Gibbs Sampler

Componentwise sampling directly from the target density $\pi(x), x \in \mathbb{R}^{n}$.
Define a transition kernel

$$
K(x, y)=\prod_{i=1}^{n} \pi\left(y_{i} \mid y_{1}, \ldots, y_{i-1}, x_{i+1}, \ldots, x_{m}\right)
$$

and we set

$$
r(x)=0 . \quad \text { (move every time) }
$$

This transition kernel does not in general satisfy the detailed balance equation,

$$
\pi(y) K(y, x)=\pi(x) K(x, y)
$$

but it satisfies the balance equation,

$$
\int \pi(y) K(y, x) d x=\int \pi(x) K(x, y) d x
$$

Proof in TWO DIMENSIONS

$$
\int \pi(y) K(y, x) d x=\pi(y) \int K(y, x) d x
$$

We have

$$
K(x, y)=\pi\left(y_{1} \mid x_{2}\right) \pi\left(y_{2} \mid y_{1}\right)
$$

and therefore

$$
K(y, x)=\pi\left(x_{1} \mid y_{2}\right) \pi\left(x_{2} \mid x_{1}\right)
$$

Integrate with respect to x :

$$
\begin{aligned}
& \int K(y, x) d x=\int \pi\left(x_{1} \mid y_{2}\right) \pi\left(x_{2} \mid x_{1}\right) d x_{1} d x_{2} \\
&=\int d x_{1} \pi\left(x_{1} \mid y_{2}\right) \underbrace{\int \pi\left(x_{2} \mid x_{1}\right) d x_{2}}_{=1} \\
&=\int \pi\left(x_{1} \mid y_{2}\right) d x_{1}=1 . \\
& 0-1
\end{aligned}
$$

Hence,

$$
\int \pi(y) K(y, x) d x=\pi(y)
$$

Right hand side:

$$
\pi(x) K(x, y)=\pi(x) \pi\left(y_{1} \mid x_{2}\right) \pi\left(y_{2} \mid y_{1}\right)
$$

so

$$
\begin{aligned}
\int \pi(x) K(x, y) d x_{1} & =\pi\left(y_{1} \mid x_{2}\right) \pi\left(y_{2} \mid y_{1}\right) \underbrace{\int \pi\left(x_{1}, x_{2}\right) d x_{1}}_{=\pi\left(x_{2}\right)} \\
& =\underbrace{\pi\left(y_{1} \mid x_{2}\right) \pi\left(x_{2}\right)}_{=\pi\left(y_{1}, x_{2}\right)}\left(\pi\left(y_{2} \mid y_{1}\right)\right. \\
& =\pi\left(y_{1}, x_{2}\right) \pi\left(y_{2} \mid y_{1}\right)
\end{aligned}
$$

Integrating with respect to x_{2}, we obtain

$$
\begin{aligned}
\int \pi\left(y_{1}, x_{2}\right) \pi\left(y_{2} \mid y_{1}\right) d x_{2} & =\pi\left(y_{2} \mid y_{1}\right) \underbrace{\int \pi\left(y_{1}, x_{2}\right) d x_{2}}_{\pi\left(y_{1}\right)} \\
& =\pi\left(y_{2} \mid y_{1}\right) \pi\left(y_{1}\right) \\
& =\pi\left(y_{2}, y_{1}\right) \\
& =\pi(y)
\end{aligned}
$$

and the proof is complete.

Algorithm

Componentwise updating:

1. Initialize $x=x^{1}$ and set $k=1$.
2. Update $x^{k} \rightarrow x^{k+1}$:

- Draw x_{1}^{k+1} from $t \mapsto \pi\left(t, x_{2}^{k}, x_{3}^{k}, \cdots, x_{n}^{k}\right)$,
- Draw x_{2}^{k+1} from $t \mapsto \pi\left(x_{1}^{k+1}, t, x_{3}^{k}, \cdots, x_{n}^{k}\right)$,
- Draw x_{n}^{k+1} from $t \mapsto \pi\left(x_{1}^{k+1} x_{2}^{k+1}, \cdots, x_{n-1}^{k+1}, t\right)$.

