Conjugate Gradient algorithm

- Need: A symmetric positive definite;
- Cost: 1 matrix-vector product per step;
- Storage: fixed, independent of number of steps.

The CG method minimizes the A norm of the error,

$$
\begin{gathered}
x_{k}=\arg \min _{x \in \mathcal{K}_{k}(A, b)}\left\|x-x_{*}\right\|_{A}^{2} \\
x_{*}=\text { true solution, }\|z\|_{A}^{2}=z^{\mathrm{T}} A z .
\end{gathered}
$$

Krylov subspaces

The k th Krylov subspace associated with the matrix A and the vector b is

$$
\mathcal{K}_{k}(A, b)=\operatorname{span}\left\{b, A b, \ldots, A^{k-1} b\right\}
$$

Iterative methods which seek the solution in a Krylov subspace are called Krylov subspace iterative methods.

At each step, minimize

$$
\alpha \mapsto\left\|x_{k-1}+\alpha p_{k-1}-x_{*}\right\|_{A}^{2}
$$

Solution:

$$
\alpha_{k}=\frac{\left\|r_{k-1}\right\|^{2}}{p_{k-1}^{\mathrm{T}} A p_{k-1}}
$$

New update

$$
x_{k}=x_{k-1}+\alpha_{k-1} p_{k-1} .
$$

Search directions:

$$
p_{0}=r_{0}=b-A x_{0},
$$

Iteratively, A-conjugate to the previous ones:

$$
p_{k}^{\mathrm{T}} A p_{j}=0, \quad 0 \leq j \leq k-1
$$

Found by writing

$$
\begin{gathered}
p_{k}=r_{k}+\beta_{k} p_{k-1}, \quad r_{k}=b-A x_{k} \\
\beta_{k}=\frac{\left\|r_{k}\right\|^{2}}{\left\|r_{k-1}\right\|^{2}}
\end{gathered}
$$

Algorithm (CG)

Initialize: $x_{0}=0 ; r_{0}=b-A x_{0} ; p_{0}=r_{0} ;$
for $k=1,2, \ldots$ until stopping criterion is satisfied

$$
\begin{aligned}
\alpha_{k} & =\frac{\left\|r_{k-1}\right\|^{2}}{p_{k-1}^{T} A p_{k-1}} \\
x_{k} & =x_{k-1}+\alpha_{k} p_{k-1} \\
r_{k} & =r_{k-1}-\alpha_{k} A p_{k-1} \\
\beta_{k} & =\frac{\left\|r_{k}\right\|^{2}}{\left\|r_{k-1}\right\|^{2}} \\
p_{k} & =r_{k}+\beta_{k} p_{k-1}
\end{aligned}
$$

end

CGLS Method

Conjugate Gradient method for Least Squares (CGLS)

- Need: A can be rectangular (non-square);
- Cost: 2 matrix-vector products (one with A, one with A^{T}) per step;
- Storage: fixed, independent of number of steps.

Mathematically equivalent to applying CG to normal equations

$$
A^{\mathrm{T}} A x=A^{\mathrm{T}} b
$$

without actually forming them.

CGLS MINIMIZATION PROBLEM

The k th iterate solves the minimization problem

$$
x_{k}=\arg \min _{x \in \mathcal{K}_{k}\left(A^{\mathrm{T}} A, A^{\mathrm{T}} b\right)}\|b-A x\| .
$$

The k th iterate x_{k} of CGLS method $\left(x_{0}=0\right)$ is characterized by

$$
\Phi\left(x_{k}\right)=\min _{x \in \mathcal{K}_{k}\left(A^{\mathrm{T}} A, A^{\mathrm{T}} b\right)} \Phi(x)
$$

where

$$
\Phi(x):=\frac{1}{2} x^{\mathrm{T}} A^{\mathrm{T}} A x-x^{\mathrm{T}} A^{\mathrm{T}} b .
$$

