Ville Turunen

Mat-1.152

Special Course in Functional Analysis:
(Non-)Commutative Topology

Duration: 12 times 90-minute lectures, 6 times 90-minute exercise sessions.

What is this good for? You may learn something about functional an-
alytic framework of topology. And you will get an access to more advanced
literature on non-commutative geometry, a quite recent topic in mathematics
and mathematical physics.

What the reader is assumed to know? The prerequisite for this course
is some elementary understanding of Banach spaces. Of course, it helps if
the reader already knows some topology, but we shall explicitly introduce
every major mathematical tool we need. We have carefully tried to keep the
presentation as simple as possible. Well, the introducing section may contain
many unfamiliar concepts, but do not worry: everything will be made precise.
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1 Informal introduction

These lecture notes present a fundamental relationship between topology,
measure theory and algebra. Briefly, if we want to study properties of a space
X, we may alternatively examine some algebra of functions on X. With suit-
able topological restrictions, there will be a bijective correspondence between
spaces and algebras (equivalence of categories, if you insist). Topology and
measure theory of X can then be stated in the terms of a topological function
algebra. And it will turn out that the tools that are developed for the study
of function algebras work as well for non-commutative algebras.

Let us begin with a trivial example. Let X be a finite set. Let A = F(X)
be the set of the complex-valued functions f : X — C. Then A is naturally
a C-vector space:

(f +9)(@) = f(x) +g(x),  Af)@):=Af(z)

for every f,g € A and A € C. Moreover, A is an algebra when endowed with
the product

(f9)(@) = f(x) g(x)

and with the unit element 1 = 1 4, which is the constant function 1(z) = 1.
Let Hom(A, C) denote the set of algebra homomorphisms 4 — C. When
x € X, the evaluation mapping

(f = f(2): A=C

is a homomorphism. Hence we may think that X is a subset of Hom(A, C).
Actually, it turns out that the evaluation mappings are the only homomor-
phisms A — C. Therefore we may even claim

X = Hom(A,C).

It can be proven that every isomorphism A — A arises from a bijection
X — X. And if ) #£ I C X, it is easy to see that

IT:={feA|Vrel: fx)=0}

is an ideal of the algebra A, and that there are no other ideals; thus the
non-empty subsets of X are in bijective correspondence with the ideals of A.

Any X : X — C defines a linear functional A : A — C by

Af =" f(w) M),

zeX
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which can be thought as an integral with respect to the A-weighted counting
measure on X; conversely, any linear functional on A arises this way.

From analysis point of view, the discrete topology is the most reason-
able topology for a finite set X, and the counting measure is the natural
choice for measure theory. We should not endow an infinite set with the
discrete topology nor with the counting measure. Instead, non-trivial topol-
ogy and measure theory will be necessary. The framework is the theory of
commutative C*-algebras (“C-star-algebra”), an extremely beautiful branch
of functional analysis. In essence, this theory boils down to the following:

Theorem. Compact Hausdorff spaces X and Y are homeomorphic if and
only if the function algebras C(X) and C(Y) of complez-valued continuous
functions are isomorphic.

Thus the topological and measure theoretic information of some topolog-
ical space X is equivalent to the topologic-algebraic information of C'(X).
The same phenomenon occurs also for differentiability properties. We may
study directly the geometry of a space, but as well we may study algebras
of functions on it! This is called “commutative geometry”, as function
algebras are commutative. Now this remark almost forces us to generalize:
We may study certain non-commutative algebras using similar tools as in the
commutative case. Hence the name “non-commutative geometry”.

The reader may wonder why these themes should be relevant. We have
already expressed the nice connections between different branches of math-
ematics. Let us go back in the history: In 1925, Werner Heisenberg (1901-
1976) and Erwin Schrodinger (1887-1961) initiated the quantum mechanics.
Heisenberg applied matrix algebras, while Schrodinger practically studied
Fourier analysis, but their theories were essentially equivalent. However, a
precise mathematical foundation for quantum physics was lacking. This was
the main reason for Janos von Neumann (1903-1957) to develop the Hilbert
spaces and the spectral theory of normal operators in 1929-1930. In this
context, a quantum mechanical system is presented as a partial differential
equation (Schrédinger equation) on a Hilbert space H, where unit vectors
®» € H (||¢|| = 1) are states of the system. The measurable quantities, or
observables, of the system are the self-adjoint linear operators (A* = A) on
‘H. Also the unbounded operators are interesting, for instance the location
and momentum operators on L?(R"). When we measure a quantity, the re-
sult is not the full information about the observable but merely a value from
the spectrum of the operator (e.g. try to locate a particle in the space). The
interesting thing is then to find a spectral decomposition of an observable,
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analogous to the diagonalization of a Hermitian matrix.

Well, this is not a physical Theory of Everything. Anyhow, £(H) is the
natural first stage in developing the operator algebras. In 1936, the next
ingenious step was the theory of von Neumann algebras, capturing some
measure theoretic properties of classical L*°-type spaces. These algebras
were a special case of C*-algebras, whose theory emerged in the early of
1940s mainly by Israil Gelfand (1913-).

Practical definition. A C*-algebra A is a norm closed involutive subal-
gebra of L(H) for some Hilbert space H.

Equivalent abstract definition. A C*-algebra A is a Banach space and
a C-algebra with involution x — x* such that

lzyll < llzll flyll,  11all =1, [la"z]| = [|=|?
for every x,y € A.

Gelfand’s idea was to look at a “mirror reflection” of a commutative
algebra. Actually, this approach can be dated back at least to Hilbert’s
Nullstellensatz in algebraic geometry, in 1893. Let A be a commutative C*-
algebra. Let X = Hom(A, C) be the set of algebra homomorphisms .4 — C.
The Gelfand transform of an element f € A is the function f: X —-C
defined by

fla) = x(f),

where z € X = Hom(A,C). This seems astonishingly simple, but is fun-
damental. Now Gelfand proved that X is a compact Hausdorff space in
the natural topology inherited from the weak*-topology of the dual space
A" = L(A,C). Moreover:

Gelfand—Naimark Theorem (1943). Any commutative C*-algebra is
isometrically isomorphic to the algebra C(X) for some compact Hausdorff
space X.

Gelfand—Naimark Theorem is the starting point of the non-commutative
geometry, which was initiated by Alain Connes in the 1980s. By now, this
huge subject contains such topics as Hopf algebras and quantum groups, K-
theory for operator algebras, non-commutative integrodifferential calculus,
non-commutative manifolds, and so on. This machinery has been applied
e.g. in particle physics, quantum field theory and string theory.

b}



However, within the limited time we have, we only present some of the
early fundamental results of topology and operator algebras. This hopefully
provides a solid background for the reader to investigate non-commutative
geometry further.

