Basic Problem of Statistical Inference

Assume that we have a set of observations

$$
S=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}, \quad x_{j} \in \mathbb{R}^{n}
$$

The problem is to infer on the underlying probability distribution that gives rise to the data S.

- Statistical modeling
- Statistical analysis.

Parametric or non-Parametric?

- Parametric problem: The underlying probability density has a specified form and depends on a number of parameters. The problem is to infer on those parameters.
- Non-parametric problem: No analytic expression for the probability density is available. Description consists of defining the dependency/nondependency of the data. Numerical exploration.

Typical situation for parametric model: The distribution is the probability density of a random variable $X: \Omega \rightarrow \mathbb{R}^{n}$.

- Parametric problem suitable for inverse problems
- Model for a learning process

Law of Large Numbers

General result ("Statistical law of nature"):
Assume that X_{1}, X_{2}, \ldots are independent and identically distributed random variables with finite mean μ and variance σ^{2}. Then,

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right)=\mu
$$

almost certainly.
Almost certainly means that with probability one,

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(x_{1}+x_{2}+\cdots+x_{n}\right)=\mu
$$

x_{j} being a realization of X_{j}.

Example

Sample

$$
S=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}, \quad x_{j} \in \mathbb{R}^{2}
$$

Parametric model: x_{j} realizations of

$$
X \sim \mathcal{N}\left(x_{0}, \Gamma\right)
$$

with unknown mean $x_{0} \in \mathbb{R}^{2}$ and covariance matrix $\Gamma \in \mathbb{R}^{2 \times 2}$.
Probability density of X :

$$
\pi\left(x \mid x_{0}, \Gamma\right)=\frac{1}{2 \pi \operatorname{det}(\Gamma)^{1 / 2}} \exp \left(-\frac{1}{2}\left(x-x_{0}\right)^{\mathrm{T}} \Gamma^{-1}\left(x-x_{0}\right)\right)
$$

Problem: Estimate the parameters x_{0} and Γ.

The Law of Large Number suggests that we calculate

$$
\begin{equation*}
x_{0}=\mathrm{E}\{X\} \approx \frac{1}{n} \sum_{j=1}^{n} x_{j}=\widehat{x}_{0} \tag{1}
\end{equation*}
$$

Covariance matrix: observe that if X_{1}, X_{2}, \ldots are i.i.d, so are $f\left(X_{1}\right), f\left(X_{2}\right), \ldots$ for any function $f: \mathbb{R}^{2} \mapsto \mathbb{R}^{k}$.

Try

$$
\begin{aligned}
\Gamma & =\operatorname{cov}(X)=\mathrm{E}\left\{\left(X-x_{0}\right)\left(X-x_{0}\right)^{\mathrm{T}}\right\} \\
& \approx \mathrm{E}\left\{\left(X-\widehat{x}_{0}\right)\left(X-\widehat{x}_{0}\right)^{\mathrm{T}}\right\} \\
& \approx \frac{1}{n} \sum_{j=1}^{n}\left(x_{j}-\widehat{x}_{0}\right)\left(x_{j}-\widehat{x}_{0}\right)^{\mathrm{T}}=\widehat{\Gamma} .
\end{aligned}
$$

Formulas (1) and (2) are known as empirical mean and covariance, respectively.

Case 1: Gaussian sample

Computational Methods in Inverse Problems, Mat-1.3626

Sample size $N=200$.
Eigenvectors of the covariance matrix:

$$
\begin{equation*}
\widetilde{\Gamma}=U D U^{\mathrm{T}} \tag{3}
\end{equation*}
$$

where $U \in \mathbb{R}^{2 \times 2}$ is an orthogonal matrix and $D \in \mathbb{R}^{2 \times 2}$ is a diagonal,

$$
\begin{gathered}
U^{\mathrm{T}}=U^{-1} \\
U=\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right], \quad D=\left[\begin{array}{ll}
\lambda_{1} & \\
& \lambda_{2}
\end{array}\right], \\
\widetilde{\Gamma} v_{j}=\lambda_{j} v, \quad, j=1,2
\end{gathered}
$$

Scaled eigenvectors,

$$
v_{j, \text { scaled }}=2 \sqrt{\lambda_{j}} v_{j}
$$

where $\sqrt{\lambda_{j}}=$ standard deviation (STD).

