
Adaptive Metropolis-Hastings (AM) algorithm

Adaptation: As the sampling proceeds, the proposal distribution is updated
to conform with the underlying density.

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

4

0-0

Adaptation strategies

Analytic adaptation: Calculate a local Gaussian approximation of the proba-
bility density. Update every Mth step.

May be computationally heavy

May be difficult to find analytically and requires numerical differentiation

Sampling-based adaptation: Use the already calculated sample history to de-
termine the new proposal distribution.

0-1

Sampling-based adaptation

Design an algorithm along the following guidelines.

• Start a usual MH sampling at a point of your choice using a white noise
proposal distribution.

• After possibly removing a burn-in sequence from the beginning, calculate
the empirical covariance of the sample points obtained thus far.

• Use the empirical covariance to sample new points.

• Update the covariance every Mth sample point.

0-2

Adapted random walk MH algorithm

1. Initialize k = 0, Ck = γ2I.

2. Generate a sample sequence of length M ,

xkM+1, xkM+2, . . . , x(k+1)M ,

using the random walk proposal

xprop = xcurr + w, w ∼ N (0, Ck)

3. Update
Ck → Ck+1 = cov(x1, x2, . . . , x(k+1)M) + εI.

4. Increase k → k + 1 and continue from 2 until desired sample size is
reached.

0-3

Questions, answers

• Is this a Markov Chain method? The update depends on all of the
sample history via the covariance matrix!

True! But one can show that little by little, the process forgets the past,
and is asymptotically Markovian and therefore ergodic.

• What is that little εI doing there?

It has two functions: Practical function is to avoid the possibility that
all sample points become collinear. Theoretical function is to make sure
that the ergodicity works.

• How do we update the covariance in practice?

Let’s see...

0-4

Covariance updating, stably

Divide the sample in blocks of length M :

x1, x2, . . . , xM︸ ︷︷ ︸
M

, xM+1, xM+2, . . . , x2M︸ ︷︷ ︸
M

, x2M+1, . . .

Average and covariance over subsamples:

x̂k =
1
M

kM∑

j=(k−1)M+1

xj ,

Ĉk =
1
M

kM∑

j=(k−1)M+1

(xj − x̂k)(xj − x̂k).

0-5

Denote the cumulative mean and covariance by

xkM =
1

kM

kM∑

j=1

xj ,

CkM =
1

kM

kM∑

j=1

(xj − xkM)(xj − xkM).

Problem: Find a numerically stable way of updating

xkM → x(k+1)M ,

CkM → C(k+1)M .

0-6

Updating the mean

We have

x(k+1)M =
1

(k + 1)M

(k+1)M∑

j=1

xj

=
k

k + 1
1

kM

kM∑

j=1

xj +
1

(k + 1)M

(k+1)M∑

j=kM+1

xj

=
k

k + 1
xkM +

1
k + 1

x̂k+1.

0-7

Updating the covariance

We need some auxiliary results.

Fact 1: If

x =
1
n

n∑

j=1

xj ,

the covariance can be written as

C =
1
n

n∑

j=1

(xj − x)(xj − x)T

=
1
n

n∑

j=1

xjx
T
j −

1
n

n∑

j=1

xj

︸ ︷︷ ︸
=x

xT − x
1
n

n∑

j=1

xT
j

︸ ︷︷ ︸
=xT

+xxT

=
1
n

n∑

j=1

xjx
T
j − xxT.

0-8

Fact 2: For any x̃, the non-centered covariance is

C̃ =
1
n

n∑

j=1

(xj − x̃)(xj − x̃)T

=
1
n

n∑

j=1

xjx
T
j −

1
n

n∑

j=1

xj

︸ ︷︷ ︸
=x

x̃T − x̃
1
n

n∑

j=1

xT
j

︸ ︷︷ ︸
=xT

+x̃x̃T

=
1
n

n∑

j=1

xjx
T
j − xxT +

(
xxT − xx̃T − x̃xT + x̃x̃T

)

= C + (x− x̃)(x− x̃)T.

0-9

With these results, we have

C(k+1)M =
1

(k + 1)M

(k+1)M∑

j=1

(xj − x(k+1)M)(xj − x(k+1)M)T

=
1

(k + 1)M

(kM∑

j=1

+
(k+1)M∑

kM+1

)
(xj − x(k+1)M)(xj − x(k+1)M)T.

Both terms are, up to a multiplicative factor, non-centered covariances.

0-10

First term:

1
(k + 1)M

kM∑

j=1

(xj − x(k+1)M)(xj − x(k+1)M)T

=
k

k + 1
1

kM

kM∑

j=1

(xj − xkM)(xj − xkM)T

+
k

k + 1
(
xkM − x(k+1)M

)(
xkM − x(k+1)M

)T

=
k

k + 1
CkN +

k

k + 1
(
xkM − x(k+1)M

)(
xkM − x(k+1)M

)T
.

