Markov and p-Markov processes

Recall the definition of a Markov process:
A stochastic process

$$
X_{0}, X_{1}, \ldots, X_{n}, \ldots
$$

is a Markov process if

$$
\pi\left(x_{n+1} \mid x_{0}, x_{1}, \ldots, x_{n}\right)=\pi\left(x_{n+1} \mid x_{n}\right)
$$

for all n.

Generalization: a stochastic process

$$
X_{0}, X_{1}, \ldots, X_{n}, \ldots
$$

is a p-Markov process if

$$
\pi\left(x_{n+1} \mid x_{0}, x_{1}, \ldots, x_{n}\right)=\pi(x_{n+1} \mid \underbrace{x_{n-p+1}, \ldots, x_{n-1}, x_{n}}_{p})
$$

for all n, where we interpret $X_{j}=0$ for $j<0$.
Markov $=p-$ Markov with $p=1$.

From p-Markov to Markov

Let $\left\{X_{n}\right\}$ be a p-Markov process.
Define

$$
Z_{n}=\left[\begin{array}{l}
X_{n} \\
X_{n-1} \\
\vdots \\
X_{n-p+1}
\end{array}\right], \quad\left(X_{-j}=0\right)
$$

We have

$$
\pi\left(z_{n+1} \mid z_{n}, z_{n-1}, \ldots, z_{0}\right)=\pi\left(x_{n+1}, x_{n}, \ldots, x_{n-p+2} \mid x_{n}, x_{n-1}, \ldots, x_{0}\right)
$$

Now we use a bit heuristics (everything can be done rigorously):

- If x_{n} is known, knowing $x_{n-1}, x_{n-2}, \ldots, x_{0}$ brings no extra information about x_{n},
- If x_{n-1} is known, knowing $x_{n-2}, x_{n-3}, \ldots, x_{0}$ brings no extra information about x_{n-1},
-
- If x_{n-p+2} is known, knowing $x_{n-p+1}, x_{n-p}, \ldots, x_{0}$ brings no extra information about x_{n-p+2},

But since the process is p-Markov, knowing $x_{n-p}, x_{n-p-1}, \ldots, x_{0}$ gives no extra information of x_{n+1}.

Conclusion: Knowing $x_{n-p}, x_{n-p-1}, \ldots, x_{0}$ gives no information that would not be included in knowing x_{n}, \ldots, x_{n-p+2}.

$$
\begin{aligned}
\pi\left(x_{n+1}, x_{n}\right. & , \ldots, x_{n-p+2} \mid x_{n}, x_{n-1}, \ldots x_{n-p+1}, \underbrace{x_{n-p}, \ldots, x_{0}}_{\text {useless }}) \\
& =\pi(\underbrace{x_{n+1}, x_{n}, \ldots, x_{n-p+2}}_{z_{n+1}} \mid \underbrace{x_{n}, x_{n-1}, \ldots x_{n-p+1}}_{=z_{n}})
\end{aligned}
$$

in other words,

$$
\pi\left(z_{n+1} \mid z_{n}, z_{n-1}, \ldots, z_{0}\right)=\pi\left(z_{n+1} \mid z_{n}\right)
$$

Moving window adaptation

Design a Metropolis-Hastings algorithm along the following guidelines:

- Random walk update,
- Adaptation: update the proposal distribution after every M steps,
- Proposal depends on few (two, say) previous blocks of length M.

Algorithm

1. Initialize $k=0, C_{k}=\gamma^{2} I$.
2. Generate a sample sequence of length M,

$$
S_{k}=\left\{x_{k M+1}, x_{k M+2}, \ldots, x_{(k+1) M}\right\},
$$

using the random walk proposal

$$
x_{\text {prop }}=x_{\text {curr }}+w, \quad w \sim \mathcal{N}\left(0, C_{k}\right)
$$

3. Update

$$
C_{k} \rightarrow C_{k+1}=\operatorname{cov}\left(S_{k-1}, S_{k}\right)+\varepsilon I, \quad\left(S_{-1}=\emptyset\right)
$$

4. Increase $k \rightarrow k+1$ and continue from 2 until desired sample size is reached.

Observe: The chain is not Markov, but it is $3 M$-Markov.
We may write a proposal for $z(p=3 M)$ as

$$
\begin{aligned}
z_{\text {prop }}= & {\left[\begin{array}{c}
x_{n}+R_{k}^{\mathrm{T}} w \\
x_{n} \\
\vdots \\
x_{n-p+2}
\end{array}\right] \quad\left(C_{k}=R_{k}^{\mathrm{T}} R_{k}\right) } \\
= & {\left[\begin{array}{ccccc}
1 & & & \\
1 & & & \\
& 1 & & \\
& & \ddots & & \\
& & & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x_{n} \\
x_{n-1} \\
x_{n-2} \\
\vdots \\
x_{n-p+1}
\end{array}\right]+\left[\begin{array}{c}
R_{k}^{\mathrm{T}} w \\
0 \\
\vdots \\
0
\end{array}\right] }
\end{aligned}
$$

$$
z_{\text {prop }}=V z_{n}+\eta,
$$

where η depends on z_{n}, since the matrix C_{k} depends on x_{j} 's with $j \geq n-3 M=$ $n-p$, which are all included in z_{n}.

In other words: One step in z_{n}-history covers an x_{n}-history of length $3 M$, which fully determines the updating matrix C_{k}.

