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A combination of the concepts subjective—or Bayesian—statistics and scien-

tific computing, the book provides an integrated view across numerical linear

algebra and computational statistics. Inverse problems act as the bridge

between these two fields where the goal is to estimate an unknown parameter

that is not directly observable by using measured data and a mathematical

model linking the observed and the unknown.

Inverse problems are closely related to statistical inference problems, where

the observations are used to infer on an underlying probability distribu-

tion. This connection between statistical inference and inverse problems is

a central topic of the book. Inverse problems are typically ill-posed: small

uncertainties in data may propagate in huge uncertainties in the estimates of

the unknowns. To cope with such problems, efficient regularization tech-

niques are developed in the framework of numerical analysis. The counter-

part of regularization in the framework of statistical inference is the use of

prior information. This observation opens the door to a fruitful interplay

between statistics and numerical analysis: the statistical framework provides a

rich source of methods that can be used to improve the quality of solutions in

numerical analysis, and vice versa, the efficient numerical methods bring

computational efficiency to the statistical inference problems.

This book is intended as an easily accessible reader for those who need

numerical and statistical methods in applied sciences.

Surveys and Tutorials
in the Applied

Mathematical Sciences

2
Introduction to Bayesian Scientific
Computing
Ten Lectures on Subjective Computing

Daniela Calvetti
Erkki Somersalo

S
TA

M
S

   C
alvetti • Som

ersalo
Intro

d
uctio

n to
 B

ayesian Scientific C
o

m
p

uting

 ----

Computational Methods in Inverse Problems, Mat–1.3626 0-0



E. Somersalo

Inverse Problems and Subjective Computing

Subjective computing = subjective probability + scientific computing

• Inverse problems: Concerns the problem of retrieving information of
unknown parameters by indirect observations.

• Statistical inference: Concerns the problem of inferring properties
of an unknown distribution from data generated from that distribution.

Quantity is unknown −→ information incomplete −→ random variables −→
probability distributions
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Why Statistics?

“Statistics is the science of information gathering, especially when the infor-
mation arrives in little pieces rather than in one or two big pieces.”

(Bradley Efron)

“Probability is common sense reduced to calculations.”

(Pierre-Simon Laplace, 1813)
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Bayesian perspective to inverse problems

• All unknowns are modelled as random variables.

• Randomness is an expression of the lack of information, or ignorance of
their values.

• Random variables are characterized by their probability distributions.

• Inverse problem: Find the probability distribution of the unknowns
you are interested in.

Note 1: Randomness is not the object’s but the subject’s property1.

Note 2: Computational models predict only observables, i.e., what an ob-
server (subject) can expect.2

1Bruno de Finetti: “Probability does not exist!”
2Niels Bohr: “It is a mistake to think that physics should reveal how the nature is made.

Physics deals with what can be said about the nature.”
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Tossing a coin

Obvious solution:
P(heads) = P(tails) =

1
2
.

No particular justification needed, since generally accepted.

Any competing theory, e.g.,

P(heads) = 0.6, P(tails) = 0.4,

falsifiable by empirical evidence.

Cf. testing of scientific theories!

Theory 6= Reality (whatever it means!)
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Frequentist statistics

• Probability of an event is its relative frequency of occurrence in an
asymptotically infinite series of repeated experiments.

Leaves completely out non-repeatable events.

Example: “The probability of rain tomorrow is 0.7.”

Such statement may be based, but need not to be on previous experiments.

De Finetti’s critique, coherence and exchangability.
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Coherence

Betting argument, simplest form:

• Two players, P1 and P2

• Random event, outcomes “A” and “B” possible.

• Winner gets 1$ from the loser.

• P1 decides how much it costs to bet for “A” and for “B”.

• P2 decides which side P1 has to take.

P1 has to decide the prices so that he feels comfortable which ever way P2
decides. (Dutch book argument.)
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Model based probabilities

Example: Tossing of a thumbtack: Which way does it end?

Possible models:

1. Convex hull is a cone. Surface of the cone S1 = πR
√

R2 + H2. Surface
of the bottom S2 = πR2.

Odds of ending on bottom =
S2

S1
=

R√
R2 + H2

.

2. Or maybe the center of mass counts? Consider stability!

3. Does the surface material count?

Judgemental part: Which model do we trust?
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Computational frequentism

Example: Growth of bacteria in a petri dish.

Set a probability for having an average bacteria density above a given level.