To distill some of the essential results that will be obtained in these
lecture notes, we present a “dictionary” relating topology, measure theory
and algebra; here X is a compact Hausdorff space:

Topology / Measure theory <« Algebra
C(X) <« commutative C*-algebra A
homeomorphism X — X <« isomorphism A — A
point € X <« maximal ideal € A or

homomorphism A — C
closed ideal C A or
quotient algebra A/ideal
spectrum of an element € A
A separable

JfeA: fP=f0#£f#1
bounded linear

functional A — C

positive linear

functional A — C

!

non-empty closed subset C X

range of f € C(X)

X metrizable

X disconnected
complex measure on X

|17
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positive measure on X
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Appendix on set theoretical notation power

set

When X is a set, P(X) denotes the family of all subsets of X (the power set, imafge
sometimes denoted by 2%). The cardinality of X is denoted by |X|. If J is Premaee
a set and S; C X for every j € J, we write

Utsilienr =S, ({Siliedt=(]5;

jeJ jeJ
ff.X—-Y UcCX,andV CY, we define
fU):={f(z) |z €U} (image),
f*(V):={re X | f(x) €V} (preimage).



Appendix on Axiom of Choice

It may be surprising, but the Zermelo-Fraenkel axiom system does not imply
the following statement (nor its negation):

Axiom of Choice for Cartesian Products: The Cartesian product of
non-empty sets 1s non-empty.

Nowadays there are hundreds of equivalent formulations for the Axiom
of Choice. Next we present other famous variants: the classical Axiom of
Choice, the Law of Trichotomy, the Well-Ordering Axiom, the Hausdorff
Maximal Principle and Zorn’s Lemma. Their equivalence is shown in [14].

Axiom of Choice: For every non-empty set J there is a function f :
P(J) — J such that f(I) € I when I # 0.

Let A, B be sets. We write A ~ B if there exists a bijection f : A — B,
and A < B if there is a set C C B such that A ~ C. Notion A < B means
A < B such that not A ~ B.

Law of Trichotomy: Let A, B be sets. Then A< B, A~ B or B < A.

A set X is partially ordered with an order relation R C X x X if R
is reflexive ((z,z) € R), antisymmetric ((z,y), (y,2) € R = x = y) and
transitive ((z,y), (y,2) € R = (z,2) € R). A subset C C X is a chain if
(z,y) € Ror (y,z) € R for every x,y € C. An element x € X is mazimal if
(x,y) € R implies y = x.

Well-Ordering Axiom: FEvery set is a chain for some order relation.

Hausdorff Maximal Principle: Any chain is contained in a mazimal
chain.

Zorn’s Lemma: A non-empty partially ordered set where every chain has
an upper bound has a mazximal element.



2 Algebras algebra

unit
Algebra. A vector space A over the field C is an algebra if there exists an
element 14 € A\ {0} and a mapping A x A — A, (z,y) — zy, satisfying

z(yz) = (zy)z,

(y+2)=ay+zz, (v+y)z=21x2+yz,
Mzy) = (A\x)y = z(\y),
lyr=xz=zxly

8

for every x,y,2 € A and A € C. We briefly write zyz := x(yz). The element
1 := 14 is called the unit of A, and an element = € A is called invertible
(with the unique inverse =) if there exists 2~ € A such that

rlr=1=ax""

If 2y = yx for every x,y € A then A is called commutative.

Warnings: In some books the algebra axioms allow 14 to be 0, but then
the resulting algebra is simply {0}; we have omitted such a triviality. In
some books the existence of a unit is omitted from the algebra axioms; what
we have called an algebra is there called a unital algebra.

Examples of algebras.

1. Cis the most important algebra. The operations are the usual ones for
complex numbers, and the unit element is 1¢c = 1 € C. Clearly C is a
commutative algebra.

2. The algebra F(X) :={f | f: X — C} of complex valued functions on
a (finite or infinite) set X is endowed with the same algebra structure
as in the example in “Informal introduction” section (pointwise opera-
tions). Function algebras are commutative, because C is commutative.

3. The algebra L(V):={A:V — V | Ais linear} of linear operators on
a vector space V' # {0} over C is endowed with the usual vector space
structure and with the multiplication (A, B) +— AB (composition of
operators); the unit element is 1) = (v — v) : V' — V, the identity
operator on V. This algebra is non-commutative if V' is at least two-
dimensional.



Exercise. Let A be an algebra and z,y € A. Prove the following claims:
(a) If z, zy are invertible then y is invertible.
(b) If zy, yx are invertible then z,y are invertible.

Exercise. Give an example of an algebra A and elements =,y € A such
that xy = 14 # yx. Prove that then (yz)? = yz # 0. (Hint: Such an algebra
is necessarily infinite-dimensional).

Spectrum. Let A be an algebra. The spectrum o(z) of an element z € A
is the set

oa(z) =oc(x) ={XA € C: A1 — x is not invertible}.

Examples of invertibility and spectra.

1. An element A € C is invertible if and only if A # 0; the inverse of an
invertible \ is the usual A™' = 1/\. Generally, oc()\) = {\}.

2. An element f € F(X) is invertible if and only if f(z) # 0 for every = €
X. The inverse of an invertible f is g with g(z) = f(z)™!. Generally,

orx)(f) = f(X) = {f(2) | v € X}.

3. An element A € L(V) is invertible if and only if it is a bijection (if and
only if 0 € orv)(4)).

Exercise. Let A be an algebra and z,y € A. Prove the following claims:
) 1 — yx is invertible if and only if 1 — xy is invertible.

(a
(b) o(yz) C o(zy) U{0}.
(c) If z is invertible then o(zy) = o(yx).

Ideals. Let A be an algebra. An ideal J C A is a vector subspace J # A
satisfying
Vee AVye J : zy,yx € J,

ie. 2J,Jx C J for every x € A. A mazimal ideal is an ideal not contained
in any other ideal.

Warning. In some books our ideals are called proper ideals, and there ideal
is either a proper ideal or the whole algebra.
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Remark. Let J C A be an ideal. Because 1 = x for every x € A, we
notice that 1 ¢ J. Therefore an invertible element x € A cannot belong to
an ideal (since z7 'z =1 & J).

Examples of ideals. Intuitively, an ideal of an algebra is a subspace re-
sembling a multiplicative zero; consider equations 0 = 0 = Ox.

1. Let A be an algebra. Then {0} C A is an ideal.
2. The only ideal of C is {0} C C.
3. Let X be aset, and ) # S C X. Now
() :={f e F(X) [Vx € S : f(x) =0}

is an ideal of the function algebra F(X). If x € X then Z({z}) is
a maximal ideal of F(X), because it is of co-dimension 1 in F(X).
Notice that Z(S) C Z({z}) for every x € S; an ideal may be contained
in many different maximal ideals (cf. Krull’s Theorem in the sequel).

4. Let X be an infinite-dimensional Banach space. The set
LC(X) :={Ae L(X) | Ais compact}

of compact linear operators X — X is an ideal of the algebra £(X) of
bounded linear operators X — X.