Case 2: Non-Gaussian Sample

Computational Methods in Inverse Problems, Mat-1.3626

Estimate of normality/non-NORMALITY

Consider the sets

$$
B_{\alpha}=\left\{x \in \mathbb{R}^{2} \mid \pi(x) \geq \alpha\right\}, \quad \alpha>0 .
$$

If π is Gaussian, B_{α} is an ellipse or \emptyset.
Calculate the integral

$$
\begin{equation*}
\mathrm{P}\left\{X \in B_{\alpha}\right\}=\int_{B_{\alpha}} \pi(x) d x \tag{4}
\end{equation*}
$$

We call B_{α} the credibility ellipse with credibility $p, 0<p<1$, if

$$
\begin{equation*}
\mathrm{P}\left\{X \in B_{\alpha}\right\}=p, \text { giving } \alpha=\alpha(p) \tag{5}
\end{equation*}
$$

Assume that the Gaussian density π has the center of mass and covariance matrix \widetilde{x}_{0} and $\widetilde{\Gamma}$ estimated from the sample S of size N.

If S is normally distributed,

$$
\begin{equation*}
\#\left\{x_{j} \in B_{\alpha(p)}\right\} \approx p N \tag{6}
\end{equation*}
$$

Deviations due to non-normality.

How do we calculate the quantity?
Eigenvalue decomposition:

$$
\begin{aligned}
\left(x-\widetilde{x}_{0}\right)^{\mathrm{T}} \widetilde{\Gamma}^{-1}\left(x-\widetilde{x}_{0}\right) & =\left(x-\widetilde{x}_{0}\right)^{\mathrm{T}} U D^{-1} U^{\mathrm{T}}\left(x-\widetilde{x}_{0}\right) \\
& =\left\|D^{-1 / 2} U^{\mathrm{T}}\left(x-\widetilde{x}_{0}\right)\right\|^{2},
\end{aligned}
$$

since U is orthogonal, i.e., $U^{-1}=U^{\mathrm{T}}$, and we wrote

$$
D^{-1 / 2}=\left[\begin{array}{cc}
1 / \sqrt{\lambda_{1}} & \\
& 1 / \sqrt{\lambda_{2}}
\end{array}\right]
$$

We introduce the change of variables,

$$
w=f(x)=W\left(x-\widetilde{x}_{0}\right), \quad W=D^{-1 / 2} U^{\mathrm{T}}
$$

Write the the integral in terms of the new variable w,

$$
\begin{aligned}
\int_{B_{\alpha}} \pi(x) d x & =\frac{1}{2 \pi(\operatorname{det}(\widetilde{\Gamma}))^{1 / 2}} \int_{B_{\alpha}} \exp \left(-\frac{1}{2}\left(x-\widetilde{x}_{0}\right)^{\mathrm{T}} \widetilde{\Gamma}^{-1}\left(x-\widetilde{x}_{0}\right)\right) d x \\
& =\frac{1}{2 \pi(\operatorname{det}(\widetilde{\Gamma}))^{1 / 2}} \int_{B_{\alpha}} \exp \left(-\frac{1}{2} \| W\left(x-\widetilde{x}_{0} \|^{2}\right) d x\right. \\
& =\frac{1}{2 \pi} \int_{f\left(B_{\alpha}\right)} \exp \left(-\frac{1}{2}\|w\|^{2}\right) d w
\end{aligned}
$$

where we used the fact that

$$
d w=\operatorname{det}(W) d x=\frac{1}{\sqrt{\lambda_{1} \lambda_{2}}} d x=\frac{1}{\operatorname{det}(\widetilde{\Gamma})^{1 / 2}} d x
$$

