Adaptive Metropolis-Hastings (AM) Algorithm

Adaptation: As the sampling proceeds, the proposal distribution is updated to conform with the underlying density.

AdAPtation strategies

Analytic adaptation: Calculate a local Gaussian approximation of the probability density. Update every M th step.

May be computationally heavy
May be difficult to find analytically and requires numerical differentiation
Sampling-based adaptation: Use the already calculated sample history to determine the new proposal distribution.

SAMPLING-BASED ADAPTATION

Design an algorithm along the following guidelines.

- Start a usual MH sampling at a point of your choice using a white noise proposal distribution.
- After possibly removing a burn-in sequence from the beginning, calculate the empirical covariance of the sample points obtained thus far.
- Use the empirical covariance to sample new points.
- Update the covariance every M th sample point.

Adapted random walk MH algorithm

1. Initialize $k=0, C_{k}=\gamma^{2} I$.
2. Generate a sample sequence of length M,

$$
x_{k M+1}, x_{k M+2}, \ldots, x_{(k+1) M},
$$

using the random walk proposal

$$
x_{\text {prop }}=x_{\text {curr }}+w, \quad w \sim \mathcal{N}\left(0, C_{k}\right)
$$

3. Update

$$
C_{k} \rightarrow C_{k+1}=\operatorname{cov}\left(x_{1}, x_{2}, \ldots, x_{(k+1) M}\right)+\varepsilon I
$$

4. Increase $k \rightarrow k+1$ and continue from 2 until desired sample size is reached.

Questions, ANSWERS

- Is this a Markov Chain method? The update depends on all of the sample history via the covariance matrix!
True! But one can show that little by little, the process forgets the past, and is asymptotically Markovian and therefore ergodic.
- What is that little εI doing there?

It has two functions: Practical function is to avoid the possibility that all sample points become collinear. Theoretical function is to make sure that the ergodicity works.

- How do we update the covariance in practice?

Let's see...

Covariance updating, stably

Divide the sample in blocks of length M :

$$
\underbrace{x_{1}, x_{2}, \ldots, x_{M}}_{M}, \underbrace{x_{M+1}, x_{M+2}, \ldots, x_{2 M}}_{M}, x_{2 M+1}, \ldots
$$

Average and covariance over subsamples:

$$
\begin{gathered}
\widehat{x}_{k}=\frac{1}{M} \sum_{j=(k-1) M+1}^{k M} x_{j}, \\
\widehat{C}_{k}=\frac{1}{M} \sum_{j=(k-1) M+1}^{k M}\left(x_{j}-\widehat{x}_{k}\right)\left(x_{j}-\widehat{x}_{k}\right) .
\end{gathered}
$$

Denote the cumulative mean and covariance by

$$
\begin{gathered}
\bar{x}_{k M}=\frac{1}{k M} \sum_{j=1}^{k M} x_{j}, \\
\bar{C}_{k M}=\frac{1}{k M} \sum_{j=1}^{k M}\left(x_{j}-\bar{x}_{k M}\right)\left(x_{j}-\bar{x}_{k M}\right) .
\end{gathered}
$$

Problem: Find a numerically stable way of updating

$$
\begin{aligned}
\bar{x}_{k M} & \rightarrow \bar{x}_{(k+1) M}, \\
\bar{C}_{k M} & \rightarrow \bar{C}_{(k+1) M} .
\end{aligned}
$$

Updating the mean
We have

$$
\begin{aligned}
\bar{x}_{(k+1) M} & =\frac{1}{(k+1) M} \sum_{j=1}^{(k+1) M} x_{j} \\
& =\frac{k}{k+1} \frac{1}{k M} \sum_{j=1}^{k M} x_{j}+\frac{1}{(k+1) M} \sum_{j=k M+1}^{(k+1) M} x_{j} \\
& =\frac{k}{k+1} \bar{x}_{k M}+\frac{1}{k+1} \widehat{x}_{k+1} .
\end{aligned}
$$