Determination of the minimizer

Perform sequential linear searches along $A^{\mathrm{T}} A$-conjugate directions

$$
p_{0}, p_{1}, \ldots, p_{k-1}
$$

that span $\mathcal{K}_{k}\left(A^{\mathrm{T}} A, A^{\mathrm{T}} b\right)$.
Determine x_{k} from x_{k-1} and p_{k-1} according to

$$
x_{k}:=x_{k-1}+\alpha_{k-1} p_{k-1}
$$

where $\alpha_{k-1} \in \mathbb{R}$ solves

$$
\min _{\alpha \in \mathbb{R}} \Phi\left(x_{k-1}+\alpha p_{k-1}\right) .
$$

Residual Error

Introduce the residual error associated with x_{k} :

$$
r_{k}:=A^{\mathrm{T}} b-A^{\mathrm{T}} A x_{k} .
$$

Then

$$
p_{k}:=r_{k}+\beta_{k-1} p_{k-1}
$$

Choose β_{k-1} so that p_{k} is $A^{\mathrm{T}} A$-conjugate to the previous search directions:

$$
p_{k}^{\mathrm{T}} A^{\mathrm{T}} A p_{j}=0, \quad 1 \leq j \leq k-1
$$

Discrepancy

The discrepancy associated with x is

$$
d_{k}=b-A x_{k}
$$

Then

$$
r_{k}=A^{\mathrm{T}} d_{k}
$$

It was shown by Hestenes and Stiefel that

$$
\left\|d_{k+1}\right\| \leq\left\|d_{k}\right\| ; \quad\left\|x_{k+1}\right\| \geq\left\|x_{k}\right\| .
$$

Algorithm (CGLS)

$$
\begin{array}{ll}
x_{0}:=0 ; & d_{0}=b ; \quad r_{0}=A^{\mathrm{T}} b \\
p_{0}=r_{0} ; & t_{0}=A p_{0}
\end{array}
$$

for $k=1,2, \ldots$ until stopping criterion is satisfied

$$
\begin{aligned}
\alpha_{k} & =\left\|r_{k-1}\right\|^{2} /\left\|t_{k-1}\right\|^{2} \\
x_{k} & =x_{k-1}+\alpha_{k} p_{k-1} ; \\
d_{k} & =d_{k-1}-\alpha_{k} t_{k-1} ; \\
r_{k} & =A^{\mathrm{T}} d_{k} \\
\beta_{k} & =\left\|r_{k}\right\|^{2} /\left\|r_{k-1}\right\|^{2} \\
p_{k} & =r_{k}+\beta_{k} p_{k-1} \\
t_{k} & =A p_{k}
\end{aligned}
$$

end

Example: a Toy Problem

An invertible 2×2-matrix A,

$$
y_{j}=A x_{*}+\varepsilon_{j}, \quad j=1,2 .
$$

Preimages,

$$
x_{j}=A^{-1} y_{j}, \quad j=1,2,
$$

solution by iterative methods: semiconvergence.
Write

$$
B=A x_{*}+E, \quad E \sim \mathcal{N}\left(0, \sigma^{2} I\right)
$$

and generate a sample of data vectors, $b_{1}, b_{2}, \ldots, b_{n}$
Solve with CG

When should one stop iterating?

Let

$$
A x=b_{*}+\varepsilon=A x_{*}+\varepsilon=b,
$$

Approximate information

$$
\|\varepsilon\| \approx \eta
$$

where $\eta>0$ is known. Write

$$
\left\|A\left(x-x_{*}\right)\right\|=\|\varepsilon\| \approx \eta
$$

Any solution satisfying

$$
\|A x-b\| \leq \tau \eta
$$

is reasonable.
Morozov discrepancy principle

EXAMPLE: NUMERICAL DIFFERENTIATION

Let $f:[0,1] \rightarrow \mathbb{R}$ be a differentiable function, $f(0)=0$.

$$
\text { Data }=f\left(t_{j}\right)+\text { noise }, \quad t_{j}=\frac{j}{n}, \quad j=1,2, \ldots n
$$

Problem: Estimate $f^{\prime}\left(t_{j}\right)$.
Direct numerical differentiation by, e.g., finite difference formula does not work: the noise takes over.

Where is the inverse problem?

Formulation as an inverse problem

Denote $g(t)=f^{\prime}(t)$. Then,

$$
f(t)=\int_{0}^{t} g(\tau) d \tau
$$

Linear model:

$$
\text { Data }=y_{j}=f\left(t_{j}\right)+e_{j}=\int_{0}^{t_{j}} g(\tau) d \tau+e_{j}
$$

where e_{j} is the noise.

Discretization

Write

$$
\int_{0}^{t_{j}} g(\tau) d \tau \approx \frac{1}{n} \sum_{k=1}^{j} g\left(t_{k}\right)
$$

By denoting $g\left(t_{k}\right)=x_{k}$,

$$
y=A x+e,
$$

where

$$
A=\frac{1}{n}\left[\begin{array}{cccc}
1 & & & \\
1 & 1 & & \\
\vdots & & \ddots & \\
1 & & & 1
\end{array}\right]
$$