Theorem (W. Krull). An ideal is contained in a mazimal ideal.

Proof. Let J be an ideal of an algebra A. Let P be the set of those ideals
of A that contain J. The inclusion relation is the natural partial order on
P:; the Hausdorff Maximal Principle says that there is a maximal chain
C CP. Let M:=JC. Clearly J C M. Let A€ C, z,y € M and z € A.
Then there exists Z € C' such that z,y € Z, so that

MeEICM, z+yeICM, xzzzxelCM,

moreover,
1e (JA\D) =A\ [ JTZT=A\M,
TeC TeC
so that M # A. We have proven that M is an ideal. The maximality of the
chain C implies that M is maximal O
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Quotient algebra. Let A be an algebra with an ideal J. For x € A, let
us denote

7] =2+ T ={z+jljeT})

Then the set A/J = {[z] | + € A} can be endowed with a natural algebra
structure: Let us define

A= A2l el + [yl =+l [2llyl = loyl, 1y = [14];

first of all, these operations are well-defined, since if A € C and 7, j1,j2 € J
then

Mz +7) = dx+)Aj€[\],
(z+j)+W+i) = (@+y) ++72) €lr+yl,
(x+j)(y+72) = xy+ i1y +xjs+ jije € [y

Secondly, [14] =14+ J # J = [0], because 14 ¢ J. Moreover,

(x4 71)(Aa+d2) = x+j1+xj2+ jije € [2],
(La+jo)(@+j1) = 4+ j1+ jax + joj1 € [2].

Now the reader may verify that A/J is really an algebra; it is called the
quotient algebra of A modulo J.

Remarks: Notice that A/J is commutative if A is commutative. Also
notice that [0] = J is the zero element in the quotient algebra.

Homomorphisms. Let A and B be algebras. A mapping ¢ : A — B is
called a homomorphism if it is a linear mapping satisfying

o(xy) = ¢(x)o(y)

for every z,y € A (multiplicativity) and
d(1y) = 1p.

The set of all homomorphisms A — B is denoted by
Hom(A, B).

A bijective homomorphism ¢ : A — B is called an isomorphism, denoted by

o A=B.

12



Examples of homomorphisms.

1. The only homomorphism C — C is the identity mapping, Hom(C, C) =
{z > z}.

2. Let z € X. Let us define the evaluation mapping ¢, : F(X) — C by
f+— f(x). Then ¢, € Hom(F(X),C).

3. Let J be an ideal of an algebra A, and denote [z] = x + J. Then
(z — [2]) € Hom(A, A/T).

Exercise. Let ¢ € Hom(A,B). If x € A is invertible then ¢(z) € B is
invertible. For any x € A, oz(¢(z)) C oa(x).

Exercise. Let A be the set of matrices

(8‘ g) (a, B € C).

Show that A is a commutative algebra. Classify (up to an isomorphism)
all the two-dimensional algebras. (Hint: Prove that in a two-dimensional
algebra either 3z #0: 22 =0or Jz ¢ {1,—-1}: 22 =1.)

Proposition. Let A and B be algebras, and ¢ € Hom(A, B). Then ¢(A) C B
is a subalgebra, Ker(¢) := {z € A | ¢(z) = 0} is an ideal of A, and
A/Ker(¢) = ¢(A).

Exercise. Prove the previous Proposition.
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3 Topology (and metric), basics

The reader should know metric spaces; topological spaces are their general-
ization, which we soon introduce. Feel free to draw some clarifying schematic
pictures on the margins!

Metric space. A function d : X x X — [0,00[ is called a metric on the
set X if for every z,y, z € X we have

o d(z,y) =0z =y

o d(z,y) = d(y,v);

o d(x,z) <d(x,y) + d(y, z) (triangle inequality).
Then (X, d) (or simply X when d is evident) is called a metric space. Some-
times a metric is called a distance function.
Topological space. A family of sets 7 C P(X) is called a topology on the
set X if

1. 0,X eT;

2. UCT=UET,

3.UVer=UnVer.

Then (X, 7) (or simply X when 7 is evident) is called a topological space.
The sets U € 7 are called open sets, and their complements X \ U are closed
sets.

Thus in a topological space, the empty set and the whole space are always
open, any union of open sets is open, and an intersection of finitely many
open sets is open. Equivalently, the whole space and the empty set are always
closed, any intersection of closed sets is closed, and a union of finitely many
closed sets is closed.

Metric topology. Let (X,d) be a metric space. We say that the open ball
of radius r > 0 centered at v € X is

By(z,r) = {y € X | d(w,y) <r}.
The metric topology 14 of (X,d) is given by

definition

Uery, & YxeUIr>0: Bylx,r)CU.
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A topological space (X, 7) is called metrizable if there is a metric d on X
such that 7 = 7.

Non-metrizable spaces. There are plenty of non-metrizable topological
spaces, the easiest example being X with more than one point and with
7 ={0,X}. If X is an infinite-dimensional Banach space then the weak*-
topology of X’ := £(X, C) is not metrizable. The distribution spaces D’(R"),
S'(R™) and &'(R™) are non-metrizable topological spaces. We shall later
prove that for the compact Hausdorff spaces metrizability is equivalent to
the existence of a countable base.

Base. Let (X, 7) be a topological space. A family B C 7 of open sets is
called a base (or basis) for the topology 7 if any open set is a union of some
members of B, i.e.

VUer3dB c B: U=|JB.
Examples. Trivially a topology 7 is a base for itself (VU € 7 : U = |J {U}).
If (X, d) is a metric space then

B :={By(z,r) |z € X, r>0}

constitutes a base for 7.

Neighborhoods. Let (X, 7) be a topological space. A neighborhood of
x € X is any open set U C X containing x. The family of neighborhoods of
x € X is denoted by

Vo(z)={Uer|zeU}

(or simply V(z), when 7 is evident).

The natural mappings (or the morphisms) between topological spaces are
continuous mappings.

Continuity at a point. Let (X, 7y) and (Y, 7y) be topological spaces. A
mapping f : X — Y is continuous at v € X if

YV eV, (f(z)) AU € Vo (2): f(U) C V.

15



Exercise. Let (X,dx) and (Y, dy) be metric spaces. A mapping f : X — Y
is continuous at z € X if and only if

Ve>030>0Vye X : dy(z,y) <d=dy(f(x), f(y) <e
if and only if

dX(xnv :U) —n—oo 0= dy(f(:l?n), f(x)) —n—oo 0

for every sequence (z,)5, C X (that is, z,, — = = f(z,) — f(2)).

Continuity. Let (X,7x) and (Y, 7y) be topological spaces. A mapping
f: X =Y is continuous, denoted by f € C(X,Y), if

YWery: fHV) €y,

where [1(V) = {z € X | f(z) € V}; i.e. f is continuous if preimages of
open sets are open (equivalently, preimages of closed sets are closed). In the
sequel, we briefly write

C(X):=C(X,C),
where C has the metric topology with the usual metric (A, p) — |A — pl.