Updating the covariance

We need some auxiliary results.
FACT 1: If

$$
\bar{x}=\frac{1}{n} \sum_{j=1}^{n} x_{j},
$$

the covariance can be written as

$$
\begin{aligned}
C & =\frac{1}{n} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)\left(x_{j}-\bar{x}\right)^{\mathrm{T}} \\
& =\frac{1}{n} \sum_{j=1}^{n} x_{j} x_{j}^{\mathrm{T}}-\underbrace{\frac{1}{n} \sum_{j=1}^{n} x_{j}}_{=\bar{x}} \bar{x}^{\mathrm{T}}-\bar{x} \underbrace{\frac{1}{n} \sum_{j=1}^{n} x_{j}^{\mathrm{T}}}_{=\bar{x}^{\mathrm{T}}}+\overline{x x}^{\mathrm{T}} \\
& =\frac{1}{n} \sum_{j=1}^{n} x_{j} x_{j}^{\mathrm{T}}-\overline{x x}^{\mathrm{T}}
\end{aligned}
$$

FACT 2: For any \widetilde{x}, the non-centered covariance is

$$
\begin{aligned}
\widetilde{C} & =\frac{1}{n} \sum_{j=1}^{n}\left(x_{j}-\widetilde{x}\right)\left(x_{j}-\widetilde{x}\right)^{\mathrm{T}} \\
& =\frac{1}{n} \sum_{j=1}^{n} x_{j} x_{j}^{\mathrm{T}}-\underbrace{\frac{1}{n} \sum_{j=1}^{n} x_{j}}_{=\bar{x}} \widetilde{x}^{\mathrm{T}}-\widetilde{x} \underbrace{\frac{1}{n} \sum_{j=1}^{n} x_{j}^{\mathrm{T}}}_{=\bar{x}^{\mathrm{T}}}+\widetilde{x} \widetilde{x}^{\mathrm{T}} \\
& =\frac{1}{n} \sum_{j=1}^{n} x_{j} x_{j}^{\mathrm{T}}-\overline{x x}^{\mathrm{T}}+\left(\overline{x x} \bar{x}^{\mathrm{T}}-\bar{x} \widetilde{x}^{\mathrm{T}}-\widetilde{x} \widetilde{x}^{\mathrm{T}}+\widetilde{x} \widetilde{x}^{\mathrm{T}}\right) \\
& =C+(\bar{x}-\widetilde{x})(\bar{x}-\widetilde{x})^{\mathrm{T}}
\end{aligned}
$$

With these results, we have

$$
\begin{aligned}
C_{(k+1) M} & =\frac{1}{(k+1) M} \sum_{j=1}^{(k+1) M}\left(x_{j}-\bar{x}_{(k+1) M}\right)\left(x_{j}-x_{(k+1) M}\right)^{\mathrm{T}} \\
& =\frac{1}{(k+1) M}\left(\sum_{j=1}^{k M}+\sum_{k M+1}^{(k+1) M}\right)\left(x_{j}-\bar{x}_{(k+1) M}\right)\left(x_{j}-x_{(k+1) M}\right)^{\mathrm{T}} .
\end{aligned}
$$

Both terms are, up to a multiplicative factor, non-centered covariances.

First term:

$$
\begin{aligned}
& \frac{1}{(k+1) M} \sum_{j=1}^{k M}\left(x_{j}-\bar{x}_{(k+1) M}\right)\left(x_{j}-\bar{x}_{(k+1) M}\right)^{\mathrm{T}} \\
& =\frac{k}{k+1} \frac{1}{k M} \sum_{j=1}^{k M}\left(x_{j}-\bar{x}_{k M}\right)\left(x_{j}-\bar{x}_{k M}\right)^{\mathrm{T}} \\
& \quad+\frac{k}{k+1}\left(\bar{x}_{k M}-\bar{x}_{(k+1) M}\right)\left(\bar{x}_{k M}-\bar{x}_{(k+1) M}\right)^{\mathrm{T}} \\
& \quad=\frac{k}{k+1} C_{k N}+\frac{k}{k+1}\left(\bar{x}_{k M}-\bar{x}_{(k+1) M}\right)\left(\bar{x}_{k M}-\bar{x}_{(k+1) M}\right)^{\mathrm{T}}
\end{aligned}
$$

