Excercise 1, 24.9.-30.9.2007

1. (a) Let $A \in \mathbb{R}^{m \times n}$ be a matrix with singular value decomposition $A=$ $U D V^{\mathrm{T}}$. Show that the eigen values of the symmetric matrix $A^{\mathrm{T}} A$ are the squared diagonal elements of D. What are the corresponding eigenvectors?
(b) Let $U \in \mathbb{R}^{n \times n}$ be an orthogonal matrix, i.e., $U^{\mathrm{T}} U=I$, where I is the unit matrix. Deduce that also U^{T} must be orthogonal, i.e., $U U^{\mathrm{T}}=I$.
(c) Starting from the fact that vector norm is invariant under orthogonal matrix transformations, show that $\left\|U^{\mathrm{T}} A V\right\|=\|A\|$ for all A and orthogonal U and V such that the matrix product makes sense.
2. An orthogonal projection $P: \mathbb{R}^{n} \rightarrow H$ to a subspace $H \subset \mathbb{R}^{n}$ is defined as a matrix $P \in \mathbb{R}^{n \times n}$ with the following properties:

- $P^{2}=P$,
- $(I-P) x \perp P x$ for all $x \in \mathbb{R}^{n}$.

Given an arbitrary matrix $A \in \mathbb{R}^{m \times n}$, express the orthogonal projections $P_{1}: \mathbb{R}^{n} \rightarrow N(A)$ and $P_{2}: \mathbb{R}^{m} \rightarrow R(A)$ in terms of the singular value decomposition of A.Verify also the identity $R(A)^{\perp}=N\left(A^{\mathrm{T}}\right)$ with the singular value decomposition.
3. Design a 2×2 matrix that maps the unit circle to an ellipse whose longer semiaxis has length 2 and points to direction $(x, y)=(1,2)$ and the shorter semiaxis is of length $1 / 2$. How many degrees of freedom do you have, i.e., characterize the degree of non-uniqueness of such matrices.
4. Consider the matrix $A \in \mathbb{R}^{n \times n}$,

$$
A=I-2 \widehat{u} \widehat{u}^{\mathrm{T}}
$$

where $\widehat{u} \in \mathbb{R}^{n}$ is an arbitrary unit vector, i.e., $\|\widehat{u}\|=1$. Show that A is unitary. Find the eigenvalues and (real) eigenvectors of A. Give a geometric interpretation of A.
Given a vector $x \in \mathbb{R}^{n}, x \neq 0$, set $u=x-\|x\| e_{1}$, where $e_{1}=\left[\begin{array}{lll}1 & 0 & \cdots\end{array}\right]^{\mathrm{T}}$, and $\widehat{u}=u /\|u\|$. Compute $A x$ and interpret geometrically the result.