Proposition. Let (X,7x) and (Y, 7y) be topological spaces. A mapping
f X =Y is continuous at every x € X if and only if it is continuous.

Proof. Suppose f : X — Y is continuous, z € X, and V € V. .(f(2)).
Then U := f~1(V) is open, z € U, and f(U) = V, implying the continuity
at v € X.

Conversely, suppose f : X — Y is continuous at every z € X, and
let V. C Y be open. Choose U, € V., (z) such that f(U,) C V for every
z € f~1(V). Then

= U oo
zef~1(V)

is open in X (]
Exercise. Let X be a topological space. Show that C'(X) is an algebra.

Exercise. Prove thatif f: X — Y and g : Y — Z are continuous then
go f: X — Z is continuous.
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Topological equivalence: homeomorphism. Let (X, 7x) and (Y, 7y)
be topological spaces. A mapping f : X — Y is called a homeomorphism if
it is a bijection, f € C(X,Y) and f~' € C(Y, X). Then X and Y are called
homeomorphic or topologically equivalent, denoted by X =Y or f: X 2Y;
more specifically, f: (X, 7x) = (Y, 7v).

Note that from the topology point of view, homeomorphic spaces can be
considered equal.

Examples. Of course (x — z) : (X,7) = (X,7). The reader may check
that (z +— x/(1+|z])) : R =] —1,1[. Using algebraic topology, one can prove
that R™ = R” if and only if m = n (this is not triviall).

Metric equivalence and isometries. Metrics dq, ds on a set X are called
equivalent if there exists m < oo such that

M_l dl(x7y) S dg(l‘,y> S M dl(xay)

for every z,y € X. An isometry between metric spaces (X, dy) and (Y, dy)
is a mapping f : X — Y satisfying dy(f(z), f(y)) = dx(z,y) for every
x,y € X; f is called an isometric isomorphism if it is a surjective isometry
(hence a bijection with an isometric isomorphism as the inverse mapping).

Examples. Any isometric isomorphism is a homeomorphism. Clearly the
unbounded R and the bounded | — 1, 1] are not isometrically isomorphic. An
orthogonal linear operator A : R” — R" is an isometric isomorphism, when
R™ is endowed with the Euclidean norm. The forward shift operator on ¢(?(Z)
is an isometric isomorphism, but the forward shift operator on ¢?(N) is only
a non-surjective isometry.

Hausdorff space. A topological space (X, 7) is a Hausdorff space if any
two distinct points have some disjoint neighborhoods, i.e.

Ve,y e X 3U e V(x) AV eV(y): e#£y=UNV =1.

Examples.

1. If 7, and 7» are topologies of X, 77 C 79, and (X, 7) is a Hausdorff
space then (X, 75) is a Hausdorff space.

2. (X,P(X)) is a Hausdorff space.
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3. If X has more than one point and 7 = {@), X'} then (X, 7) is not Haus-
dorft.

4. Clearly any metric space (X, d) is a Hausdorff space; if z,y € X, x # v,
then By(z,r) N By(y,r) = 0, when r < d(x,y)/2.

5. The distribution spaces D'(R™), §'(R™) and &'(R") are non-metrizable
Hausdorff spaces.

Exercise. Let X be a Hausdorff space and x € X. Then {z} C X is a
closed set.

Finite product topology. Let X,Y be topological spaces with bases
Bx, By, respectively. Then a base for the product topology of X xY =
{(z,y) |z€X, yeY}is

{U><V|U€B)(, VEBy}.

Exercise. Let X,Y be metrizable. Prove that X x Y is metrizable, and
that N .
(@nrn) = (2,y) & 2, wand y, >y

18



Closure and boundary. Let (X, 7) be a topological space. Let S C X;
its closure cl,(S) = S is the smallest closed set containing S. The set S is
dense in X if S = X. The boundary of S'is 0,5 =05 :=SN X\ S.

Exercise. Let (X, 7) be a topological space. Let S, S, Sy C X. Show that

(a)@Z@_,
(b) S C 5,
(c) S =5,
(

Exercise. Let X be a set, S,51,5 C X. Let ¢ : P(X) — P(X) satisty
Kuratowski’s closure axioms (a-d):

(a) c(0) =0,

(b) 5 C e(5),

(¢) ec(S)) = e(9),

(d) C(Sl U Sg) = C(Sl) U C(SQ).

Show that 7 := {U C X | ¢(X \U) = X \ U} is a topology of X, and that
cl(S) = ¢(S) for every S C X.

Exercise. Let (X, 7) be a topological space. Prove that
(a)zesS & YU eV(x): UNS#0.
(b) S=SUdS.
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4 Topological algebras

Topological algebra. A topological space and an algebra A is called a
topological algebra if

1. {0} C A is a closed subset, and

2. the algebraic operations are continuous, i.e. the mappings

(Nz)— ) CxA— A,
(ry) = aty): AXA— A,
(<x>y)'—’$y) AXAH.A

are continuous.

Remark 1. Similarly, a topological vector space is a topological space and a
vector space, in which {0} is a closed subset and the vector space operations
(A, z) — Az and (z,y) — x + y are continuous. And the reader might now
guess how to define for instance a topological group...

Remark 2. Some books omit the assumption that {0} should be a closed
set; then e.g. any algebra A with a topology 7 = {0}, A} would become a
topological algebra. However, such generalizations are seldom useful. And it
will turn out soon, that actually our topological algebras are indeed Hausdorff
spaces! {0} being a closed set puts emphasis on closed ideals and continuous
homomorphisms, as we shall see later in this section.

Examples of topological algebras.

1. The commutative algebra C endowed with its usual topology (given by
the absolute value norm z — |z|) is a topological algebra.

2. If (X, z +— ||z]) is a normed space, X # {0}, then £(X) is a topological
algebra with the norm

A ||A|l = sup ||Azx].

zeX:||z||<1
Notice that £(C) = C, and £(X) is non-commutative if dim(X) > 2.
3. Let X be a set. Then

Fo(X) :={f € F(X) | f is bounded}
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is a commutative topological algebra with the supremum norm
= I == sup | f(z)].
zeX

Similarly, if X is a topological space then the algebra
Co(X) :=={f € C(X) | fis bounded}

of bounded continuous functions on X is a commutative topological
algebra when endowed with the supremum norm.

. If (X, d) is a metric space then the algebra
Lip(X) :={f : X — C| f is Lipschitz continuous and bounded}

is a commutative topological algebra with the norm

f = |[f]} = max {335 ()], iilj%} _

. E(R) := C*(R) is a commutative topological algebra with the metric

o0

—m m(f - )
(f,9) — Z 2 :lipm—(fggy where p,,,(f) = Mgﬂ%{gm |F®) ()]

m=1

This algebra is not normable.