Substituting the updating formula:

$$
\begin{aligned}
\bar{x}_{k M}-\bar{x}_{(k+1) M} & =\bar{x}_{k M}-\frac{k}{k+1} \bar{x}_{k M}-\frac{1}{k+1} \widehat{x}_{k+1} \\
& =\frac{1}{k+1}\left(\bar{x}_{k M}-\widehat{x}_{k+1}\right)
\end{aligned}
$$

so we have

$$
\begin{gathered}
\frac{1}{(k+1) M} \sum_{j=1}^{k M}\left(x_{j}-\bar{x}_{(k+1) M}\right)\left(x_{j}-x_{(k+1) M}\right)^{\mathrm{T}} \\
=\frac{k}{k+1} C_{k N}+\frac{k}{(k+1)^{3}}\left(\bar{x}_{k M}-\widehat{x}_{k+1}\right)\left(\bar{x}_{k M}-\widehat{x}_{k+1}\right)^{\mathrm{T}} .
\end{gathered}
$$

Second term:

$$
\begin{aligned}
& \frac{1}{(k+1) M} \sum_{j=k M+1}^{(k+1) M}\left(x_{j}-\bar{x}_{(k+1) M}\right)\left(x_{j}-x_{(k+1) M}\right)^{\mathrm{T}} \\
& \frac{1}{k+1} \frac{1}{M} \sum_{j=k M+1}^{(k+1) M}\left(x_{j}-\widehat{x}_{k+1}\right)\left(x_{j}-\widehat{x}_{k+1}\right)^{\mathrm{T}} \\
& \quad \\
& \quad+\frac{1}{k+1}\left(\widehat{x}_{k+1}-\bar{x}_{(k+1) M}\right)\left(\widehat{x}_{k+1}-\bar{x}_{(k+1) M}\right)^{\mathrm{T}} \\
& \frac{1}{k+1} \widehat{C}_{k+1}+\frac{1}{k+1}\left(\widehat{x}_{k+1}-\bar{x}_{(k+1) M}\right)\left(\widehat{x}_{k+1}-\bar{x}_{(k+1) M}\right)^{\mathrm{T}}
\end{aligned}
$$

Again, substituting the recursion formula gives

$$
\begin{aligned}
\widehat{x}_{k+1}-\bar{x}_{(k+1) M} & =\widehat{x}_{k+1}-\frac{k}{k+1} \bar{x}_{k M}-\frac{1}{k+1} \widehat{x}_{k+1} \\
& =\frac{k}{k+1}\left(\widehat{x}_{k+1}-\bar{x}_{k M}\right)
\end{aligned}
$$

and therefore

$$
\begin{aligned}
& \frac{1}{(k+1) M} \sum_{j=k M+1}^{(k+1) M}\left(x_{j}-\bar{x}_{(k+1) M}\right)\left(x_{j}-x_{(k+1) M}\right)^{\mathrm{T}} \\
= & \frac{1}{k+1} \widehat{C}_{k+1}+\frac{k^{2}}{(k+1)^{3}}\left(\bar{x}_{k M}-\widehat{x}_{k+1}\right)\left(\bar{x}_{k M}-\widehat{x}_{k+1}\right)^{\mathrm{T}} .
\end{aligned}
$$

Putting the pieces together gives

$$
\begin{aligned}
C_{(k+1) M} & =\frac{k}{k+1} C_{k N}+\frac{k}{(k+1)^{3}}\left(\bar{x}_{k M}-\widehat{x}_{k+1}\right)\left(\bar{x}_{k M}-\widehat{x}_{k+1}\right)^{\mathrm{T}} \\
& +\frac{1}{k+1} \widehat{C}_{k+1}+\frac{k^{2}}{(k+1)^{3}}\left(\bar{x}_{k M}-\widehat{x}_{k+1}\right)\left(\bar{x}_{k M}-\widehat{x}_{k+1}\right)^{\mathrm{T}} \\
& =\frac{k}{k+1} C_{k N}+\frac{1}{k+1} \widehat{C}_{k+1}+\frac{k}{(k+1)^{2}}\left(\bar{x}_{k M}-\widehat{x}_{k+1}\right)\left(\bar{x}_{k M}-\widehat{x}_{k+1}\right)^{\mathrm{T}}
\end{aligned}
$$

which is the desired updating formula.

