Excercise 2, 1.10.-7.10.2007

1. Consider the equation

$$
A x=b, \quad A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}
$$

By multiplying the equation from the left with A^{T} we obtain the so called normal equations,

$$
A^{\mathrm{T}} A x=A^{\mathrm{T}} b
$$

where the matrix $A^{\mathrm{T}} A \in \mathbb{R}^{n \times n}$ is a square matrix, so the system is formally determined. Analyze the normal equations using the singular value decomposition of A. In particular, answer the following questions: In terms of the singular values of A, when is $A^{\mathrm{T}} A$ invertible? What is the pseudoniverse of it? What is the connection between the pseudoinverse of A and $\left(A^{\mathrm{T}} A\right)^{\dagger} A^{\mathrm{T}}$.
2. In terms of the singular values of A, when is $A A^{\mathrm{T}}$ invertible? Is $A^{\mathrm{T}}\left(A A^{\mathrm{T}}\right)^{-1} b$ then a solution of $A x=b$? What about $A^{\mathrm{T}}\left(A A^{\mathrm{T}}\right)^{\dagger}$? Is it equal to $\left(A^{\mathrm{T}} A\right)^{\dagger} A^{\mathrm{T}} b$, and if not in general, under what conditions?
3. The mappings $A^{\dagger} A$ and $A A^{\dagger}$ are orthogonal projections. Show this, and find the subspaces on which they project.
4. Show the Moore-Penrose identities,

$$
\begin{aligned}
A^{\dagger} A A^{\dagger} & =A^{\dagger}, \\
A A^{\dagger} A & =A, \\
\left(A^{\dagger} A\right)^{\mathrm{T}} & =A^{\dagger} A, \\
\left(A A^{\dagger}\right)^{\mathrm{T}} & =A A^{\dagger} .
\end{aligned}
$$

Can you interpret these results?
5. Normal equations and ill-conditioning: Form the matrix $A \in \mathbb{R}^{2 \times 2}$,

$$
A=U D U^{\mathrm{T}}
$$

where

$$
U=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right], \quad D=\left[\begin{array}{ll}
1 & \\
& 10^{-k}
\end{array}\right]
$$

where $\theta=\pi / 3$, and $k=10$, for instance. Using Matlab, calculate

$$
A^{-1} b, \quad \text { and } \quad\left(A^{\mathrm{T}} A\right)^{\mathrm{T}} A^{\mathrm{T}} b, \quad b=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

Why are they not equal? Change the value k and analyze what happens.