3. Increase $k \rightarrow k+1$ and repeat from 2. until a desired sample size is reached.

Implementation: an example

Consider the following particular case:
Observation model

$$
\mathbf{b}=A \mathbf{x}+\mathbf{e}, \quad \mathbf{e} \sim \mathcal{N}\left(0, \sigma^{2} I\right)
$$

Whitening of the noise: Observe that

$$
\mathbf{w}=\frac{1}{\sigma} \mathbf{e} \sim \mathcal{N}(0, I)
$$

so the observation equation is equivalent to

$$
\mathbf{b}^{\prime}=A^{\prime} \mathbf{x}+\mathbf{w}, \quad \mathbf{w} \sim \mathcal{N}(0, I)
$$

where

$$
A^{\prime}=\frac{1}{\sigma} A, \quad \mathbf{b}^{\prime}=\frac{1}{\sigma} \mathbf{b} .
$$

Without loss of generality, we may assume therefore that $\sigma=1$.
Likelihood density is

$$
\pi(\mathbf{b} \mid \mathbf{x}) \propto \exp \left(-\frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|^{2}\right)
$$

Prior: assume that we have an a priori inequality constraint

$$
C \mathbf{x} \geq \mathbf{r}
$$

the inequality understood componentwise.
Example:

$$
v_{j} \leq x_{j} \leq u_{j}, \quad 1 \leq j \leq n
$$

can be written as

$$
\underbrace{\left[\begin{array}{r}
I \\
-I
\end{array}\right]}_{=C} \mathbf{x} \geq \underbrace{\left[\begin{array}{r}
\mathbf{v} \\
-\mathbf{u}
\end{array}\right]}_{=\mathbf{r}}
$$

The prior can be written as

$$
\pi_{\text {prior }}(\mathbf{x}) \propto \Theta(C \mathbf{x}-\mathbf{r})
$$

where Θ is the multivariate Heaviside step function.
Observe: the prior may be an improper density, i.e., it may be that the integral is not finite.

Write

$$
\pi_{\text {post }}(\mathbf{x})=\pi(\mathbf{x} \mid \mathbf{b}) \propto \pi(\mathbf{b} \mid \mathbf{x}) \pi_{\text {prior }}(\mathbf{x})
$$

Updating of the j th component: we need the conditional densities

$$
\pi(x_{j} \mid \underbrace{x_{1}, x_{2}, \ldots, x_{j-1}}_{\text {updated }}, \underbrace{x_{j+1}, \ldots, x_{n}}_{\text {old }}, \mathbf{b})
$$

that is, we have to consider the mapping

$$
x_{j} \mapsto \pi_{\text {post }}(\underbrace{x_{1}, x_{2}, \ldots, x_{j-1}}_{\text {updated }}, x_{j}, \underbrace{x_{j+1}, \ldots, x_{n}}_{\text {old }}),
$$

where all the other components except for the j th one are fixed.

Likelihood:
Write

$$
A=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]
$$

Then

$$
A \mathbf{x}=\sum_{k=1}^{n} x_{k} \mathbf{a}_{k} .
$$

Denote

$$
\begin{aligned}
& A_{j}=\text { matrix } A \text { with } j \text { th column eliminated, } \\
& \qquad \mathbf{a}_{j}=j \text { th column of } A \\
& \mathbf{x}_{j}=\text { vector } \mathbf{x} \text { with the } j \text { th entry eliminated. }
\end{aligned}
$$