Example: proof of concept

Sampling a Gaussian in \mathbb{R}^{2}.

$$
\pi(x) \propto \exp \left(-\frac{1}{2}(x-b)^{\mathrm{T}} \Gamma^{-1}(x-b)\right)
$$

where

$$
\begin{gathered}
b=\left[\begin{array}{l}
2 \\
2
\end{array}\right], \quad \Gamma=U D U^{\mathrm{T}} \\
U=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right], \quad \theta=\frac{\pi}{3} \\
D=\operatorname{diag}(1,0.1)
\end{gathered}
$$

The Program: ADAPTATION Vs. NON-ADAPTATION
\% Defining the underlying distribution: a 2D Gaussian

```
th = pi/3;
U = [cos(th),-sin(th); sin(th), cos(th)];
d = [1,0.1];
D = diag(d);
Gamma = U*D*U';
b = [2;2];
invGamma = inv(Gamma);
```

\% Initializing

```
x0 = [3;1]; % Initial sampling point
step = 0.02; % Initial step: no prior tuning for MH
tiny = 1e-6;
nsample = 150000;
M = 100; % Adaptation period
```

Observe: the step size is way too small for non-adaptive MH. The point here is to demonstrate that the adaptive method requires no tuning, i.e., you can start with sub-optimal proposal.
\% Sampling without adaptation

```
SampleNA = zeros(2,nsample);
SampleNA(:,1) = x0;
\(\mathrm{x}=\mathrm{x0}\);
lpdf \(=-0.5 *(x-b)\) '*invGamma*( \(x-b)\);
accrate \(=0\);
```

```
for j = 2:nsample
    % Draw the propsal
    xprop = x + step*randn(2,1);
    lpdfprop = -0.5*(xprop-b)'*invGamma*(xprop-b);
    % Check for acceptance
    if lpdfprop - lpdf >log(rand)
        %accept
        x = xprop;
        lpdf = lpdfprop;
        accrate = accrate + 1;
    end
    SampleNA(:,j) = x;
end
rel_accrate = 100*accrate/nsample
```


SAMPLING WITH ADAPTATION

Updating

$$
x_{\mathrm{prop}}=x_{\mathrm{curr}}+s, \quad s \sim \mathcal{N}(0, C)
$$

that is,

$$
\pi(s) \propto \exp \left(-\frac{1}{2} s^{\mathrm{T}} C^{-1} s\right)
$$

Write the Cholesky decomposition,

$$
C=R^{\mathrm{T}} R
$$

SO

$$
C^{-1}=R^{-1} R^{-\mathrm{T}}
$$

This means that

$$
\pi(s) \propto \exp \left(-\frac{1}{2}\left\|R^{-\mathrm{T}} s\right\|^{2}\right)
$$

or that

$$
R^{-\mathrm{T}} s=w \sim \mathcal{N}(0, I)
$$

Hence, the updating procedure is

$$
x_{\text {prop }}=x_{\text {curr }}+R^{\mathrm{T}} w, \quad w \sim \mathcal{N}(0, I) .
$$

\% Sampling with adaptation

```
SampleA = zeros(2,nsample);
SampleA(:,1) = x0;
x = x0;
lpdf = -0.5*(x-b)'*invGamma*(x-b);
C = step^2*eye(2);
mean = zeros(2,1);
R = step*eye(2);
accrate = 0;
tempSample = [x];
k = 0;
```

```
for j =2:nsample
    % Draw the proposal
    xprop = x + R'*randn(2,1);
    lpdfprop = -0.5*(xprop-b)'*invGamma*(xprop-b);
    % Check for acceptance
    if lpdfprop - lpdf >log(rand)
        %accept
        x = xprop;
        lpdf = lpdfprop;
        accrate = accrate + 1;
    end
    SampleA(:,j) = x;
    tempSample = [tempSample x];
```

```
    if mod(j,M) == 0
    % Update the proposal distribution
    xk = 1/M*sum(tempSample')';
    aux = tempSample - xk*ones(1,M);
    Ck = 1/M*aux*aux';
    mean = k/(k+1)*mean + 1/(k+1)*xk;
    C = k/(k+1)*C + 1/(k+1)*Ck + k/(k+1)^2*(mean-xk)*(mean-xk)';
    R = chol(C);
    k = k+1;
    tempSample = [];
    end
end rel_accrateA = 100*accrate/nsample
```