Stochastic growth model (a life game):

1. Give a probability for the culture to spread from an occupied square to
a neighboring empty square.

2. Give a probability for death in a square surrounded by occupied squares
(competition).

Simulate: Create a sample based on the model with different initial states.
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Objective chance

Examples where the probabilities are unarguably (?) set:

• tossing a fair die (by definition od “fair”)

• Urn models (white and black balls in an urn, by definition of “random
pick”)

• Quantum mechanics, quantum information: quantum state does not
exist if not observed (compare with coin tossing: the coin is not in a
“half heads-half tails” state.) No mess with “multiverses”, Schrödinger
cats or other useless speculation.
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Through the formal theory, lightly

A. N. Kolmogorov, founding father of probability theory (cf. Laplace)

Define Ω to be a probability space equipped with a probability measure P that
measures the probability of events E ⊂ Ω.

We require that
0 ≤ P(E) ≤ 1.

If A ∩B = ∅, A,B ⊂ Ω,

P (A ∪B) = P (A) + P (B).

Since Ω contains all events,

P(Ω) = 1, (“something happens”)

and
P(∅) = 0. (“nothing happens”)
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Independency, conditional probability

Two events A and B are independent, if

P(A ∩B) = P(A)P(B).

Conditional probability: Probability that A happens provided that B happens,

P(A | B) =
P(A ∩B)

P(B)
.

For independent events,
P(A | B) = P(A).

The (abstract) probability space Ω is almost never constructed in practice.
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Random variables

A real valued random variable X is a mapping

X : Ω → R.

We call x = X(ω), ω ∈ Ω, a realization of X.

Probability distribution: For B ⊂ R,

µX(B) = P(X−1(B)) = P
{
X(ω) ∈ B

}
.

Probability density

µX(B) =
∫

B

πX(x)dx.

Often, we write simply
πX(x) = π(x).
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Expectation, Variance

Given a random variable X, the expectation is the center of mass of the prob-
ability distribution,

E
{
X

}
=

∫

R
xπ(x)dx = x.

The variance is the expectation of the squared deviation from the expectation,

var
(
X

)
= E

{
(X − x)2

}
=

∫

R
(x− x)2π(x)dx.

The kth moment is defined as

E
{
(X − x)k

}
=

∫

R
(x− x)kπ(x)dx.

The third moment (k = 3) is called the skewness and the fourth (k = 4) is the
kurtosis of the density.
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Example

The expectation of a random variable, in spite of its name, is not necessarily
the value that we should expect a realization to have.

Let Ω = [−1, 1], and

P(I) =
1
2

∫

I

dx =
1
2
|I|, I ⊂ [−1, 1].

Random variables

X1 : [−1, 1] → R, X1(ω) = 1 ∀ω ∈ R,

and

X2 : [−1, 1] → R, X2(ω) =
{

2 ω ≥ 0
0 ω < 0

It is immediate to check that

E
{
X1

}
= E

{
X2

}
= 1,

although X2(ω) 6= 1 always.
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Covariance, Correlation

Consider two random variables X, Y : Ω → R.

Joint probability density

P
{
X ∈ A, Y ∈ B

}
= P

(
X−1(A) ∩ Y −1(B)

)
=

∫ ∫

A×B

π(x, y)dxdy.

The random variables X and Y are independent if

π(x, y) = π(x)π(y).

The covariance of X and Y is the mixed central moment

cov(X, Y ) = E
{
(X − x̄)(Y − ȳ)

}
.

It is straightforward to verify that

cov
(
X,Y

)
= E

{
XY

}− E
{
X

}
E

{
Y

}
.
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The correlation of X and Y is

corr(X,Y ) = E
{
XY

}
.

The correlation coefficient of X and Y is

corrc
(
X, Y

)
=

cov
(
X, Y

)

σXσY
,

or, equivalently, the correlation of the centered normalized random variables

X̃ =
X − x̄

σX
, Ỹ =

Y − ȳ

σY
.

It is an easy exercise to verify that

E
{
X̃

}
= E

{
Ỹ

}
= 0, var

(
X̃

)
= var

(
Ỹ

)
= 1.
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The random variables X and Y are uncorrelated if their correlation coefficient
is zero, i.e.,

cov
(
X, Y

)
= 0

If X and Y independent, they are uncorrelated:

E
{
(X − x)(Y − y)

}
= E

{
X − x

}
E

{
Y − y

}
= 0,

vice versa is not necessarily the case.