Note:

$$
\operatorname{det}(\widetilde{\Gamma})=\operatorname{det}\left(U D U^{\mathrm{T}}\right)=\operatorname{det}\left(U^{\mathrm{T}} U D\right)=\operatorname{det}(D)=\lambda_{1} \lambda_{2} .
$$

The equiprobability curves for the density for w are circles centered around the origin, i.e.,

$$
f\left(B_{\alpha}\right)=D_{\delta}=\left\{w \in \mathbb{R}^{2} \mid\|w\|<\delta\right\}
$$

for some $\delta>0$.
Solve δ : Integrate in radial coordinates (r, θ),

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{D_{\delta}} \exp \left(-\frac{1}{2}\|w\|^{2}\right) d w & =\int_{0}^{\delta} \exp \left(-\frac{1}{2} r^{2}\right) r d r \\
& =1-\exp \left(-\frac{1}{2} \delta^{2}\right)=p
\end{aligned}
$$

implying that

$$
\delta=\delta(p)=\sqrt{2 \log \left(\frac{1}{1-p}\right)}
$$

To see if the sample points x_{j} is within the confidence ellipse with confidence p, it is enough to check if the condition

$$
\left\|w_{j}\right\|<\delta(p), \quad w_{j}=W\left(x_{j}-\widetilde{x}_{0}\right), \quad 1 \leq j \leq N
$$

is valid.
Plot

$$
p \mapsto \frac{1}{N} \#\left\{x_{j} \in B_{\alpha(p)}\right\}
$$

Example

Matlab Code

```
N = length(S(1,:)); % Size of the sample
xmean = (1/N)*(sum(S')'); % Mean of the sample
CS = S - xmean*ones(1,N); % Centered sample
Gamma = 1/N*CS*CS'; % Covariance matrix
```

\% Whitening of the sample
[V,D] = eig(Gamma); \% Eigenvalue decomposition
$\mathrm{W}=\operatorname{diag}([1 / \operatorname{sqrt}(\mathrm{D}(1,1)) ; 1 / \operatorname{sqrt}(\mathrm{D}(2,2))]) * \mathrm{~V}^{\prime}$;
WS = W*CS; \% Whitened sample
normWS2 = sum(WS. ${ }^{2}$);
\% Calculating percentual amount of scatter points that are \% included in the confidence ellipses

```
rinside = zeros(11,1);
rinside(11) = N;
for j = 1:9
    delta2 = 2*log(1/(1-j/10));
    rinside(j+1) = sum(normWS2<delta2);
end
rinside = (1/N)*rinside;
plot([0:10:100],rinside,'k.-','MarkerSize',12)
```

Which one of the following formulae?

$$
\widehat{\Gamma}=\frac{1}{N} \sum_{j=1}^{N}\left(x_{j}-\widehat{x}_{0}\right)\left(x_{j}-\widehat{x}_{0}\right)^{\mathrm{T}}
$$

or

$$
\widetilde{\Gamma}=\frac{1}{N} \sum_{j=1}^{N} x_{j} x_{j}^{\mathrm{T}}-\widetilde{x}_{0} \widetilde{x}_{0}^{\mathrm{T}}
$$

The former, please.

Example

Calibration of a measurement instrument:

- Measure a dummy load whose output known
- Subtract from actual measurement
- Analyze the noise

Discrete sampling; Output is a vector of length n.
Noise vector $x \in \mathbb{R}^{n}$ is a realization of

$$
X: \Omega \rightarrow \mathbb{R}^{n}
$$

Estimate mean and variance

$$
x_{0}=\frac{1}{n} \sum_{j=1}^{n} x_{j}(\text { offset }), \quad \sigma^{2}=\frac{1}{n} \sum_{j=1}^{n}\left(x_{j}-x_{0}\right)^{2}
$$

Improving Signal-to-Noise Ratio (SNR):

- Repeat the measurement
- Average
- Hope that the target is stationary

Averaged noise:

$$
x=\frac{1}{N} \sum_{k=1}^{N} x^{(k)} \in \mathbb{R}^{n}
$$

How large must N be to reduce the noise enough?

