Towards a Statistical Problem Setting

Traditional setup:

- We want to estimate a parameter $x \in \mathbb{R}^{n}$ that we cannot observe directly.
- We may or may not know something about x, e.g., $x \in B$.
- We observe another vector $y \in \mathbb{R}^{k}$ that depends on x through a mathematical model:

$$
y=f(x) .
$$

- Find an estimate x having the desired properties so that the above equation is approximately true. Use, e.g., constrained optimization:

$$
\text { minimize }\|y-f(x)\| \text { subject to constraint } x \in B
$$

Bayesian setting

We have

- a priori beliefs of the qualities of the unknown,
- a reasonable model that explains the observation, with all uncertainties included

We need to

- express x as a parameter that defines the distribution of y; (construction of the likelihood model)
- incorporate prior information into the model; (construction of the prior model).

Basic Principles and Techniques

Randomness means lack of information.
Basic principle: Everything that is not known for sure is a random variable.
Basic techniques are

- conditioning: take one unknown at a time and pretend that you know the rest:

$$
\pi(x, y)=\pi(x \mid y) \pi(y)=\pi(y \mid x) \pi(x)
$$

- marginalization: if a variable is of no interest, integrate it out:

$$
\pi(x, y)=\int \pi(x, y, v) d v
$$

Construction of Likelihood

Likelihood answers to the question: Assuming that we knew the unknown x, how would the measurement be distributed?

Randomness of the measurement y, provided that x is known, is due to

1. measurement noise
2. any incompleteness in the computational model:
(a) discretization
(b) incomplete description of "reality" (to the best of our understanding)
(c) unknown nuisance parameters

Example

Assume a functional dependence,

$$
y=f(x),
$$

when no errors in the observations.
A frequently used model is the additive noise model,

$$
Y=f(X)+E
$$

where the distribution of the error is

$$
E \sim \pi_{\text {noise }}(e)
$$

Assume $\pi_{\text {noise }}$ known.
If E and X are mutually independent,

$$
\pi(y \mid x)=\pi_{\text {noise }}(y-f(x))
$$

The noise distribution may depend on unknown parameters θ :

$$
\pi_{\text {noise }}(e)=\pi_{\text {noise }}(e \mid \theta)
$$

Likelihood in this case:

$$
\pi(y \mid x, \theta)=\pi_{\text {noise }}(y-f(x) \mid \theta)
$$

Example: E is zero mean Gaussian with unknown variance σ^{2},

$$
E \sim \mathcal{N}\left(0, \sigma^{2} I\right)
$$

where $I \in \mathbb{R}^{m \times m}$ is the identity matrix. In this case,

$$
\pi\left(y \mid x, \sigma^{2}\right)=\frac{1}{(2 \pi)^{m / 2} \sigma^{m}} \exp \left(-\frac{1}{2 \sigma^{2}}\|y-f(x)\|^{2}\right)
$$

Example

Assume that

- the device consists of a collecting lens and a photon counter,
- the photons come from N emitting sources.

Average photon emission/observation time $=x_{j}, 1 \leq j \leq N$.

The geometry of the lens:
Average total count $=$ weighted sum of the individual contributions.

Computational Methods in Inverse Problems, Mat-1.3626

Expected output defined by the geometry:

$$
\bar{y}_{j}=\mathrm{E}\left\{Y_{j}\right\}=\sum_{k=-L}^{L} a_{k} x_{j-k},
$$

where

- weights a_{j} determined by the geometry of the lens
- index L is related to the width of the lens

Here, $x_{j}=0$ if $j<1$ or $j>N$.

Repeating the reasoning over each source point, we arrive at a matrix model

$$
\bar{y}=\mathrm{E}\{Y\}=A x
$$

where $A \in \mathbb{R}^{n \times n}$ is a Toeplitz matrix,

$$
A=\left[\begin{array}{llllll}
a_{0} & a_{-1} & \cdots & a_{-L} & & \\
a_{1} & a_{0} & & & \ddots & \\
\vdots & & \ddots & & & a_{-L} \\
a_{L} & & & \ddots & & \vdots \\
& \ddots & & & a_{0} & a_{-1} \\
& & a_{L} & \cdots & a_{1} & a_{0}
\end{array}\right]
$$

The parameter L defines the bandwidth of the matrix.