Scatter plots

SAMPLE HISTORIES

Diagnostics

The $p \%$ probability region:

$$
\begin{aligned}
\Gamma & =U D U^{\mathrm{T}} \Rightarrow \Gamma^{-1}=U D^{-1} U^{\mathrm{T}} \\
\pi(x) & \propto \exp \left(-\frac{1}{2}(x-b)^{\mathrm{T}} \Gamma^{-1}(x-b)\right) \\
& =\exp \left(-\frac{1}{2}\left\|D^{-1 / 2} U^{\mathrm{T}}(x-b)\right\|^{2}\right)
\end{aligned}
$$

so

$$
W=D^{-1 / 2} U^{\mathrm{T}}(X-b) \sim \mathcal{N}(0, I)
$$

The $p \%$ probability region for W is a disc D_{α} of radius α :

$$
\begin{aligned}
\mathrm{P}\left\{W \in D_{\alpha}\right\} & =\frac{1}{2 \pi} \int_{D_{\alpha}} \exp \left(-\frac{1}{2}\|w\|^{2}\right) d w \\
& =\frac{1}{2 \pi} \int_{0}^{\alpha} \int_{0}^{2 \pi} e^{-r^{2} / 2} d \theta r d r \\
& =1-e^{-\alpha^{2} / 2}=\frac{p}{100}
\end{aligned}
$$

which is equivalent to

$$
\alpha=\sqrt{2 \log \frac{100}{100-p}} .
$$

Given a sample $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$, we

- calculate the sample $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$,

$$
w_{j}=D^{-1 / 2} U^{\mathrm{T}}\left(x_{j}-b\right),
$$

- calculate the relative amount of these sample points are within the disc D_{α},

$$
r_{p}(N)=\frac{100}{N} \#\left\{w_{j} \mid\left\|w_{j}\right\|<\alpha\right\} .
$$

When N grows, we should have

$$
r_{p}(N) \rightarrow p
$$

Program

\% Number of points within a p percent ellipse

```
W = diag(1 ./sqrt(d))*U'*(SampleNA-b*ones(1,nsample));
normW = sqrt(sum(W.^2));
p = [90,50];
for j = 1:2
    alpha = sqrt(2*log(100/(100-p(j))));
    xinside = (normW<alpha);
    reln = 100*cumsum(xinside)./[1:nsample];
end
```


EXAMPLE: INVERSE PROBLEMS IN CHEMICAL ENGINEERING Recall the reversible chemical reactions

$$
A \rightleftarrows B
$$

with reaction rates k_{1} and k_{2}, respectively.
Concentrations C_{A} and C_{B} satisfy

$$
\begin{aligned}
\frac{d C_{A}}{d t} & =-k_{1} C_{A}+k_{2} C_{B} \\
\frac{d C_{B}}{d t} & =k_{1} C_{A}-k_{2} C_{B}
\end{aligned}
$$

with initial data

$$
C_{A}(0)=C_{A, 0}, \quad C_{B}(0)=C_{b, 0}
$$

Inverse problem

Assume that we know the initial concentrations.
Data: For $0<t_{1}<t_{2} \cdots<t_{n}$, measure $C_{A}\left(t_{j}\right), 1 \leq j \leq n$.
Estimate k_{1} and k_{2}.
Noisy observations:

$$
b_{j}=C_{A}\left(t_{j}\right)+e_{j}, \quad e_{j} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Steady state data

SAMPLING WITH NON-ADAPTIVE MH

Initial point $(1,2)$

Sampling with adaptive MH

Adaptation after every 100 sample points

Example: Horseshoe distribution

Non-adaptive (left) vs. adaptive (right).

Non-adaptive (left) vs. adaptive (right).

Observations

In this example, the adaptation, as defined here, is not of great help:
The distribution is almost circular, so the asymptotic covariance is almost an identity, and we end up drawing essentially from a white noise density.

The only advantage is that the step length need no tuning.