. The topological dual £&'(R) of £(R), the so called space of compactly
supported distributions. There the multiplication is the convolution,
which is defined for nice enough f, g by

(rg) = frg, (f*g)a) = / T fa—y) oly) dy.

The unit element of £(R) is the Dirac delta distribution dy at the origin
0 € R. This is a commutative topological algebra with the weak*-
topology, but it is not metrizable.

. Convolution algebras of compactly supported distributions on Lie groups
are non-metrizable topological algebras; such an algebra is commuta-
tive if and only if the group is commutative.

Remark. Let A be a topological algebra, U C A open, and S C A. Due
to the continuity of (A, z) — Az): Cx A — A theset \U = {\u|ue U}
is open if A # 0. Due to the continuity of ((z,y) — x+y): Ax A — A the
set U+ S ={u+s|uelU, seS}isopen.
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Exercise. Topological algebras are Hausdorff spaces.

Remark. Notice that in the previous exercise you actually need only the
continuities of the mappings (z,y) — x 4+ y and x — —z, and the fact that
{0} is a closed set. Indeed, the commutativity of the addition operation is
not needed, so that you can actually prove a proposition “Topological groups
are Hausdorff spaces”!

Exercise. Let A be an algebra and a normed space. Prove that it is a
topological algebra if and only if there exists a constant C' < oo such that

lzyll < C ]| lyll

for every z,y € A.

Closed ideals

In topological algebras, the good ideals are the closed ones.

Examples. Let A be a topological algebra; then {0} C A is a closed ideal.
Let B be another topological algebra, and ¢ € Hom(.A4, B) be continuous.
Then it is easy to see that Ker(¢) = ¢~1({0}) C A is a closed ideal; this is
actually a canonical example of closed ideals.

Proposition. Let A be a topological algebra and J its ideal. Then either
J=AorJ CAisa closed ideal.

Proof. Let A € C, ,y € J, and z € A. Take V € V(\z). Then there
exists U € V() such that AU C V' (due to the continuity of the multiplication
by a scalar). Since x € J, we may pick zo € J NU. Now

Az e IN(NU)C TNV,

which proves that Az € J. Next take W € V(z+y). Then for some U € V(z)
and V' € V(y) we have U +V C W (due to the continuity of the mapping
(x,y) — x +vy). Since z,y € J, we may pick zo € J NU and yp € J N V.
Now

rHyeINU+V)CINW,

which proves that  +y € J. Finally, we should show that xz, zx € J, but
this proof is so similar to the previous steps that it is left for the reader as
an easy task 0
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Topology for quotient algebra. Let J be an ideal of a topological alge-
bra A. Let T be the topology of A. For x € A, define [x] = x + 7, and let
[S] ={[z] | # € S}. Then it is easy to check that {[U] | U € 7} is a topology
of the quotient algebra A/7; it is called the quotient topology.

Remark. Let A be a topological algebra and J be its ideal. The quotient
map (x — [z]) € Hom(A, A/J) is continuous: namely, if z € A and [V] €
Va7 ([z]) for some V € 7 then U :=V + J € V(z) and [U] = [V].

Lemma. Let J be an ideal of a topological algebra A. Then the algebra
operations on the quotient algebra A/J are continuous.

Proof. Let us check the continuity of the multiplication in the quotient
algebra: Suppose [z][y] = [zy] € [W], where W C A is an open set (recall
that every open set in the quotient algebra is of the form [W]). Then

xye W+ J.

Since A is a topological algebra, there are open sets U € Vy(x) and V' €
Valy) satistying

uovcw+J.

Eow U]l € Vayg([z]) and [V] € Vaz([y]). Furthermore, [U][V] C [W]

U+N)V+TJ)cUV+T CW+ T,

we have proven the continuity of the multiplication ([z],[y]) — [z][y]. As
an easy exercise, we leave it for the reader to verify the continuities of the
mappings (A, [z]) — Alz] and ([z], [y]) — [2] + [y] 0

Exercise. Complete the previous proof by showing the continuities of the
mappings (A, [z]) — Ale] and ([z], [y]) — [2] + [y].

With the previous Lemma, we conclude:

Proposition. Let J be an ideal of a topological algebra A. Then A/J is
a topological algebra if and only if J is closed.
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Proof. If the quotient algebra is a topological algebra then {[0]} = {J} is
a closed subset of A/J; since the quotient homomorphism is a continuous
mapping, J = Ker(z — [z]) C A must be a closed set.

Conversely, suppose J is a closed ideal of a topological algebra A. Then

we deduce that
(A/T)\AI0]} = [ANT]
is an open subset of the quotient algebra, so that {[0]} C A/J is closed O

Remark. Let X be a topological vector space and M be its subspace. The
reader should be able to define the quotient topology for the quotient vector
space X/M = {[z] ;= a2+ M | z € X}. Now X/M is a topological vector
space if and only if M is a closed subspace.

Let M C X be a closed subspace. If d is a metric on X then there is a
natural metric for X/M:

([2], ly]) = d([z], [y]) == inf d(z -y, 2),

zeM

and if X is a complete metric space then X/M is also complete. Moreover,
if x — ||z|| is a norm on X then there is a natural norm for X/M:

(2] = lfa] | := inf o — 2]
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5 Compact spaces

In this section we mainly concentrate on compact Hausdorff spaces, though
some results deal with more general classes of topological spaces. Roughly,
Hausdorftf spaces have enough open sets to distinguish between any two
points, while compact spaces “do not have too many open sets”. Combining
these two properties, compact Hausdorff spaces form an extremely beautiful
class to study.

Compact space. Let X be a set and K C X. A family S C P(X) is
called a cover of K if

K C US ;
if the cover S is a finite set, it is called a finite cover. A cover S of K C X
has a subcover 8’ C S if §’ itself is a cover of K.
Let (X, 7) be a topological space. An open cover of X is a cover U C T

of X. A subset K C X is compact (more precisely 7-compact) if every open
cover of K has a finite subcover, i.e.

vucrIu cu: Kcl|Ju=Kcl|Ju and U|< oo

We say that (X, 7) is a compact space if X itself is 7-compact.

Examples.

1. If 7y and 7 are topologies of X, 71 C 7o, and (X, 72) is a compact space
then (X, 1) is a compact space.

2. (X,{0,X}) is a compact space.

3. If | X| = oo then (X,P(X)) is not a compact space. Clearly any space
with a finite topology is compact. Even though a compact topology can
be of any cardinality, it is in a sense “not far away from being finite”.

4. A metric space is compact if and only if it is sequentially compact (i.e.
every sequence contains a converging subsequence).

5. A subset X C R"™ is compact if and only if it is closed and bounded
(Heine—Borel Theorem).

6. A theorem due to Frigyes Riesz asserts that a closed ball in a normed
vector space over C (or R) is compact if and only if the vector space is
finite-dimensional.
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Exercise. A union of two compact sets is compact.
Proposition. An intersection of a compact set and a closed set is compact.