X and Y are orthogonal if
E

{
XY

}
= 0.

In that case
E

{
(X + Y )2

}
= E

{
X2

}
+ E

{
Y 2

}
.
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Marginal denisty

X and Y with joint probability density π(x, y)

Probability density of X when Y may take any value:

π(x) = P
{
X = x

}
=

∫

R
π(x, y)dy.

Analogously,

π(y) = P
{
Y = y

}
=

∫

R
π(x, y)dx.
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Conditional probability density

X and Y with joint probability density π(x, y).

π(x | y) =
π(x, y)
π(y)

, π(y) 6= 0.

This is the probability density of X assuming that Y = y.

Important identity:

π(x, y) = π(x | y)π(y) = π(y | x)π(x).

Implication:

π(x | y) =
π(y | x)π(x)

π(y)
(Bayes formula)
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Conditional density
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Marginal density
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Conditional expectations

E
{
X | y}

=
∫

R
xπ(x | y)dx.

Expectation of X via conditional expectation:

E
{
X

}
=

∫
xπ(x)dx =

∫
x

( ∫
π(x, y)dy

)
dx,

Substitute:

E
{
X

}
=

∫
x

( ∫
π(x | y)π(y)dy

)
dx

=
∫ ( ∫

xπ(x | y)dx

)
π(y)dy =

∫
E

{
X | y}

π(y)dy. (1)

Computational Methods in Inverse Problems, Mat–1.3626 0-22



E. Somersalo

multivariate random variable

Define

X =




X1

...
Xn


 : Ω → Rn,

with each component Xi being an R-valued variable.

Probability density of X = joint probability density π = πX : Rn → R+ of its
components.

Expectation is

x =
∫

Rn

xπ(x)dx ∈ Rn,

or, componentwise,

xi =
∫

Rn

xiπ(x)dx ∈ R, 1 ≤ i ≤ n.
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The covariance matrix is defined as

cov(X) =
∫

Rn

(x− x)(x− x)Tπ(x)dx ∈ Rn×n,

or, componentwise,

cov(X)ij =
∫

Rn

(xi − xi)(xj − xj)π(x)dx ∈ Rn×n, 1 ≤ i, j ≤ n.

Covariance matrix is symmetric and positive semi-definite: For any v ∈ Rn,
v 6= 0,

vTcov(X)v =
∫

Rn

[
vT(x− x)

][
(x− x)Tv

]
π(x)dx (2)

=
∫

Rn

(
vT(x− x)

)2
π(x)dx ≥ 0.

Variance of X into the direction v.
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Diagonal of the covariance matrix gives the variances of the individual com-
ponents.

Denote by x′i ∈ Rn−1 the vector x with the ith component deleted:

cov(X)ii =
∫

Rn

(xi − xi)2π(x)dx =
∫

R
(xi − xi)2

( ∫

Rn−1
π(xi, x

′
i)dx′i

)

︸ ︷︷ ︸
=π(xi)

dxi

=
∫

R
(xi − xi)2π(xi)dxi = var(Xi).
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Example

On working days, a train leaves from a station every S minutes. On Sundays,
the interval is 2S.

You arrive to the station with no information of the time table.

Waiting time = random variable T , distribution

T ∼ π(t | working day) =
1
S

χS(t), χS(t) =
{

1, 0 ≤ t < S,
0 otherwise

and
T ∼ π(t | Sunday) =

1
2S

χ2S(t).
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Expected waiting times

E
{
T | working day

}
=

1
S

∫ S

0

tdt =
S

2
.

Similarly,
E

{
T | Sunday

}
= S.

No idea of the weekday: give equal probability for each week day:

π
(
working day

)
=

6
7
, π

(
Sunday

)
=

1
7
.

Waiting time, regardless of the day:

E
{
T

}
= E

{
T | working day

}
π
(
working day

)
+ E

{
T | Sunday

}
π
(
Sunday

)

=
3S

7
+

S

7
=

4S

7
.
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Examples of Distributions

A weak light source emits photons that are counted with a CCD (Charged
Coupled Device).

Counting process N(t),

N(t) = number of particles observed in [0, t] ∈ N

is an integer-valued random variable.

To set up a statistical model, make the following assumptions:

Computational Methods in Inverse Problems, Mat–1.3626 0-28



E. Somersalo

1. Stationarity: Let ∆1 and ∆2 be any two time intervals of equal length,
n any non-negative integer. Assume that

Prob. of n photons in ∆1 = Prob. of n photons in ∆2.