We have

$$
\begin{aligned}
A \mathbf{x}-\mathbf{b} & =x_{j} \mathbf{a}_{j}+\sum_{k=1, k \neq j}^{n} x_{k} \mathbf{a}_{k}-\mathbf{b} \\
& =x_{j} \mathbf{a}_{j}+A_{j} \mathbf{x}_{j}-\mathbf{b} \\
& =x_{j} \mathbf{a}_{j}-\mathbf{b}_{j},
\end{aligned}
$$

where

$$
\mathbf{b}_{j}=\mathbf{b}-A_{j} \mathbf{x}_{j} .
$$

Now,

$$
\begin{aligned}
\|A \mathbf{x}-\mathbf{b}\|^{2} & =\left\|x_{j} \mathbf{a}_{j}-\mathbf{b}_{j}\right\|^{2} \\
& =\left\|\mathbf{a}_{j}\right\|^{2} x_{j}^{2}-2 x_{j} \mathbf{a}_{j}^{\mathrm{T}} \mathbf{b}_{j}+\left\|\mathbf{b}_{j}\right\|^{2} \\
& ==\left(\left\|\mathbf{a}_{j}\right\| x_{j}-\frac{\mathbf{a}_{j}^{\mathrm{T}} \mathbf{b}_{j}}{\left\|\mathbf{a}_{j}\right\|}\right)^{2}+\left\|\mathbf{b}_{j}\right\|^{2}-\frac{\left(\mathbf{a}_{j}^{\mathrm{T}} \mathbf{b}_{j}\right)^{2}}{\left\|\mathbf{a}_{j}\right\|^{2}}
\end{aligned}
$$

Therefore, by denoting

$$
t_{j}=\left\|\mathbf{a}_{j}\right\| x_{j}, \quad \bar{t}_{j}=\frac{\mathbf{a}_{j}^{\mathrm{T}} \mathbf{b}_{j}}{\left\|\mathbf{a}_{j}\right\|},
$$

we have

$$
\pi\left(x_{j} \mid \mathbf{x}_{j}, \mathbf{b}\right) \propto \exp \left(-\frac{1}{2}\left(t_{j}-\bar{t}_{j}\right)^{2}\right)
$$

Prior, i.e., the bounds for t_{j}, assuming that \mathbf{x}_{j} is given:
Again, we write

$$
C_{j}=\text { matrix } C \text { with } j \text { th column eliminated }
$$

$$
\mathbf{c}_{j}=j \text { th column of } C,
$$

so the bound constraints

$$
C \mathbf{x}=x_{j} \mathbf{c}_{j}+C_{j} \mathbf{x}_{j} \geq \mathbf{r}
$$

implies

$$
x_{j} \mathbf{c}_{j} \geq \mathbf{r}-C_{j} \mathbf{x}_{j}
$$

and by scaling with $\left\|\mathbf{a}_{j}\right\|$, we have

$$
\begin{equation*}
t_{j} \mathbf{c}_{j} \geq \mathbf{q}, \quad \mathbf{q}=\left\|\mathbf{a}_{j}\right\|\left(\mathbf{r}-C_{j} \mathbf{x}_{j}\right) \tag{1}
\end{equation*}
$$

Denote

$$
\mathbf{c}_{j}=\left[\begin{array}{c}
c_{1 j} \\
c_{2 j} \\
\vdots \\
c_{N j}
\end{array}\right] \in \mathbb{R}^{N}
$$

Make a permutation of the elements $c_{i j}$ of \mathbf{c}_{j} and \mathbf{q} so that the $C_{i j}$ s are in decreasing order. Assume that the ℓ first elements are positive,

$$
c_{1 j} \geq \cdots \geq c_{\ell j}>0
$$

while the entries starting from the $k+1, k \geq \ell$ are negative,

$$
0>c_{k+1, j} \geq \cdots \geq c_{N j}
$$

Writing the inequality (1) component by component and taking the signs into account, we obtain

$$
c_{i j} t_{j} \geq q_{i}, \text { or } t_{j} \geq \frac{q_{i}}{c_{i j}}, \quad 1 \leq i \leq \ell
$$

and

$$
c_{i j} t_{j} \geq q_{i}, \text { or } t_{j} \leq \frac{q_{i}}{c_{i j}}, \quad k+1 \leq i \leq N
$$

In addition, one should check that the inequalities corresponding to zero entries are valid, that is,

$$
0 \geq r_{i}, \quad \ell+1 \leq i \leq k
$$

This is a consistency check, and has no contribution to the sampling strategy.

