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Conjugate Gradient algorithm

• Need: A symmetric positive definite;

• Cost: 1 matrix-vector product per step;

• Storage: fixed, independent of number of steps.

The CG method minimizes the A norm of the error,

xk = arg min
x∈Kk(A,b)

‖x− x∗‖2A.

x∗ = true solution, ‖z‖2A = zTAz.
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Krylov subspaces

The kth Krylov subspace associated with the matrix A and the vector b is

Kk(A, b) = span{b, Ab, . . . , Ak−1b}.

Iterative methods which seek the solution in a Krylov subspace are called
Krylov subspace iterative methods.
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At each step, minimize

α 7→ ‖xk−1 + αpk−1 − x∗‖2A
Solution:

αk =
‖rk−1‖2

pT
k−1Apk−1

New update
xk = xk−1 + αk−1pk−1.

Search directions:
p0 = r0 = b−Ax0,

Computational Methods in Inverse Problems, Mat–1.3626 0-2



E. Somersalo

Iteratively, A-conjugate to the previous ones:

pT
k Apj = 0, 0 ≤ j ≤ k − 1.

Found by writing

pk = rk + βkpk−1, rk = b−Axk,

βk =
‖rk‖2
‖rk−1‖2 ,
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Algorithm (CG)

Initialize: x0 = 0; r0 = b−Ax0; p0 = r0;

for k = 1, 2, . . . until stopping criterion is satisfied

αk =
‖rk−1‖2

pT
k−1Apk−1

;

xk = xk−1 + αkpk−1;

rk = rk−1 − αkApk−1;

βk =
‖rk‖2
‖rk−1‖2 ;

pk = rk + βkpk−1;

end
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CGLS Method

Conjugate Gradient method for Least Squares (CGLS)

• Need: A can be rectangular (non-square);

• Cost: 2 matrix-vector products (one with A, one with AT) per step;

• Storage: fixed, independent of number of steps.

Mathematically equivalent to applying CG to normal equations

ATAx = ATb

without actually forming them.
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CGLS minimization problem

The kth iterate solves the minimization problem

xk = arg min
x∈Kk(ATA,ATb)

‖b−Ax‖.

The kth iterate xk of CGLS method (x0 = 0) is characterized by

Φ(xk) = min
x∈Kk(ATA,ATb)

Φ(x)

where
Φ(x) :=

1
2
xTATAx− xTATb.
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Determination of the minimizer

Perform sequential linear searches along ATA-conjugate directions

p0, p1, . . . , pk−1

that span Kk(ATA,ATb).

Determine xk from xk−1 and pk−1 according to

xk := xk−1 + αk−1pk−1

where αk−1 ∈ R solves

min
α∈R

Φ(xk−1 + αpk−1).
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Residual Error

Introduce the residual error associated with xk:

rk := ATb−ATAxk.

Then
pk := rk + βk−1pk−1

Choose βk−1 so that pk is ATA-conjugate to the previous search directions:

pT
k ATApj = 0, 1 ≤ j ≤ k − 1.
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Discrepancy

The discrepancy associated with x is

dk = b−Axk.

Then
rk = ATdk

It was shown by Hestenes and Stiefel that

‖dk+1‖ ≤ ‖dk‖; ‖xk+1‖ ≥ ‖xk‖.
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Algorithm (CGLS)

x0 := 0; d0 = b; r0 = ATb;
p0 = r0; t0 = Ap0;

for k = 1, 2, . . . until stopping criterion is satisfied

αk = ‖rk−1‖2/‖tk−1‖2

xk = xk−1 + αkpk−1;

dk = dk−1 − αktk−1;

rk = ATdk;

βk = ‖rk‖2/‖rk−1‖2;
pk = rk + βkpk−1;

tk = Apk;

end
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Example: a Toy Problem

An invertible 2× 2-matrix A,

yj = Ax∗ + εj , j = 1, 2.

Preimages,
xj = A−1yj , j = 1, 2,
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solution by iterative methods: semiconvergence.

Write
B = Ax∗ + E, E ∼ N (0, σ2I),

and generate a sample of data vectors, b1, b2, . . . , bn

Solve with CG
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When should one stop iterating?

Let
Ax = b∗ + ε = Ax∗ + ε = b,

Approximate information
‖ε‖ ≈ η,

where η > 0 is known. Write

‖A(x− x∗)‖ = ‖ε‖ ≈ η

Any solution satisfying
‖Ax− b‖ ≤ τη

is reasonable.

Morozov discrepancy principle
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Example: numerical differentiation

Let f : [0, 1] → R be a differentiable function, f(0) = 0.

Data = f(tj)+ noise, tj =
j

n
, j = 1, 2, . . . n.

Problem: Estimate f ′(tj).

Direct numerical differentiation by, e.g., finite difference formula does not
work: the noise takes over.

Where is the inverse problem?
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Data
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Solution by finite difference
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Formulation as an inverse problem

Denote g(t) = f ′(t). Then,

f(t) =
∫ t

0

g(τ)dτ.

Linear model:

Data = yj = f(tj) + ej =
∫ tj

0

g(τ)dτ + ej ,

where ej is the noise.
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Discretization

Write ∫ tj

0

g(τ)dτ ≈ 1
n

j∑

k=1

g(tk).

By denoting g(tk) = xk,
y = Ax + e,

where

A =
1
n
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