Computational Methods in Inverse Problems, Mat-1.3626

Fall 2007

Erkki Somersalo/Knarik Tunyan

Excercise 1, 24.9.-30.9.2007

(a) Let A ∈ ℝ^{m×n} be a matrix with singular value decomposition A = UDV^T. Show that the eigen values of the symmetric matrix A^TA are the squared diagonal elements of D. What are the corresponding eigenvectors?
(b) Let U ∈ ℝ^{n×n} be an orthogonal matrix, i.e., U^TU = I, where I is

the unit matrix. Deduce that also U^{T} must be orthogonal, i.e., $UU^{\mathrm{T}} = I$.

(c) Starting from the fact that vector norm is invariant under orthogonal matrix transformations, show that $||U^{T}AV|| = ||A||$ for all A and orthogonal U and V such that the matrix product makes sense.

- 2. An orthogonal projection $P : \mathbb{R}^n \to H$ to a subspace $H \subset \mathbb{R}^n$ is defined as a matrix $P \in \mathbb{R}^{n \times n}$ with the following properties:
 - $P^2 = P$,
 - $(I-P)x \perp Px$ for all $x \in \mathbb{R}^n$.

Given an arbitrary matrix $A \in \mathbb{R}^{m \times n}$, express the orthogonal projections $P_1 : \mathbb{R}^n \to N(A)$ and $P_2 : \mathbb{R}^m \to R(A)$ in terms of the singular value decomposition of A.Verify also the identity $R(A)^{\perp} = N(A^{\mathrm{T}})$ with the singular value decomposition.

- 3. Design a 2×2 matrix that maps the unit circle to an ellipse whose longer semiaxis has length 2 and points to direction (x, y) = (1, 2) and the shorter semiaxis is of length 1/2. How many degrees of freedom do you have, i.e., characterize the degree of non-uniqueness of such matrices.
- 4. Consider the matrix $A \in \mathbb{R}^{n \times n}$,

$$A = I - 2\widehat{u}\widehat{u}^{\mathrm{T}},$$

where $\hat{u} \in \mathbb{R}^n$ is an arbitrary unit vector, i.e., $\|\hat{u}\| = 1$. Show that A is unitary. Find the eigenvalues and (real) eigenvectors of A. Give a geometric interpretation of A.

Given a vector $x \in \mathbb{R}^n$, $x \neq 0$, set $u = x - ||x||e_1$, where $e_1 = [1 \ 0 \ \cdots \ 0]^T$, and $\hat{u} = u/||u||$. Compute Ax and interpret geometrically the result.