We therefore have lower and upper bounds for t_{j},

$$
t_{j, \min }=\max _{1 \leq i \leq \ell}\left(\frac{q_{i}}{c_{i j}}\right), \quad t_{j, \max }=\min _{k+1 \leq i \leq n}\left(\frac{q_{i}}{c_{i j}}\right) .
$$

The conditional probability density of t_{j} is

$$
\pi\left(t_{j} \mid \mathbf{x}_{j}, \mathbf{b}\right) \propto \exp \left(-\frac{1}{2}\left(t_{j}-\bar{t}_{j}\right)^{2}\right), \quad t_{j, \min } \leq t_{j} \leq t_{j, \max }
$$

and the random draw has to be done from this density.

To do the draws properly, we have to consider three possibilities, each one treated below separately.

1. $\bar{t}_{j}>t_{j, \text { max }}$. This means that we have to draw from the left tail of the Gaussian distribution. The maximum value of this tail is achieved at $t_{j}=t_{j, \max }$. We scale the density so that this maximum value equals one:

$$
\tilde{\pi}\left(t_{j}\right)=\exp \left(-\frac{1}{2}\left(t_{j}-\bar{t}_{j}\right)^{2}+p\right), \quad p=\frac{1}{2}\left(t_{j, \max }-\bar{t}_{j}\right)^{2} .
$$

We seek the effective interval where this density is bigger than a prescribed threshold value $\delta>0$.

Write

$$
\tilde{\pi}\left(t_{j}\right)=\delta,
$$

take logarithm of both sides to obtain

$$
\frac{1}{2}\left(t_{j}-\bar{t}_{j}\right)^{2}-p=\log \frac{1}{\delta}
$$

and solve for t_{j}, bearing in mind that $t_{j}<\bar{t}_{j}$,

$$
t_{j}=t_{*}=\bar{t}_{j}-\left(2 p+2 \log \frac{1}{\delta}\right)^{1 / 2}
$$

Hence, the effective draw interval is

$$
\max \left(t_{j, \min }, t_{*}\right) \leq t_{j} \leq t_{j, \max }
$$

2. $\bar{t}_{j}<t_{j, \min }$. This time, we need to draw from the right tail of the distribution. The maximum is attained at $t_{j}=t_{j, \min }$, and the scaled density now is

$$
\tilde{\pi}\left(t_{j}\right)=\exp \left(-\frac{1}{2}\left(t_{j}-\bar{t}_{j}\right)^{2}+p\right), \quad p=\frac{1}{2}\left(t_{j, \min }-\bar{t}_{j}\right)^{2} .
$$

Again, we seek the effective interval, that in this time is

$$
t_{j, \min } \leq t_{j} \leq \min \left(t_{*}, t_{j, \max }\right)
$$

where

$$
t_{*}=\bar{t}_{j}+\left(2 p+2 \log \frac{1}{\delta}\right)^{1 / 2}
$$

3. $t_{j, \text { min }} \leq \bar{t}_{j} \leq t_{j, \max }$, the maximum thus being within the interval. In this case, the scaled density is directly

$$
\tilde{\pi}\left(t_{j}\right)=\exp \left(-\frac{1}{2}\left(t_{j}-\bar{t}_{j}\right)^{2}\right)
$$

and solving the equation

$$
\tilde{\pi}\left(t_{j}\right)=\delta
$$

leads to the solutions

$$
t_{j}=t_{* \pm}=\bar{t}_{j} \pm\left(2 \log \frac{1}{\delta}\right)^{1 / 2}
$$

so the active interval for t_{j} in this case is

$$
\max \left(t_{j, \min }, t_{*,-}\right) \leq t_{j} \leq \min \left(t_{j, \max }, t_{*,+}\right)
$$

Assume now that we have updated the interval to be the effective interval.