Weak, the observation model described is a photon counting process:

$$
Y_{j} \sim \operatorname{Poisson}\left((A x)_{j}\right)
$$

that is,

$$
\pi\left(y_{j} \mid x\right)=\frac{(A x)_{j}^{y_{j}}}{y_{j}!} \exp \left(-(A x)_{j}\right)
$$

Consecutive measurements are independent, $Y \in \mathbb{R}^{N}$ has the density

$$
\pi(y \mid x)=\prod_{j=1}^{N} \pi\left(y_{j} \mid x\right)=\prod_{j=1}^{L} \frac{(A x)_{j}^{y_{j}}}{y_{j}!} \exp \left(-(A x)_{j}\right)
$$

We express this relation simply as

$$
Y \sim \operatorname{Poisson}(A x)
$$

GaUSSIAN APPROXIMATION

Assuming that the count is high, we may write

$$
\begin{gathered}
\pi(y \mid x) \approx \prod_{\ell=1}^{L}\left(\frac{1}{2 \pi(A x)_{\ell}}\right)^{1 / 2} \exp \left(-\frac{1}{2(A x)_{\ell}}\left(y_{\ell}-(A x)_{\ell}\right)^{2}\right) \\
=\left(\frac{1}{(2 \pi)^{L} \operatorname{det}(\Gamma)}\right)^{1 / 2} \exp \left(-\frac{1}{2}(y-A x)^{\mathrm{T}} \Gamma^{-1}(y-A x)\right) \\
\Gamma=\Gamma(x)=\operatorname{diag}(A x)
\end{gathered}
$$

The higher the signal, the higher the noise.

Change of variables

Random variables X and Y in \mathbb{R}^{n},

$$
Y=f(X)
$$

where f is a differentiable function, and the probability distribution of Y is known:

$$
\pi(y)=p(y)
$$

Probability density of X ?

$$
\pi(y) d y=p(y) d y=p(f(x))|\operatorname{det}(D f(x))| d x
$$

Identify

$$
\pi(x)=p(f(x))|\operatorname{det}(D f(x))|
$$

EXAMPLE

Noisy amplifier: input $f(t)$ amplified by a factor $\alpha>1$.
Ideal model for the output signal:

$$
g(t)=\alpha f(t), \quad 0 \leq t \leq T
$$

Noise: α fluctuates.
Discrete signal:

$$
x_{j}=f\left(t_{j}\right), \quad y_{j}=g\left(t_{j}\right), \quad 0=t_{1}<t_{2}<\cdots<t_{n}=T .
$$

Amplification at $t=t_{j}$ is a_{j} :

$$
y_{j}=a_{j} x_{j}, \quad 1 \leq j \leq n,
$$

Stochastic extension:

$$
Y_{j}=A_{j} X_{j}, \quad 1 \leq j \leq n
$$

or in the vector notation as

$$
\begin{equation*}
Y=A \cdot X \tag{1}
\end{equation*}
$$

Assume: A has the probability density

$$
A \sim \pi_{\text {noise }}(a)
$$

Likelihood density for Y, conditioned on $X=x$, is

$$
\pi(y \mid x) \propto \pi_{\text {noise }}\left(\frac{y \cdot}{x}\right)
$$

Normalizing:

$$
\begin{equation*}
\pi(y \mid x)=\frac{1}{x_{1} x_{2} \cdots x_{n}} \pi_{\text {noise }}\left(\frac{y \cdot}{x}\right) \tag{2}
\end{equation*}
$$

Formally:

$$
y=a \cdot x, \quad \text { or } \quad a=\frac{y .}{x}, \quad x \text { fixed }
$$

or

$$
\begin{gathered}
a_{j}=\frac{y_{j}}{x_{j}}, \quad d a_{j}=\frac{d y_{j}}{x_{j}} . \\
p(a) d a=p(a) d a_{1} \cdots d a_{n}=p\left(\frac{y \cdot}{x}\right) \frac{d y_{1}}{x_{1}} \cdots \frac{d y_{n}}{x_{n}} \\
=\underbrace{\left(\frac{1}{x_{1} x_{2} \cdots x_{n}} p\left(\frac{y \cdot}{x}\right)\right)}_{=\pi(y)} d y_{1} \cdots d y_{n} .
\end{gathered}
$$

Example: all the variables are positive, and A is log-normally distributed:

$$
W_{i}=\log A_{i} \sim \mathcal{N}\left(w_{0}, \sigma^{2}\right), \quad w_{0}=\log \alpha_{0}
$$

components mutually independent.
Note: the probability distributions transform as densities, not as functions!

$$
\begin{equation*}
\mathrm{P}\left\{W_{i}=\log A_{i}<t\right\}=\mathrm{P}\left\{A_{i}<e^{t}\right\} . \tag{3}
\end{equation*}
$$