Averaged noise x is a realization of a random variable

$$
X=\frac{1}{N} \sum_{k=1}^{N} X^{(k)} \in \mathbb{R}^{n}
$$

If $X^{(1)}, X^{(2)}, \ldots$ i.i.d., X is asymptotically Gaussian by Central Limit Theorem, and its variance is

$$
\operatorname{var}(X)=\frac{\sigma^{2}}{N}
$$

Repeat until the variance is below a given threshold,

$$
\frac{\sigma^{2}}{N}<\tau^{2}
$$

Maximum Likelihood Estimator: frequentist's approach Parametric problem,

$$
X \sim \pi_{\theta}(x)=\pi(x \mid \theta), \quad \theta \in \mathbb{R}^{k}
$$

Independent realizations: Assume that the observations x_{j} are obtained independently.

More precisely: $X_{1}, X_{2}, \ldots, X_{N}$ i.i.d, x_{j} is a realization of X_{j}.
Independency:

$$
\pi\left(x_{1}, x_{2}, \ldots, x_{N} \mid \theta\right)=\pi\left(x_{1} \mid \theta\right) \pi\left(x_{2} \mid \theta\right) \cdots \pi\left(x_{N} \mid \theta\right)
$$

or, briefly,

$$
\pi(S \mid \theta)=\prod_{j=1}^{N} \pi\left(x_{j} \mid \theta\right)
$$

Maximum likelihood (ML) estimator of $\theta=$ parameter value that maximizes the probability of the outcome:

$$
\theta_{\mathrm{ML}}=\arg \max \prod_{j=1}^{N} \pi\left(x_{j} \mid \theta\right)
$$

Define

$$
L(S \mid \theta)=-\log (\pi(S \mid \theta))
$$

Minimizer of $L(S \mid \theta)=$ maximizer of $\pi(S \mid \theta)$.

Example

Gaussian model

$$
\pi\left(x \mid x_{0}, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{1}{2 \sigma^{2}}\left(x-x_{0}\right)^{2}\right), \quad \theta=\left[\begin{array}{c}
x_{0} \\
\sigma^{2}
\end{array}\right]=\left[\begin{array}{c}
\theta_{1} \\
\theta_{2}
\end{array}\right]
$$

Likelihood function is

$$
\begin{aligned}
\prod_{j=1}^{N} \pi\left(x_{j} \mid \theta\right) & =\left(\frac{1}{2 \pi \theta_{2}}\right)^{N / 2} \exp \left(-\frac{1}{2 \theta_{2}} \sum_{j=1}^{N}\left(x_{j}-\theta_{1}\right)^{2}\right) \\
& =\exp \left(-\frac{1}{2 \theta_{2}} \sum_{j=1}^{N}\left(x_{j}-\theta_{1}\right)^{2}-\frac{N}{2} \log \left(2 \pi \theta_{2}\right)\right) \\
& =\exp (-L(S \mid \theta))
\end{aligned}
$$

We have

$$
\nabla_{\theta} L(S \mid \theta)=\left[\begin{array}{c}
\frac{\partial L}{\partial \theta_{1}} \\
\frac{\partial L}{\partial \theta_{2}}
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{\theta_{2}^{2}} \sum_{j=1}^{N} x_{j}+\frac{N}{\theta_{2}^{2}} \theta_{1} \\
-\frac{1}{2 \theta_{2}^{2}} \sum_{j=1}^{N}\left(x_{j}-\theta_{1}\right)^{2}+\frac{N}{2 \theta_{2}}
\end{array}\right]
$$