Proof. Let K C X be a compact set, and C' C X be a closed set. Let U
be an open cover of K N C. Then {X \ C'} UU is an open cover of K, thus
having a finite subcover &’. Then U’ \ {X \ C} C U is a finite subcover of
K NC; hence K NC' is compact O

Proposition. Let X be a compact space and f : X — Y continuous. Then
f(X) CY is compact.

Proof. Let V be an open cover of f(X). Then U :={f~Y(V) |V € V}is
an open cover of X, thus having a finite subcover U’. Hence f(X) is covered

by {f(U) | U et} CV O

Corollary. If X is compact and f € C(X) then |f| attains its greatest
value on X (here |f|(x) :=|f(x)|) O

5.1 Compact Hausdorff spaces

Theorem. Let X be a Hausdorff space, A, B C X compact subsets, and
AN B =10. Then there exist open sets U,V C X such that AC U, BCV,
and UNV = 0. (In particular, compact sets in a Hausdorff space are closed.)

Proof. The proof is trivial if A =0 or B = (). So assume x € A and y € B.
Since X is a Hausdorff space and = # y, we can choose neighborhoods U,,, €
V(x) and V,, € V(y) such that U,, NV,, = 0. The collection P = {V,, |y €

B} is an open cover of the compact set B, so that it has a finite subcover
Po={Vay, [ 1<j<n,}CP
for some n, € N. Let

U, = ﬁ Usgy,-
j=1

Now O = {U, | x € A} is an open cover of the compact set A, so that it has
a finite subcover

O ={U,, |1<i<m}cCO.
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Then define .
v=Jo, v=UP..
i=1

It is an easy task to check that U and V have desired properties 0

Corollary. Let X be a compact Hausdorff space, x € X, and W € V(x).
Then there exists U € V(x) such that U C W.

Proof. Now {z} and X \ W are closed sets in a compact space, thus they
are compact. Since these sets are disjoint, there exist open disjoint sets

U,V C X such that z € U and X \ W C V; i.e.
reUcCX\VCW

Hencez e UCU CX\VCW O

Proposition. Let (X, 7x) be a compact space and (Y, 17y) a Hausdorff space.
A bijective continuous mapping f : X — Y is a homeomorphism.

Proof. Let U € 7x. Then X \ U is closed, hence compact. Consequently,
f(X '\ U) is compact, and due to the Hausdorff property f(X \ U) is closed.
Therefore (f~1)"Y(U) = f(U) is open O

Corollary. Let X be a set with a compact topology 1o and a Hausdorff
topology 1. If 1 C 15 then 7 = T5.

Proof. The identity mapping (z — z) : X — X is a continuous bijection
from (X, 1) to (X, 7) O

A more direct proof of the Corollary. Let U € 7. Since (X, 75) is
compact and X \ U is mp-closed, X \ U must be mp-compact. Now 71 C 7o,
so that X \ U is m-compact. (X, 7) is Hausdorff, implying that X \ U is
T1-closed, thus U € 7; this yields 7, C 7y OJ

Functional separation

A family F of mappings X — C is said to separate the points of the set X
if there exists f € F such that f(x) # f(y) whenever = # y. Later in these
notes we shall discover that a compact space X is metrizable if and only if
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C(X) is separable and separates the points of X.

Urysohn’s Lemma is the key result of this section:

Urysohn’s Lemma (19237). Let X be a compact Hausdorff space, A, B C
X closed non-empty sets, AN B = 0. Then there exists f € C(X) such that

0<f<1, fA)={0}, f(B)={1}.

Proof. The set QN [0, 1] is countably infinite; let ¢ : N — Q N [0,1] be a
bijection satisfying ¢(0) = 0 and ¢(1) = 1. Choose open sets Uy, U; C X
such that

AcUycUycU cU cX\B.

Then we proceed inductively as follows: Suppose we have chosen open sets
Us0), Ug(1), - - -, Up(ny such that

0(i) < ¢(7) = Usqiy) C Us(y)-

Let us choose an open set Ug(,+1) C X such that
$(i) < ¢(n+1) < 6(j) = Us(s) C Upurr) C Ustnrr) € Us(y)
whenever 0 < 4,5 < n. Let us define
r<0="U =0, s>1=1U,:=X.

Hence for each ¢ € Q we get an open set U, C X such that

Vr,seQ: r<s=U, CU,.
Let us define a function f : X — [0,1] by

f(z) :=inf{r: z€U}.

Clearly 0 < f <1, f(A) = {0} and f(B) = {1}.
Let us prove that f is continuous. Take x € X and € > 0. Take ;s € Q
such that
flx)—e<r<flz)<s< f(z)+eg

then f is continuous at z, since x € Uy \ U, and for every y € U, \ U, we have
/(4) — f(@)| <& Thus f € C(X) .

Corollary. Let X be a compact space. Then C(X) separates the points of
X if and only if X is Hausdorff.

Exercise. Prove the previous Corollary.
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Appendix on complex analysis

Let Q C C be open. A function f : ©Q — C is called holomorphic in €2,
denoted by f € H(2), if the limit

o) ot LEE D) = 1)

h—0 h

exists for every z € ). Then Cauchy’s integral formula provides a power
series representation

f2) =3 culz—a)"

n=0
converging uniformly on the compact subsets of the disk

D(a,r) ={z€C: |z —a| <r} C Y
here ¢, = f™(a)/n!, where f(© = f and f+D) = f),

Liouville’s Theorem. Let f € H(C) such that |f| is bounded. Then f is
constant, i.e. f(z) = f(0) for every z € C.

Proof. Since f € H(C), we have a power series representation

flz) = Z cn2"

n=0

converging uniformly on the compact sets in the complex plane. Thereby

1 27 ) 1 21 )
— |f(re®)? dgp = — Cn G 17T 1T
21 Jo 21 Jo o
1 2
_ ch fom prtm _/ el(n—m)¢ d(b
— 2m Jo

oo
_ Z ‘Cn’2T2n
n=0

for every r > 0. Hence the fact

0 1 2T )
S lefrt = o [ 1rre) 4o < sup ) < o0
n—=0 2m 0 zeC
implies ¢, = 0 for every n > 1; thus f(z) = ¢y = f(0) O
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Appendix on functional analysis

Let X,Y be normed spaces with norms x — ||z|[x and y — |ly||y, respec-
tively. The set of bounded linear mappings X — Y is denoted by £(X,Y);
the operator norm (A — ||A]|) : £(X,Y) — R is defined by

[Al} = sup[[Az]ly.

eX:|a|x<1

Let us denote the dual of a normed space X by X' := L(X,C).