L.h.s. as an integral:

$$
\mathrm{P}\left\{W_{i}<t\right\}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{t} \exp \left(-\frac{1}{2 \sigma^{2}}\left(w_{i}-w_{0}\right)^{2}\right) d w_{i}
$$

Change of variables:

$$
w_{i}=\log a_{i}, \quad d w_{i}=\frac{1}{a_{i}} d a_{i},
$$

and substitute $w_{0}=\log \alpha_{0}$:

$$
\begin{aligned}
\mathrm{P}\left\{W_{i}<t\right\} & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{0}^{e^{t}} \frac{1}{a_{i}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(\log a_{i}-\log \alpha_{0}\right)^{2}\right) d a_{i} \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{0}^{e^{t}} \frac{1}{a_{i}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(\log \frac{a_{i}}{\alpha_{0}}\right)^{2}\right) d a_{i} .
\end{aligned}
$$

Compare to the r.h.s. to identify

$$
\pi\left(a_{i}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \frac{1}{a_{i}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(\log \frac{a_{i}}{\alpha_{0}}\right)^{2}\right)
$$

which is the one-dimensional log-normal density.

Independent components:

$$
\begin{aligned}
\pi(y \mid x) & =\pi\left(y_{1} \mid x\right) \cdots \pi\left(y_{n} \mid x\right) \\
& =\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \frac{1}{y_{1} y_{2} \cdots y_{n}} \exp \left(\frac{1}{2 \sigma^{2}} \sum_{j=1}^{n}\left(\log \frac{y_{j}}{\alpha_{0} x_{j}}\right)^{2}\right)
\end{aligned}
$$

Remark: Alternative approach:

$$
\log Y=\log X+\log A=\log X+W
$$

and we may write the conditional density for $\log Y$, as

$$
\pi(\log y \mid x)=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{j=1}^{n}\left(\log y_{j}-\log x_{j}-\log \alpha_{0}\right)^{2}\right)
$$

ExAMPLE

Poisson noise and additive Gaussian noise:

$$
Y=Z+E, \quad Z \sim \operatorname{Poisson}(A x), \quad E \sim \mathcal{N}\left(0, \sigma^{2} I\right)
$$

First step: assume that $X=x$ and $Z=z$ are known, giving

$$
\pi\left(y_{j} \mid z_{j}, x\right) \propto \exp \left(-\frac{1}{2 \sigma^{2}}\left(y_{j}-z_{j}\right)^{2}\right)
$$

Conditioning:

$$
\pi\left(y_{j}, z_{j} \mid x\right)=\pi\left(y_{j} \mid z_{j}, x\right) \pi\left(z_{j} \mid x\right)
$$

The value of z_{j} (integer) is not of interest here, so

$$
\begin{aligned}
\pi\left(y_{j} \mid x\right) & =\sum_{z_{j}=0}^{\infty} \pi\left(y_{j}, z_{j} \mid x\right) \\
& \propto \sum_{z_{j}=0}^{\infty} \pi\left(z_{j} \mid x\right) \exp \left(-\frac{1}{2 \sigma^{2}}\left(y_{j}-z_{j}\right)^{2}\right)
\end{aligned}
$$

Construction of Priors

Example: Assume that we try to determine the hemoglobin level x in blood by near-infrared (NIR) measurement at the patients finger.

Previous measurements directly from the patient's blood,

$$
S=\left\{x_{1}, \ldots, x_{N}\right\}
$$

Think as realizations of a random variable with an unknown distribution.

- Non-parametric approach: Look at a histogram based on S.
- Parametric approach: Justify a parametric model, find the ML estimate of the model parameters.

Let us assume that

$$
X \sim \mathcal{N}\left(x_{0}, \sigma^{2}\right)
$$

From previous analysis, the ML estimate for x_{0} is

$$
x_{0, \mathrm{ML}}=\frac{1}{N} \sum_{j=1}^{N} x_{j}
$$

and for σ^{2},

$$
\sigma_{\mathrm{ML}}^{2}=\frac{1}{N} \sum_{j=1}^{N}\left(x_{j}-x_{0, \mathrm{ML}}\right)^{2}
$$

Any future value x will be another realization from the same distribution. Postulate:

- The unknown X is a random variable, whose probability distribution is denoted as $\pi_{\mathrm{pr}}(x)$ and called the prior distribution,
- By prior experience, and assuming that the Gaussian approximation of the prior is justifiable, we use the parametric model

$$
\pi_{\mathrm{pr}}(x)=\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{1}{2 \sigma^{2}}\left(x-x_{0}\right)^{2}\right)
$$

where x_{0} and σ^{2} are determined experimentally from S by the formulas above.