Setting $\nabla_{\theta} L(S \mid \theta)=0$ gives

$$
\begin{gathered}
x_{0}=\theta_{\mathrm{ML}, 1}=\frac{1}{N} \sum_{j=1}^{N} x_{j} \\
\sigma^{2}=\theta_{\mathrm{ML}, 2}=\frac{1}{N} \sum_{j=1}^{N}\left(x_{j}-\theta_{\mathrm{ML}, 1}\right)^{2} .
\end{gathered}
$$

Example

Parametric model

$$
\pi(n \mid \theta)=\frac{\theta^{n}}{n!} e^{-\theta}
$$

sample $S=\left\{n_{1}, \cdots, n_{N}\right\}, n_{k} \in \mathbb{N}$, obtained by independent sampling.
The likelihood density is

$$
\pi(S \mid \theta)=\prod_{k=1}^{N} \pi\left(n_{k}\right)=e^{-N \theta} \prod_{k=1}^{N} \frac{\theta^{n_{k}}}{n_{k}!}
$$

and its negative logarithm is

$$
L(S \mid \theta)=-\log \pi(S \mid \theta)=\sum_{k=1}^{N}\left(\theta-n_{k} \log \theta+\log n_{k}!\right)
$$

Derivative with respect to θ to zero:

$$
\begin{equation*}
\frac{\partial}{\partial \theta} L(S \mid \theta)=\sum_{k=1}^{N}\left(1-\frac{n_{k}}{\theta}\right)=0 \tag{7}
\end{equation*}
$$

leading to

$$
\theta_{\mathrm{ML}}=\frac{1}{N} \sum_{k=1}^{N} n_{k}
$$

Warning:

$$
\operatorname{var}(N) \approx \frac{1}{N} \sum_{k=1}^{N}\left(n_{k}-\frac{1}{N} \sum_{j=1}^{N} n_{j}\right)^{2}
$$

which is different from the estimate of θ_{ML} obtained above.

Assume that θ is known a priori to be relatively large.
Use Gaussian approximation:

$$
\begin{aligned}
& \prod_{j=1}^{N} \pi_{\text {Poisson }}\left(n_{j} \mid \theta\right) \approx\left(\frac{1}{2 \pi \theta}\right)^{N / 2} \exp \left(-\frac{1}{2 \theta} \sum_{j=1}^{N}\left(n_{j}-\theta\right)^{2}\right) \\
&=\left(\frac{1}{2 \pi}\right)^{N / 2} \exp \left(-\frac{1}{2}\left[\frac{1}{\theta} \sum_{j=1}^{N}\left(n_{j}-\theta\right)^{2}+N \log \theta\right]\right) \\
& L(S \mid \theta)=\frac{1}{\theta} \sum_{j=1}^{N}\left(n_{j}-\theta\right)^{2}+N \log \theta
\end{aligned}
$$

An approximation for θ_{ML} : Minimize

$$
L(S \mid \theta)=\frac{1}{\theta} \sum_{j=1}^{N}\left(n_{j}-\theta\right)^{2}+N \log \theta
$$

Write

$$
\frac{\partial}{\partial \theta} L(S \mid \theta)=-\frac{1}{\theta^{2}} \sum_{j=1}^{N}\left(n_{j}-\theta\right)^{2}-\frac{2}{\theta} \sum_{j=1}^{N}\left(n_{j}-\theta\right)+\frac{N}{\theta}=0
$$

or

$$
-\sum_{j=1}^{N}\left(n_{j}-\theta\right)^{2}-2 \sum_{j=1}^{N} \theta\left(n_{j}-\theta\right)+N \theta=N \theta^{2}+N \theta-\sum_{j=1}^{N} n_{j}^{2}=0
$$

giving

$$
\theta=\left(\frac{1}{4}+\frac{1}{N} \sum_{j=1}^{N} n_{j}^{2}\right)^{1 / 2}-\frac{1}{2} \quad\left(\neq \frac{1}{N} \sum_{j=1}^{N} n_{j}\right)
$$

Example

Multivariate Gaussian model,

$$
X \sim \mathcal{N}\left(x_{0}, \Gamma\right)
$$

where $x_{0} \in \mathbb{R}^{n}$ is unknown, $\Gamma \in \mathbb{R}^{n \times n}$ is symmetric positive definite (SPD) and known.