0-11

Substituting the updating formula:

xkM − x(k+1)M = xkM − k

k + 1
xkM − 1

k + 1
x̂k+1

=
1

k + 1
(
xkM − x̂k+1

)
,

so we have
1

(k + 1)M

kM∑

j=1

(xj − x(k+1)M)(xj − x(k+1)M)T

=
k

k + 1
CkN +

k

(k + 1)3
(
xkM − x̂k+1

)(
xkM − x̂k+1

)T
.

0-12

Second term:

1
(k + 1)M

(k+1)M∑

j=kM+1

(xj − x(k+1)M)(xj − x(k+1)M)T

1
k + 1

1
M

(k+1)M∑

j=kM+1

(xj − x̂k+1)(xj − x̂k+1)T

+
1

k + 1
(x̂k+1 − x(k+1)M)(x̂k+1 − x(k+1)M)T

1
k + 1

Ĉk+1 +
1

k + 1
(x̂k+1 − x(k+1)M)(x̂k+1 − x(k+1)M)T.

0-13

Again, substituting the recursion formula gives

x̂k+1 − x(k+1)M = x̂k+1 − k

k + 1
xkM − 1

k + 1
x̂k+1

=
k

k + 1
(
x̂k+1 − xkM

)
,

and therefore

1
(k + 1)M

(k+1)M∑

j=kM+1

(xj − x(k+1)M)(xj − x(k+1)M)T

=
1

k + 1
Ĉk+1 +

k2

(k + 1)3
(
xkM − x̂k+1

)(
xkM − x̂k+1

)T
.

0-14

Putting the pieces together gives

C(k+1)M =
k

k + 1
CkN +

k

(k + 1)3
(
xkM − x̂k+1

)(
xkM − x̂k+1

)T

+
1

k + 1
Ĉk+1 +

k2

(k + 1)3
(
xkM − x̂k+1

)(
xkM − x̂k+1

)T

=
k

k + 1
CkN +

1
k + 1

Ĉk+1 +
k

(k + 1)2
(
xkM − x̂k+1

)(
xkM − x̂k+1

)T
,

which is the desired updating formula.

0-15

Example: proof of concept

Sampling a Gaussian in R2.

π(x) ∝ exp
(
−1

2
(x− b)TΓ−1(x− b)

)
,

where

b =
[

2
2

]
, Γ = UDUT,

U =
[

cos θ − sin θ
sin θ cos θ

]
, θ =

π

3
,

D = diag(1, 0.1).

0-16

The program: adaptation vs. non-adaptation

% Defining the underlying distribution: a 2D Gaussian

th = pi/3;
U = [cos(th),-sin(th);sin(th),cos(th)];
d = [1,0.1];
D = diag(d);
Gamma = U*D*U’;
b = [2;2];
invGamma = inv(Gamma);

0-17

% Initializing

x0 = [3;1]; % Initial sampling point
step = 0.02; % Initial step: no prior tuning for MH
tiny = 1e-6;
nsample = 150000;
M = 100; % Adaptation period

Observe: the step size is way too small for non-adaptive MH. The point here
is to demonstrate that the adaptive method requires no tuning, i.e., you can
start with sub-optimal proposal.

0-18

% Sampling without adaptation

SampleNA = zeros(2,nsample);
SampleNA(:,1) = x0;
x = x0;
lpdf = -0.5*(x-b)’*invGamma*(x-b);
accrate = 0;

0-19

for j = 2:nsample
% Draw the propsal
xprop = x + step*randn(2,1);
lpdfprop = -0.5*(xprop-b)’*invGamma*(xprop-b);
% Check for acceptance
if lpdfprop - lpdf >log(rand)

%accept
x = xprop;
lpdf = lpdfprop;
accrate = accrate + 1;

end
SampleNA(:,j) = x;

end
rel_accrate = 100*accrate/nsample

0-20

Sampling with adaptation

Updating
xprop = xcurr + s, s ∼ N (0, C),

that is,

π(s) ∝ exp
(
−1

2
sTC−1s

)
.

Write the Cholesky decomposition,

C = RTR,

so
C−1 = R−1R−T.

0-21

This means that

π(s) ∝ exp
(
−1

2
‖R−Ts‖2

)
,

or that
R−Ts = w ∼ N (0, I).

Hence, the updating procedure is

xprop = xcurr + RTw, w ∼ N (0, I).