UpDATING THE COVARIANCE

Assume that $j=(k+1) M$:

$$
x_{0}, \ldots, x_{(k-1) M}, \underbrace{x_{(k-1) M+1}, \ldots, x_{k M}}_{S_{k-1}}, \underbrace{x_{k M+1}, \ldots, x_{(k+1) M}}_{S_{k}}
$$

We have in memory

$$
\begin{gathered}
\bar{x}_{k-1}=\frac{1}{M} \sum_{j=(k-1) M+1}^{k M} x_{j} \\
C_{k-1}=\frac{1}{M} \sum_{j=(k-1) M+1}^{k M}\left(x_{j}-\bar{x}_{k-1}\right)\left(x_{j}-\bar{x}_{k-1}\right)^{\mathrm{T}}
\end{gathered}
$$

which have been computed when $j=k M$.

Calculate

$$
\begin{gathered}
\bar{x}_{k}=\frac{1}{M} \sum_{j=k M+1}^{(k+1) M} x_{j} \\
C_{k}=\frac{1}{M} \sum_{j=k M+1}^{(k+1) M}\left(x_{j}-\bar{x}_{k}\right)\left(x_{j}-\bar{x}_{k}\right)^{\mathrm{T}}
\end{gathered}
$$

Mean over $S_{k-1} \cup S_{k}$ is

$$
\begin{aligned}
\bar{x} & =\frac{1}{2 M} \sum_{j=(k-1) M+1}^{(k+1) M} x_{j} \\
& =\frac{1}{2}\left(\frac{1}{M} \sum_{j=(k-1) M+1}^{k M}+\frac{1}{M} \sum_{j=k M+1}^{(k+1) M}\right) x_{j} \\
& =\frac{1}{2}\left(\bar{x}_{k-1}+\bar{x}_{k}\right)
\end{aligned}
$$

Covariance

Write

$$
\begin{aligned}
C & =\frac{1}{2 M} \sum_{j=(k-1) M+1}^{(k+1) M}\left(x_{j}-\bar{x}\right)\left(x_{j}-\bar{x}\right)^{\mathrm{T}} \\
& =\frac{1}{2}\left(\frac{1}{M} \sum_{j=(k-1) M+1}^{k M}+\frac{1}{M} \sum_{j=k M+1}^{(k+1) M}\right)\left(x_{j}-\bar{x}\right)\left(x_{j}-\bar{x}\right)^{\mathrm{T}} .
\end{aligned}
$$

The sums above are off-centered variances, and from the results of the previous lectures, we know that

$$
\frac{1}{M} \sum_{j=(k-1) M+1}^{k M}\left(x_{j}-\bar{x}\right)\left(x_{j}-\bar{x}\right)^{\mathrm{T}}=C_{k-1}+\left(\bar{x}-\bar{x}_{k-1}\right)\left(\bar{x}-\bar{x}_{k-1}\right)^{\mathrm{T}} .
$$

Similarly,

$$
\frac{1}{M} \sum_{j=k M+1}^{(k+1) M}\left(x_{j}-\bar{x}\right)\left(x_{j}-\bar{x}\right)^{\mathrm{T}}=C_{k}+\left(\bar{x}-\bar{x}_{k}\right)\left(\bar{x}-\bar{x}_{k}\right)^{\mathrm{T}}
$$

Since

$$
\bar{x}-\bar{x}_{k-1}=\frac{1}{2}\left(\bar{x}_{k}-\bar{x}_{k-1}\right)=-\left(\bar{x}-\bar{x}_{k}\right),
$$

we obtain the updating formula,

$$
C=\frac{1}{2}\left(C_{k-1}+C_{k}\right)+\frac{1}{4}\left(\bar{x}_{k}-\bar{x}_{k-1}\right)\left(\bar{x}_{k}-\bar{x}_{k-1}\right)^{\mathrm{T}} .
$$

Program

\% Sampling with moving window adaptation

```
SampleA = zeros(2,nsample);
SampleA(:,1) = x0;
x = x0;
lpdf = -1/(2*sigr^2)*(norm(x)-r0)^2 - 1/(2*sigy^2)*(x(2)-1)^2;
C2 = step^2*eye(2);
x2 = zeros(2,1);
mean = zeros(2,1);
R = step*eye(2);
accrate = 0;
tempSample = [x];
k = 0;
S1 = [];
S2 = [];
```

```
for j = 2:nsample
```

```
% Draw the proposal
xprop = x + R'*randn(2,1);
    lpdfprop = -1/(2*sigr^2)*(norm(xprop)-r0)^2
                            - 1/(2*sigy^2)*(xprop(2)-1)^2;
% Check for acceptance
if lpdfprop - lpdf >log(rand)
    %accept
    x = xprop;
    lpdf = lpdfprop;
    accrate = accrate + 1;
end
SampleA(:,j) = x;
tempSample = [tempSample x];
```

```
if mod(j,M) == 0
    % Update the proposal distribution
    S1 = S2;
    S2 = tempSample;
    tempSample = [];
    x1 = x2;
    C1 = C2;
    x2 = 1/M*sum(S2')';
    aux = S2 - x2*ones(1,M);
    C2 = 1/M*aux*aux';
    C = 1/2*(C1 + C2) + 1/4*(x1-x2)*(x1-x2)';
    R = chol(C);
    k = k+1;
end
```

end rel_accrateA = 100*accrate/nsample;

Plotting: 1-500, 501-1000, 1001-1500, 1501-2000.
Observe: the sampler moves along the horseshoe, not across the gap, indicating that the step is locally adapted.