The above approach, where the prior is defined through previous experience, is called empirical Bayes approach.

ExAMPLE

Rectangular array of squares. Each square contains a number of bacteria.

The inverse problem: estimate the density of the bacteria from some indirect measurements.

Set up a model based on your belief how bacteria grow:
Number of bacteria in a box \approx average of neighbours,
or

$$
x_{j} \approx \frac{1}{4}\left(x_{\mathrm{left}, j}+x_{\mathrm{right}, j}+x_{\mathrm{up}, j}+x_{\mathrm{down}, j}\right)
$$

Modification at boundary pixels: Define $x_{j}=0$ for pixels outside the square. Matrix $A \in \mathbb{R}^{N \times N}, N=$ number of pixels,

$$
A(j,:)=\left[\begin{array}{cccc}
(\text { up }) & (\text { down }) & (\text { left }) & \text { (right) } \\
{[0 \cdots 1 / 4 \cdots} & 1 / 4 \cdots & 1 / 4 \cdots & 1 / 4 \cdots 0
\end{array}\right],
$$

Absolute certainty of your model, $(\approx \longrightarrow=)$:

$$
\begin{equation*}
x=A x \tag{4}
\end{equation*}
$$

But this does not work: write (4) as

$$
(I-A) x=0 \Rightarrow x=0
$$

since

$$
\operatorname{det}(I-A) \neq 0
$$

Solution: relax the model and write

$$
\begin{equation*}
x=A x+r, \quad r=\text { uncertainty of the model. } \tag{5}
\end{equation*}
$$

Since r is not known, model it as a random variable.
Postulate a distribution to it,

$$
r \sim \pi_{\text {mod.error }}(r) .
$$

From $x-A x=r$ follows a natural prior model,

$$
\pi_{\text {prior }}(x)=\pi_{\text {mod.error }}(x-A x) .
$$

The model (5) is referred to as autoregressive Markov model, and r is an innovation process.

In particular, if r is a Gaussian variable with mutually independent and equally distributed components,

$$
r \sim \mathcal{N}\left(0, \sigma^{2} I\right)
$$

we obtain the prior model

$$
\begin{aligned}
\pi_{\text {prior }}\left(x \mid \sigma^{2}\right) & =\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left(-\frac{1}{2 \sigma^{2}}\|x-A x\|^{2}\right) \\
& =\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left(-\frac{1}{2 \sigma^{2}}\|L x\|^{2}\right)
\end{aligned}
$$

where

$$
L=I-A .
$$

Note: if σ^{2} is not known (as it usually isn't), it is part of the estimation problem. Hierarchical models discussed later.

Observe that L is a second order finite difference matrix with the mask

$$
\left[\begin{array}{rrr}
& -1 / 4 & \\
-1 / 4 & 1 & -1 / 4 \\
& -1 / 4 &
\end{array}\right]
$$

The model leads to what is often referred to as the second order smoothness prior.

Another derivation: Assume that

$$
x_{j}=f\left(p_{j}\right), \quad p_{j}=\text { point in the } j \text { th pixel. }
$$

Finite difference approximation,

$$
\Delta f\left(p_{j}\right) \approx \frac{1}{h^{2}}(A x)_{j}
$$

where $h=$ discretization size.

Sparse matrices in Matlab

```
n = 50; % Number of pixels per directions
```

\% Creating an index matrix to enumerate the pixels
$I=r e s h a p e\left(\left[1: n^{\wedge} 2\right], n, n\right) ;$
\% Right neighbors of each pixel
Icurr = I(:, 1:n-1);
Ineigh = I(:,2:n);
rows = Icurr(:);
cols = Ineigh(:);
vals $=$ ones $(n *(n-1), 1)$;
\% Left neighbors of each pixel

```
Icurr = I(:,2:n);
Ineigh = I(:,1:n-1);
rows = [rows;Icurr(:)];
cols = [cols;Ineigh(:)];
vals = [vals;ones(n*(n-1),1)];
```

\% Upper neighbors of each pixel

```
Icurr = I(2:n-1,:);
Ineigh = I(1:n-1,:);
rows = [rows;Icurr(:)];
cols = [cols;Ineigh(:)];
vals = [vals;ones(n*(n-1),1)];
```