Model reduction: assume that x_{0} depends on hidden parameters $z \in \mathbb{R}^{k}$ through a linear equation,

$$
\begin{equation*}
x_{0}=A z, \quad A \in \mathbb{R}^{n \times k}, \quad z \in \mathbb{R}^{k} . \tag{8}
\end{equation*}
$$

Model for an inverse problem: z is the true physical quantity that in the ideal case is related to the observable x_{0} through the linear model (8).

Noisy observations:

$$
X=A z+E, \quad E \sim \mathcal{N}(0, \Gamma)
$$

Obviously,

$$
\mathrm{E}\{X\}=A z+\mathrm{E}\{E\}=A z=x_{0}
$$

and

$$
\operatorname{cov}(X)=\mathrm{E}\left\{(X-A z)(X-A z)^{\mathrm{T}}\right\}=\mathrm{E}\left\{E E^{\mathrm{T}}\right\}=\Gamma
$$

The probability density of X, given z, is

$$
\pi(x \mid z)=\frac{1}{(2 \pi)^{n / 2} \operatorname{det}(\Gamma)^{1 / 2}} \exp \left(-\frac{1}{2}(x-A z)^{\mathrm{T}} \Gamma^{-1}(x-A z)\right)
$$

Independent observations:

$$
S=\left\{x_{1}, \ldots, x_{N}\right\}, \quad x_{j} \in \mathbb{R}^{n}
$$

Likelihood function

$$
\prod_{j=1}^{N} \pi\left(x_{j} \mid z\right) \propto \exp \left(-\frac{1}{2} \sum_{j=1}^{N}\left(x_{j}-A z\right)^{\mathrm{T}} \Gamma^{-1}\left(x_{j}-A z\right)\right)
$$

is maximized by minimizing

$$
\begin{aligned}
L(S \mid z) & =\frac{1}{2} \sum_{j=1}^{N}\left(x_{j}-A z\right)^{\mathrm{T}} \Gamma^{-1}\left(x_{j}-A z\right) \\
& =\frac{N}{2} z^{\mathrm{T}}\left[A^{\mathrm{T}} \Gamma^{-1} A\right] z-z^{\mathrm{T}}\left[A^{\mathrm{T}} \Gamma^{-1} \sum_{j=1}^{N} x_{j}\right]+\frac{1}{2} \sum_{j=1}^{N} x_{j}^{\mathrm{T}} \Gamma^{-1} x_{j}
\end{aligned}
$$

Zeroing of the gradient gives

$$
\nabla_{z} L(S \mid z)=N\left[A^{\mathrm{T}} \Gamma^{-1} A\right] z-A^{\mathrm{T}} \Gamma^{-1} \sum_{j=1}^{N} x_{j}=0
$$

i.e., the maximum likelihood estimator z_{ML} is the solution of the linear system

$$
\left[A^{\mathrm{T}} \Gamma^{-1} A\right] z=A^{\mathrm{T}} \Gamma^{-1} \bar{x}, \quad \bar{x}=\frac{1}{N} \sum_{j=1}^{N} x_{j} .
$$

The solution may not exist; All depends on the properties of the model reduction matrix $A \in \mathbb{R}^{n \times k}$.

Particular case: one observation, $S=\{x\}$,

$$
L(z \mid x)=(x-A z)^{\mathrm{T}} \Gamma^{-1}(x-A z) .
$$

Eigenvalue decomposition of the covariance matrix,

$$
\Gamma=U D U^{\mathrm{T}}
$$

or,

$$
\Gamma^{-1}=W^{\mathrm{T}} W, \quad W=D^{-1 / 2} U^{\mathrm{T}}
$$

we have

$$
L(z \mid x)=\|W(A z-x)\|^{2}
$$

Hence, the problem reduces to a weighted least squares problem