Hahn—Banach Theorem. Let X be a normed vector space, M C X be a
vector subspace, and f: M — C a bounded linear functional. Then there is a

bounded linear functional F : X — C such that || f|| = || F|| and f(z) = F(x)
for every x € M O

Corollary. Let X is a normed space. Then

= F
el =, _max _ IF(@)

for every x € X O

Banach—Steinhaus Theorem (Uniform Boundedness Principle). Let
X, Y be Banach spaces and {T};}je; C L(X,Y). If

sup [Ty < o0
jeJ

for every x € X then sup ||T;]] < oo O
jed
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6 Banach algebras

Banach algebra. An algebra A is called a Banach algebra if it is a Banach
space satisfying
eyl < {l ]l flyll

for every z,y € A and
1] = 1.

The next exercise is very important:

Exercise. Let K be a compact space. Show that C(K) is a Banach algebra
with the norm f — || f|| = max.ex | f(2)].

Examples. Let X be a Banach space. Then the Banach space L£(X) of
bounded linear operators X — X is a Banach algebra, when the multiplica-
tion is the composition of operators, since

[AB]| < [lA] [|B]

for every A, B € £(X); the unit is the identity operator [ : X — X, x +— x.
Actually, this is not far away from characterizing all the Banach algebras:

Theorem. A Banach algebra A is isometrically isomorphic to a morm
closed subalgebra of L(X) for a Banach space X .

Proof. Here X := A. For z € A, let us define
m(z): A— A by m(x)y:=uxy.

Obviously m(z) is a linear mapping, m(zy) = m(z)m(y), m(1a) = Lza),
and

[m(z)| = sup |[lay]
yeA: |ly[<1
< sup (=]l lyl) = llz[| = |m(z)14]
yeA: |ly[<1
< m(@)]] |14l = lIm(2)][;

briefly, m = (z — m(x)) € Hom(A, L(.A)) is isometric. Thereby m(A) C
L(A) is a closed subspace and a Banach algebra O
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Exercise. Let a Banach space A be a topological algebra. Equip A with
an equivalent Banach algebra norm.

Exercise. Let A be a Banach algebra, and let x,y € A satisfy

=z, Y=y, zy=uyz

Show that either x = y or ||z —y|| > 1. Give an example of a Banach algebra
A with elements x,y € A such that 2°> = 2z # y = y* and ||z — y|| < 1.

Proposition. Let A be a Banach algebra. Then Hom(A,C) C A" and
lloll = 1 for every ¢ € Hom(A, C).

Proof. Let x € A, ||z|| < 1. Let

n

. E J

Yn = T,
J=0

where 20 := 1. If n > m then

™+ 2™t .+ 2
< el (U4 2l 4 A )
1_ ||x||n—m+1

1 — [||

Hyn - ym”

thus (y,)52, C A is a Cauchy sequence. There exists y = lim, .o y, € A,
because A is complete. Since 2" — 0 and

Yn(l—2)=1-— i (1 —x)yn,

we deduce y = (1 — z)~'. Suppose A\ = ¢(z), |\| > ||z||; now [[A\"'z| =
A7 []z]| < 1, so that 1 — A~z is invertible. Then

L= () =0 ((1- A - AT
= ¢o(1-X"z) o((1-X"T2)7")
(1= A6) 6 (1 - A"a)™) =0,

a contradiction; hence
Ve e A: [p(x)] < [,

that is ||¢|| < 1. Finally, ¢(1) = 1, so that ||¢|| =1 U
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Lemma. Let A be a Banach algebra. The set G(A) C A of its invertible
elements is open. The mapping (x — z~') : G(A) — G(A) is a homeomor-
phism.

Proof. Take z € G(A) and h € A. As in the proof of the previous Propo-
sition, we see that
r—h=x(1-2""h)

is invertible if || ||| < 1, that is k]| < [lz~'|~"; thus G(A) C A is
open.

The mapping x +— 27!

is clearly its own inverse. Moreover
l@—m)~" =27t = [A—27h) a7 —a7

< J@=a ) =1l = =D @ ) e
n=1

< |zl (Z =™+ ||h||n_1> —h—0 0;

n=1

!'is a homeomorphism O

hence z +— 2z~
Exercise. Let A be a Banach algebra. We say that z € A is a topological
zero divisor if there exists a sequence (y,,)5; C A such that ||y, | = 1 for all
n and

lim 2y, = 0= lim y,z.

(a) Show that if (x,,)°°, C G(A) satisfies z,, — x € OG(A) then ||z} — oo.
(b) Using this result, show that the boundary points of G(A) are topological

zero divisors.
(¢) In what kind of Banach algebras 0 is the only topological zero divisor?

Theorem (Gelfand, 1939). Let A be a Banach algebra and x € A. The
spectrum o(x) C C is a non-empty compact set.

Proof. Let 2 € A. Then o(z) belongs to a 0-centered disc of radius ||z||
in the complex plane: for if A € C, |\| > ||z|| then 1 — A\~'z is invertible,
equivalently A1 — x is invertible.

The mapping g : C — A, A — A1 — z, is continuous; the set G(A) C A
of invertible elements is open, so that

C\o(z) =g ' (G(A))
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is open. Thus o(x) € C is closed and bounded, i.e. compact by Heine-Borel.
The hard part is to prove the non-emptiness of the spectrum. Let us
define the resolvent mapping R : C\ o(z) — G(A) by

RO\ = (A1 — )L,

We know that this mapping is continuous, because it is composed of contin-
uous mappings

A=A —2z2):C\o(z) > G(A) and (yr—y ') :GA) — G(A).

We want to show that R is weakly holomorphic, that is fo R € H(C\ o(x))
for every f € A= L(A,C). Let z € C\ o(x), f € A'. Then we calculate

(foR)(z+h) = (fo R)(2) (R(Z+h) R(z ))

h = f

because f and R are continuous; thus R is weakly holomorphic.
Suppose |A| > [|z]|. Then

o0

> (@/A)

J=0

IRV = L =) = @ =2/ ) = A

= : 1 1
< A=A =
S W A = N = T

=0 0.

Thereby

(f o R)(A) =xj=o0 0
for every f € A’. To get a contradiction, suppose o(z) = ). Then fo R €
H(C) is 0 by Liouville’s Theorem (see Appendix), for every f € A’; the

Hahn-Banach Theorem says that then R(\) = 0 for every A € C; this is a
contradiction, since 0 & G(A). Thus o(z) # () O
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Exercise. Let A be a Banach algebra, z € A, Q@ C C an open set, and
o(z) C Q. Then

>0VyeA: ||y <d=o(x+y) C.

Corollary (Gelfand—Mazur). Let A be a Banach algebra where 0 € A is
the only non-invertible element. Then A is isometrically isomorphic to C.

Proof. Take z € A, x # 0. Since o(x) # 0, pick A(z) € o(z). Then
A(z)1 — z is non-invertible, so that it must be 0; z = A(z)1. By defining
A(0) = 0, we have an algebra isomorphism

A A— C.