\% Lower neighbors of each pixel

```
Icurr = I(1:n-1,:);
Ineigh = I(2:n,:);
```

```
rows = [rows;Icurr(:)];
cols = [cols;Ineigh(:)];
vals = [vals;ones(n*(n-1),1)];
A = 1/4*sparse(rows,cols,vals);
L = speye(n^2) - A;
```


Posterior Densities

Fundamental identity:

$$
\pi(x, y)=\pi_{\text {prior }}(x) \pi(y \mid x)=\pi(y) \pi(x \mid y)
$$

Bayes' formula

$$
\begin{equation*}
\pi(x \mid y)=\frac{\pi_{\text {prior }}(x) \pi(y \mid x)}{\pi(y)}, \quad y=y_{\text {observed }} \tag{6}
\end{equation*}
$$

Here $\pi(x \mid y)$ is the posterior density
The posterior density is the solution Bayesian of the inverse problem.

ExAMPLE

Linear inverse problem, additive noise:

$$
y=A x+e, \quad x \in \mathbb{R}^{n}, y, e \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}
$$

Stochastic extension

$$
Y=A X+E
$$

Assume that X and E are independent and Gaussian,

$$
X \sim \mathcal{N}\left(0, \gamma^{2} \Gamma\right), \quad E \sim \mathcal{N}\left(0, \sigma^{2} I\right)
$$

The prior density is

$$
\pi_{\text {prior }}(x \mid \gamma) \propto \frac{1}{\gamma^{n}} \exp \left(-\frac{1}{2 \gamma^{2}} x^{\mathrm{T}} \Gamma^{-1} x\right)
$$

Observe:

$$
\operatorname{det}\left(\gamma^{2} \Gamma\right)=\gamma^{2 n} \operatorname{det}(\Gamma)
$$

Likelihood:

$$
\pi(y \mid x) \propto \exp \left(-\frac{1}{2 \sigma^{2}}\|y-A x\|^{2}\right)
$$

From Bayes' formula:

$$
\begin{aligned}
\pi(x \mid y, \gamma) & \propto \pi_{\text {prior }}(x \mid \gamma) \pi(y \mid x) \\
& \propto \frac{1}{\gamma^{n}} \exp \left(-\frac{1}{2 \gamma^{2}} x^{\mathrm{T}} \Gamma^{-1} x-\frac{1}{2 \sigma^{2}}\|y-A x\|^{2}\right) \\
& =\frac{1}{\gamma^{n}} \exp (-V(x \mid y, \gamma))
\end{aligned}
$$

The matrix Γ is symmetric positive definite. Cholesky factorization:

$$
\Gamma^{-1}=R^{\mathrm{T}} R
$$

where R is upper triangular matrix.
From

$$
x^{\mathrm{T}} \Gamma^{-1} x=x^{\mathrm{T}} R^{\mathrm{T}} R x=\|R x\|^{2}
$$

it follows that

$$
\begin{equation*}
T(x)=2 \sigma^{2} V(x \mid y, \gamma)=\|y-A x\|^{2}+\delta^{2}\|R x\|^{2}, \quad \delta=\frac{\sigma}{\gamma} \tag{7}
\end{equation*}
$$

The functional T is called the Tikhonov functional

Maximum A Posteriori (MAP) Estimator

Bayesian analogue of Maximum Likelihood estimator:

$$
x_{\mathrm{MAP}}=\arg \max \pi(x \mid y),
$$

or, equivalently,

$$
x_{\mathrm{MAP}}=\arg \min V(x \mid y), \quad V(x \mid y)=-\log \pi(x \mid y)
$$

Here,

$$
\begin{equation*}
x_{\mathrm{MAP}}=\arg \min \left(\|y-A x\|^{2}+\delta^{2}\|R x\|^{2}\right) \tag{8}
\end{equation*}
$$

Maximum Likelihood estimator is the least squares solution of the problem

$$
\begin{equation*}
A x=y \tag{9}
\end{equation*}
$$

Equivalent characterization of the MAP estimator:

$$
\|y-A x\|^{2}+\delta^{2}\|R x\|^{2}=\left\|\left[\begin{array}{l}
y \\
0
\end{array}\right]-\left[\begin{array}{c}
A \\
\delta R
\end{array}\right] x\right\|^{2}
$$

so the MAP estimate is the least squares solution of

$$
\left[\begin{array}{c}
A \\
\delta R
\end{array}\right] x=\left[\begin{array}{l}
y \\
0
\end{array}\right] .
$$