0-22

% Sampling with adaptation

SampleA = zeros(2,nsample);
SampleA(:,1) = x0;
x = x0;
lpdf = -0.5*(x-b)’*invGamma*(x-b);
C = step^2*eye(2);
mean = zeros(2,1);
R = step*eye(2);
accrate = 0;
tempSample = [x];
k = 0;

0-23

for j =2:nsample
% Draw the proposal
xprop = x + R’*randn(2,1);
lpdfprop = -0.5*(xprop-b)’*invGamma*(xprop-b);
% Check for acceptance
if lpdfprop - lpdf >log(rand)

%accept
x = xprop;
lpdf = lpdfprop;
accrate = accrate + 1;

end
SampleA(:,j) = x;
tempSample = [tempSample x];

0-24

if mod(j,M) == 0
% Update the proposal distribution
xk = 1/M*sum(tempSample’)’;
aux = tempSample - xk*ones(1,M);
Ck = 1/M*aux*aux’;
mean = k/(k+1)*mean + 1/(k+1)*xk;
C = k/(k+1)*C + 1/(k+1)*Ck + k/(k+1)^2*(mean-xk)*(mean-xk)’;
R = chol(C);
k = k+1;
tempSample = [];

end
end rel_accrateA = 100*accrate/nsample

0-25

Scatter plots

−1 0 1 2 3 4 5
−2

−1

0

1

2

3

4

5

6

Acc. rate = 98

−1 0 1 2 3 4 5
−2

−1

0

1

2

3

4

5

6

Acc. rate = 55

0-26

Sample histories

0 5 10 15
0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15
−1

0

1

2

3

4

5

0-27

Diagnostics

The p% probability region:

Γ = UDUT ⇒ Γ−1 = UD−1UT,

π(x) ∝ exp
(
−1

2
(x− b)TΓ−1(x− b)

)

= exp
(
−1

2
‖D−1/2UT(x− b)‖2

)
,

so
W = D−1/2UT(X − b) ∼ N (0, I).

0-28

The p% probability region for W is a disc Dα of radius α:

P {W ∈ Dα} =
1
2π

∫

Dα

exp
(
−1

2
‖w‖2

)
dw

=
1
2π

∫ α

0

∫ 2π

0

e−r2/2dθrdr

= 1− e−α2/2 =
p

100
,

which is equivalent to

α =
√

2 log
100

100− p
.

0-29

Given a sample
{
x1, x2, . . . , xN

}
, we

• calculate the sample
{
x1, x2, . . . , xN

}
,

wj = D−1/2UT(xj − b),

• calculate the relative amount of these sample points are within the disc
Dα,

rp(N) =
100
N

#
{
wj | ‖wj‖ < α

}
.

When N grows, we should have

rp(N) → p.

0-30

Program

% Number of points within a p percent ellipse

W = diag(1 ./sqrt(d))*U’*(SampleNA-b*ones(1,nsample));
normW = sqrt(sum(W.^2));
p = [90,50];

for j = 1:2
alpha = sqrt(2*log(100/(100-p(j))));
xinside = (normW<alpha);
reln = 100*cumsum(xinside)./[1:nsample];

end

0-31

0 5 10 15
0

10

20

30

40

50

60

70

80

90

100

MH
Adaptive MH

0-32

Example: inverse problems in chemical engineering

Recall the reversible chemical reactions

A À B,

with reaction rates k1 and k2, respectively.

Concentrations CA and CB satisfy

dCA

dt
= −k1CA + k2CB

dCB

dt
= k1CA − k2CB ,

with initial data
CA(0) = CA,0, CB(0) = Cb,0.

0-33

Inverse problem

Assume that we know the initial concentrations.

Data: For 0 < t1 < t2 · · · < tn, measure CA(tj), 1 ≤ j ≤ n.

Estimate k1 and k2.

Noisy observations:

bj = CA(tj) + ej , ej ∼ N (0, σ2).

0-34

Steady state data

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

CA,0 = 2, CB,0 = 1, k1 = 2, k2 = 0.5, σ = 0.2

0-35

Sampling with non-adaptive MH

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

0 2000 4000 6000 8000 10000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Initial point (1, 2)

0-36

Sampling with adaptive MH

0 2 4 6 8 10 12

x 10
19

0

0.5

1

1.5

2

2.5

3
x 10

19

0 2000 4000 6000 8000 10000
−5

0

5

10

15

20

25

Adaptation after every 100 sample points

0-37

Example: Horseshoe distribution

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Acc. rate = 50

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Acc. rate = 20

Non-adaptive (left) vs. adaptive (right).

0-38

0 5000 10000 15000
−1.5

−1

−0.5

0

0.5

1

1.5

0 5000 10000 15000
−1.5

−1

−0.5

0

0.5

1

1.5

Non-adaptive (left) vs. adaptive (right).

0-39

Observations

In this example, the adaptation, as defined here, is not of great help:

The distribution is almost circular, so the asymptotic covariance is almost an
identity, and we end up drawing essentially from a white noise density.

The only advantage is that the step length need no tuning.

0-40