2. Independent increments: Let ∆1, . . . , ∆n be non-overlapping time inter-
vals, k1, . . . , kn non-negative integers. Denote by Aj the event defined
as

Aj = kj photons arrive in the time interval ∆j .

Assume that these events are mutually independent,

P
{
A1 ∩ . . . ∩An

}
= P

{
A1} · · ·P{An}.

3. Negligible probability of coincidence: Assume that the probability of two
or more events at the same time is negligible. More precisely, assume
that N(0) = 0 and

lim
h→0

P
{
N(h) > 1

}

h
= 0.

(“No faster than linear growth.”)
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If these assumptions hold, then N is a Poisson process:

P
{
N(t) = n

}
=

(λt)n

n!
e−λt, λ > 0.

(Proof, see, e.g., S Ghahramani: Fundamentals of Probability. Prentice Hall
1996.)

Fix t = T=observation time and define a random variable N = N(T ). Write
θ = λT . We write

N ∼ Poisson(θ).
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Expectation

π(n) = P
{
N = n

}
=

θn

n!
e−θ, θ > 0.

E
{
N

}
=

∞∑
n=0

nπ(n) = e−θ
∞∑

n=0

n
θn

n!

= e−θ
∞∑

n=1

θn

(n− 1)!
= e−θ

∞∑
n=0

θn+1

n!

= θ.
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Variance

Write first

E
{
(N − θ)2

}
= E

{
N2} − 2θ E

{
N

}
︸ ︷︷ ︸

=θ

+θ2

= E
{
N2

}− θ2

=
∞∑

n=0

n2π(n)− θ2,

and substitute
π(n) =

θn

n!
e−θ, θ > 0.
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E
{
(N − θ)2

}
= e−θ

∞∑
n=0

n2 θn

n!
− θ2 = e−θ

∞∑
n=1

n
θn

(n− 1)!
− θ2

= e−θ
∞∑

n=0

(n + 1)
θn+1

n!
− θ2

= θe−θ
∞∑

n=0

n
θn

n!
+ θe−θ

∞∑
n=0

(θ)n

n!
− θ2

= θe−θ
(
(θ + 1)eθ

)− θ2

= θ.
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Gaussian Distributions

A random variable X ∈ R is normally distributed, or Gaussian,

X ∼ N (x0, σ
2),

if

P
{
X ≤ t

}
=

1√
2πσ2

∫ t

−∞
exp

(
− 1

2σ2
(x− x0)2

)
dx.

Multivariate extension: X ∈ Rn is Gaussian, if its probability density is

π(x) =
(

1
(2π)ndet(Γ)

)1/2

exp
(
−1

2
(x− x0)TΓ−1(x− x0)

)
,

where x0 ∈ Rn, Γ ∈ Rn×n is symmetric positive definite.

P
{
X ∈ B

}
=

∫

B

π(x)dx.
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Central Limit Theorem

Gaussian variables appear, e.g., when macroscopic measurements are averages
of individual microscopic random effects.

Examples: Pressure, temperature, electric current, luminosity.

Central Limit Theorem: Assume that random variables X1, X2, . . . are
independent and identically distributed (i.i.d.), each with expectation µ and
variance σ2. Then

Zn =
1

σ
√

n

(
X1 + X2 + · · ·+ Xn − nµ

)

converges to the distribution of a standard normal random variable,

lim
n→∞

P
{
Zn ≤ x

}
=

1
2π

∫ x

−∞
e−t2/2dt.
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In practice, if

Yn =
1
n

n∑

j=1

Xj ,

and n is large, a good approximation is

Yn ∼ N
(

µ,
σ2

n

)
.

Try with Poisson distribution: Total count of photons is a sum of individual
contributions.

Plot
n 7→ θn

n!
e−θ = πPoisson(n | θ)

versus

x 7→ 1√
2πθ

exp
(
− 1

2θ
(x− θ)2

)
= πGaussian(x | θ, θ).
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Measuring the Quality of Approximation

Relative error:

e(θ, n) =
|πPoisson(n | θ)− πGaussian(n | θ, θ)|

πPoisson(n | θ) .

Distance between the two densities:

distKL

(
πPoisson( · | θ), πGaussian( · | θ, θ))

=
∞∑

n=0

πPoisson(n | θ) log
(

πGaussian(n | θ)
πPoisson(n | θ, θ)

)
,

known as Kullback–Leibler distance.
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