
$$

of points that are distributed according to the probability density

$$
\pi\left(x_{k} \mid y_{1}, y_{2}, \ldots, y_{k}\right)
$$

Step 2: Draw a sample of the evolution noise realizations

$$
\left\{v_{j+1}^{1}, v_{j+1}^{2}, \ldots, v_{j+1}^{N}\right\}
$$

from the distribution $\pi\left(v_{j+1}\right)$ of the random variable V_{j+1}.
Calculate the propagated prediction sample

$$
\widetilde{S}_{k+1}=\left\{\widetilde{x}_{k+1}^{1}, \widetilde{x}_{k+1}^{2}, \ldots, \widetilde{x}_{k+1}^{N}\right\}
$$

by the propagation formula

$$
\widetilde{x}_{k+1}^{j}=F\left(x_{k}^{j}, v_{k+1}^{j}\right), \quad 1 \leq j \leq N .
$$

Correction

Assume that from the observation model

$$
Y_{k}=G\left(X_{k}, E_{k}\right),
$$

we can calculate the likelihood density,

$$
\pi\left(y_{k} \mid x_{k}\right), \quad k=1,2, \ldots
$$

up to a multiplicative constant, denoted here by C.
Step 3: With $y_{k+1}=y_{k+1, \text { obs }}$, calculate the importance of each propagated particle:

$$
\widetilde{w}_{k+1}^{j}=C \pi\left(y_{k+1} \mid \widetilde{x}_{k+1}^{j}\right), \quad 1 \leq j \leq N
$$

and further, the relative importance by scaling,

$$
w_{k+1}^{j}=\frac{\widetilde{w}_{k+1}^{j}}{W}, \quad W=\sum_{j=1}^{N} \widetilde{w}_{k+1}^{j}
$$

Correction (cont.)

Now we have the predicted sample, with attached relative importance weights,

$$
\left\{\left(\widetilde{x}_{k+1}^{1}, w_{k+1}^{1}\right),\left(\widetilde{x}_{k+1}^{2}, w_{k+1}^{2}\right), \ldots,\left(\widetilde{x}_{k+1}^{N}, w_{k+1}^{N}\right)\right\} .
$$

Step 4: Resampling: draw a new sample

$$
S_{k+1}=\left\{x_{k+1}^{1}, x_{k+1}^{2}, \ldots, x_{k+1}^{N}\right\}
$$

from the sample \widetilde{S}_{k+1} drawing the particles according to their relative importance w_{k+1}^{j}.

The algorithm described above is referred to as Sampling Importance Resampling (SIR).

Implementation of the resampling step:

- Divide the unit interval in pieces I^{j} of length w_{k+1}^{j}. Notice that

$$
\sum_{j=1}^{N} w_{k+1}^{j}=1
$$

- Repeat for $\ell=1, \ldots, N$:

1. Draw $\xi \sim \operatorname{Uniform}([0,1])$,
2. If $\xi \in I^{j}$, set $x_{k+1}^{\ell}=\widetilde{x}_{k+1}^{j}$.

Observations

- The same particle \widetilde{x}_{k+1}^{j} may appear in the final sample several times.
- In fact, if w_{k+1}^{j} is large, it is likely that the j th particle appears several times.
- The phenomenon that the final sample contains copies of only very few propagated particles is called data thinning.
- Data thinning is a typical phenomenon if the likelihood is very narrow.

0-11

Biomagnetic inverse problem

A single planar dipole moves in the plane $P=\left\{p=\left[p_{1} ; p_{2} ; 0\right]\right\}$.
Vertical component of the resulting magnetic field is observed above the plane.
Data:

$$
\begin{gathered}
b(x)=\left[\begin{array}{c}
b_{1}(x) \\
\vdots \\
b_{L}(x)
\end{array}\right] \in \mathbb{R}^{L}, \quad b_{j}(x)=\frac{\mu_{0}}{4 \pi} \frac{e_{z} \cdot q \times\left(r_{j}-p\right)}{\left|r_{j}-p\right|^{3}}, \\
q=\text { dipole moment }=\left[\begin{array}{c}
q_{1} \\
q_{2}
\end{array}\right] \in \mathbb{R}^{2}
\end{gathered}
$$

Time dependent dipole:

$$
p=p(t), \quad q=q(t)
$$

Discrete time, $t=t_{k}$. Model parameter:

$$
x_{k}=\left[\begin{array}{c}
p_{1}\left(t_{k}\right) \\
p_{2}\left(t_{k}\right) \\
q_{1}\left(t_{k}\right) \\
q_{2}\left(t_{k}\right)
\end{array}\right] \in \mathbb{R}^{4} .
$$

Random walk model

$$
X_{k+1}=X_{k}+V_{k+1}
$$

where the covariance of V_{k+1} is

$$
\Gamma=\operatorname{diag}\left(\lambda^{2}, \lambda^{2}, \delta^{2}, \delta^{2}\right) \in \mathbb{R}^{4 \times 4}
$$

The model corresponds to the Markov transition kernel

$$
\pi\left(x_{x+1} \mid x_{x}\right) \propto \exp \left(-\frac{1}{2}\left(x_{x+1}-x_{x}\right)^{\mathrm{T}} \Gamma^{-1}\left(x_{x+1}-x_{x}\right)\right) .
$$

The observation model:

$$
Y_{k}=b\left(X_{k}\right)+E_{k},
$$

where E_{k} is independent of $X_{j}, j \leq k$ and Gaussian with zero mean and variance $\Gamma_{\text {noise }}$ known.

Likelihood:

$$
\pi\left(y_{k} \mid x_{k}\right) \propto \exp \left(-\frac{1}{2}\left(y_{k}-b\left(x_{k}\right)\right)^{\mathrm{T}} \Gamma_{\text {noise }}^{-1}\left(y_{k}-b\left(x_{k}\right)\right)\right) .
$$

Initial prior probability density of X_{0} :

$$
X_{0} \sim \pi_{0}\left(x_{0}\right) \propto \exp \left(\frac{1}{2}\left(x_{0}-\bar{x}_{0}\right)^{\mathrm{T}} \Gamma_{0}^{-1}\left(x_{0}-\bar{x}_{0}\right)\right)
$$

The particle filtering algorithm for single dipole tracking can be summarized as follows.

Choose sample size N, and draw $x_{0}^{1}, \ldots, x_{0}^{N} \in \mathbb{R}^{4}$, from π_{0} and set $k=0$. do

Draw $v^{1}, \ldots, v^{N} \sim \mathcal{N}(0, C)$ and define $z^{j}=x_{k}^{j}+v^{j}, 1 \leq j \leq N$
Calculate the relative likelihoods, $w^{j}=\pi\left(y_{k} \mid z^{j}\right) / W, W=\sum_{j=1}^{N} \pi\left(y_{k} \mid z^{j}\right)$ Draw $x_{k+1}^{j}, 1 \leq j \leq N$ from $\left\{z^{1}, \ldots, z^{N}\right\}$, the propability of z^{j} being w^{j}. $k \leftarrow k+1$
end

The above loop is repeated as long as new observations y_{k} keep arriving.

Simulation and data

Noise level: STD $=80 \%$ of the maximum of the noiseless signal.

Selection of model parameters

- Number of particles: $N=200000$
- Step length for location : $\lambda=1$ units (Size of the image $=10$ units per direction.)
- Step size for amplitude evolution: $\delta=0.25$ units, about 20% of maximum dipole value in simulation.

MEAN OVER PARTICLE SAMPLE

DiAgnostics of data thinning

Relative number of particles in the prediction sample that are resampled at least once.

