
Particle filters

Recall the setting for Kalman filtering:

Evolution–observation model:

Xj+1 = AXj + Vj+1, j = 0, 1, 2, . . .

Yj = BXj + Ej , j = 1, 2, . . . .

The first equation is used for prediction, the second equation for correction of
the prediction.

Kalman filtering is based on the assumption that everything is Gaussian.

Normality: Mean and covariance determine the density.
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Assumptions of the noise processes and the initial process:

1. Normality:
Vj ∼ N (0, Γj), Ej ∼ N (0, Σj).

2. Independency: Variables Vj , Ej , all mutually independent.

3. Initial density:
X0 ∼ N (x0, D0),

and X0 is independent of the noise processes.
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Limitations

The Kalman filtering is not applicable if

• the model is not linear with additive noise

• any of the assumptions 1.–3. fail.

Non-Gaussian densities: exploration by sampling.

Dynamic sampler requires two steps

1. Propagation of the sample points, called particles.

2. Resampling of the particles when the observation data arrives.
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General evolution-observation model

We consider the more general model

Xj+1 = F
(
Xj , Vj+1

)
, j = 0, 1, 2, . . .

Yj = G
(
Xj , Ej

)
, j = 1, 2, . . . .

The functions F and G are assumed known.

For simplicity, it is assumed here that F and G are time invariant. More
generally, they could be different at each step.

For simplicity, we assume also that

• Vj+1 is independent of Xj ,

• Ej is independent of Xj .
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Initialization

As in Kalman filtering, we assume an a priori probability density π(x0) for
X0.

Step 1: Generate a sample

S0 =
{
x1

0, x
2
0, . . . , x

N
0

}

by drawing from the density π(x0).

Observe: if the initial density is complicated (e.g. non-Gaussian), the genera-
tion of the initial sample may require the use of MCMC methods.
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Propagation

Suppose that we have a sample

Sk =
{
x1

k, x2
k, . . . , xN

k

}

of points that are distributed according to the probability density

π(xk | y1, y2, . . . , yk).

Step 2: Draw a sample of the evolution noise realizations
{
v1

j+1, v
2
j+1, . . . , v

N
j+1

}

from the distribution π(vj+1) of the random variable Vj+1.

Calculate the propagated prediction sample

S̃k+1 =
{
x̃1

k+1, x̃
2
k+1, . . . , x̃

N
k+1

}

by the propagation formula

x̃j
k+1 = F (xj

k, vj
k+1), 1 ≤ j ≤ N.
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Correction

Assume that from the observation model

Yk = G(Xk, Ek),

we can calculate the likelihood density,

π(yk | xk), k = 1, 2, . . .

up to a multiplicative constant, denoted here by C.

Step 3: With yk+1 = yk+1,obs, calculate the importance of each propagated
particle:

w̃j
k+1 = Cπ(yk+1 | x̃j

k+1), 1 ≤ j ≤ N,

and further, the relative importance by scaling,

wj
k+1 =

w̃j
k+1

W
, W =

N∑

j=1

w̃j
k+1.
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Correction (cont.)

Now we have the predicted sample, with attached relative importance weights,
{
(x̃1

k+1, w
1
k+1), (x̃

2
k+1, w

2
k+1), . . . , (x̃

N
k+1, w

N
k+1)

}
.

Step 4: Resampling: draw a new sample

Sk+1 =
{
x1

k+1, x
2
k+1, . . . , x

N
k+1

}

from the sample S̃k+1 drawing the particles according to their relative impor-
tance wj

k+1.

The algorithm described above is referred to as Sampling Importance Resam-
pling (SIR).
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Implementation of the resampling step:

• Divide the unit interval in pieces Ij of length wj
k+1. Notice that

N∑

j=1

wj
k+1 = 1.

• Repeat for ` = 1, . . . , N :

1. Draw ξ ∼ Uniform([0, 1]),

2. If ξ ∈ Ij , set x`
k+1 = x̃j

k+1.
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Observations

• The same particle x̃j
k+1 may appear in the final sample several times.

• In fact, if wj
k+1 is large, it is likely that the jth particle appears several

times.

• The phenomenon that the final sample contains copies of only very few
propagated particles is called data thinning.

• Data thinning is a typical phenomenon if the likelihood is very narrow.
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Biomagnetic inverse problem

A single planar dipole moves in the plane P = {p = [p1; p2; 0]}.
Vertical component of the resulting magnetic field is observed above the plane.

Data:

b(x) =




b1(x)
...

bL(x)


 ∈ RL, bj(x) =

µ0

4π

ez · q × (rj − p)
|rj − p|3 ,

q = dipole moment =
[

q1

q2

]
∈ R2
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Time dependent dipole:
p = p(t), q = q(t)

Discrete time, t = tk. Model parameter:

xk =




p1(tk)
p2(tk)
q1(tk)
q2(tk)


 ∈ R4.

Random walk model
Xk+1 = Xk + Vk+1,

where the covariance of Vk+1 is

Γ = diag(λ2, λ2, δ2, δ2) ∈ R4×4,
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The model corresponds to the Markov transition kernel

π(xx+1 | xx) ∝ exp
(
−1

2
(xx+1 − xx)TΓ−1(xx+1 − xx)

)
.

The observation model:

Yk = b(Xk) + Ek,

where Ek is independent of Xj , j ≤ k and Gaussian with zero mean and
variance Γnoise known.

Likelihood:

π(yk | xk) ∝ exp
(
−1

2
(yk − b(xk))TΓ−1

noise(yk − b(xk))
)

.
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Initial prior probability density of X0:

X0 ∼ π0(x0) ∝ exp
(

1
2
(x0 − x0)TΓ−1

0 (x0 − x0)
)

.

The particle filtering algorithm for single dipole tracking can be summarized
as follows.

Choose sample size N , and draw x1
0, . . . , x

N
0 ∈ R4, from π0 and set k = 0.

do
Draw v1, . . . , vN ∼ N (0, C) and define zj = xj

k + vj , 1 ≤ j ≤ N

Calculate the relative likelihoods, wj = π(yk | zj)/W , W =
∑N

j=1 π(yk | zj)
Draw xj

k+1, 1 ≤ j ≤ N from {z1, . . . , zN}, the propability of zj being wj .
k ← k + 1

end

The above loop is repeated as long as new observations yk keep arriving.
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Simulation and data
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Noise level: STD = 80% of the maximum of the noiseless signal.
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Selection of model parameters

• Number of particles: N = 200 000

• Step length for location : λ = 1 units (Size of the image = 10 units per
direction.)

• Step size for amplitude evolution: δ = 0.25 units, about 20% of maxi-
mum dipole value in simulation.
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Mean over particle sample
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Diagnostics of data thinning
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