Moreover, |A(z)] = [[A(2)1]| = ||z N

Exercise. Let A be a Banach algebra, and suppose that there exists C' < oo
such that

]l llyll < C flzyll

for every z,y € A. Show that A = C isometrically.

Spectral radius. Let A be a Banach algebra. The spectral radius of x € A
is
p(x) == sup [Af;
Ao (x)
this is well-defined, because due to Gelfand the spectrum in non-empty. In
other words, D(0, p(z)) = {A € C: |\ < p(x)} is the smallest O-centered

closed disk containing o(z) C C. Notice that p(z) < ||z||, since A1 —z =
A1 — z/A) is invertible if |A| > ||z]|.

Spectral Radius Formula (Beurling, 1938; Gelfand, 1939). Let A

be a Banach algebra, x € A. Then

p(x) = T [la V"
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Proof. For z = 0 the claim is trivial, so let us assume that x # 0. By
Gelfand’s Theorem, o(z) # (). Let A € o(x) and n > 1. Notice that in an
algebra, if both ab and ba are invertible then the elements a, b are invertible.
Therefore

A"l —z" = (A1 —x) (”2—5 A”lkxk) = (”Z_i )\"lkxk> (A1 —x)

k=0 k=0
implies that A" € o(z™). Thus |A"| < ||z"||, so that

p(x) = sup |\ <liminf |z
Ao (x) n—0o0

Let f € A" and A € C, |\| > ||z||. Then
FRQ) = f((M1=2)) =f (AT A=2"2)7)

(S
n=0
= A f(A ).
n=0

This formula is true also when |A| > p(x), because f o R is holomorphic in
C\ o(z) D C\D(0,p(x)). Hence if we define Ty ., € A" = L(A,C) by
Tyon(f) = f(A""2™), we obtain

up T (/)] = sup [f(A ") < 00 (when [A] > p()
ne ne

for every f € A’; the Banach—Steinhaus Theorem applied on the family
{7\ z.n}nen shows that

M), = sup || T znl < oo,
neN

so that we have

||>\_nl‘n” Hahn—:Banach Sup ’f()\_nxn)l
feA:|fl<t

= sup  [Then(f)]
feAr|ifI<t

= HTA,z,n”
S M)\,x-

Hence
™1™ < MY IA =m0 [,
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when |A| > p(z). Thus

lim sup [|z" |/ < p(x);

n—oo

collecting the results, the Spectral Radius Formula is verified 0

Remark 1. The Spectral Radius Formula contains startling information:
the spectral radius p(z) is purely an algebraic property (though related to
a topological algebra), but the quantity lim ||z"||'/™ relies on both algebraic
and metric properties! Yet the results are equal!

Remark 2. p(z)~!is the radius of convergence of the A-valued power series

A= i A,
n=0

Remark 3. Let A be a Banach algebra and B its Banach subalgebra. If
x € B then

O’A(LE) C O’B(iL')
and the inclusion can be proper, but the spectral radii for both Banach
algebras are the same, since

nHl/n

paw) = lim " = pa(a).

Exercise. Let A be a Banach algebra, x,y € A. Show that p(zy) = p(yzx).
Show that if x € A is nilpotent (i.e. ¥ = 0 for some k € N) then o(z) = {0}.
Give examples of nilpotent linear operators.

Exercise. Let A be a Banach algebra and z,y € A such that zy = yx.
Prove that p(zy) < p(x)p(y).
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7 New topologies from old ones

In this section families of mappings transfer (induce and co-induce) topologies
from topological spaces to a set in natural ways. The most important cases
for us are quotient and product spaces.

Comparison of topologies. If (X, 71) and (X, 72) are topological spaces
and 7 C 7o, we say that 71 is weaker than 75 and 7 is stronger than 7.

7.1 Co-induction

Co-induced topology. Let X and J be sets, (Xj, 7;) be topological spaces
for every j € J, and F = {f; : X; — X | j € J} be a family mappings. The
F-co-induced topology of X is the strongest topology 7 on X such that the
mappings f; are continuous for every j € J. Indeed, this definition is sound,
because

r={UcCX |VjeJ: f;l(U>€Tj},

as the reader may easily verify.

Example. Let A be a topological vector space and J its subspace. Let
us denote [z] := x + J for x € A. Then the quotient topology of A/J =
{[z] | x € A} is the {(z — [z]) : A — A/T }-co-induced topology.

Example. Let (X, 7x) be a topological space. Let R C X x X be an
equivalence relation. Let

[z] :={y € X | (z,y) € R},

X/R = {la] | v € X},

and define the quotient map p: X — X/R by « — [z]. The quotient topology
of the quotient space X/R is the {p}-co-induced topology on X/R. Notice
that X/R is compact if X is compact, since p : X — X/R is a continuous
surjection.

Remark. The message of the following exercise is that if our compact space
X is not Hausdorff, we “factor out” inessential information that C'(X) “does
not see” to obtain a compact Hausdorff space related nicely to X.
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Exercise. Let X be a topological space, and define C' C X x X by
definition
(z,y) € C “E=" Ve O(X): f(z) = f(y).

Prove:

(a) C is an equivalence relation on X.

(b) There is a natural bijection between the sets C'(X) and C(X/C).
(c) X/C is a Hausdorff space.

(d) If X is a compact Hausdorff space then X = X/C.

Exercise. For A C X the notation X/A means X/R,, where the equiva-
lence relation R4 is given by

definition

(x,y) € Ry <= z=yor {z,y} C A

Let X be a topological space, and let co C X be a closed subset. Prove that
the mapping
X\ 0o — (X/o0) \ {oo}, x> [,

is a homeomorphism.

Finally, let us state a basic property of co-induced topologies:

Proposition. Let X have the F-co-induced topology, andY be a topological
space. A mapping g : X — Y is continuous if and only if go f is continuous
for every f € F.

Proof. If g is continuous then the composed mapping g o f is continuous
for every f € F.

Conversely, suppose g o f; is continuous for every f; € F, f; : X; — X.
Let V C Y be open. Then

g (V) = (g0 f) (V) C X, is open;

thereby ¢='(V) = f;(f; (97" (V))) C X is open O

Corollary. Let X,Y be topological spaces, R be an equivalence relation on
X, and endow X /R with the quotient topology. A mapping f : X/R —Y is
continuous if and only if (x — f([z])) : X — Y is continuous O
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7.2 Induction

Induced topology. Let X and J be sets, (X;,7;) be topological spaces
for every j € Jand F = {f; : X — X, | j € J} be a family of mappings.
The F-induced topology of X is the weakest topology 7 on X such that the
mappings f; are continuous for every j € J.

Example. Let (X, 7x) be a topological space, A C X, and let ¢ : A — X
be defined by ¢(a) = a. Then the {:}-induced topology on A is

Tx|la={UNA|UE€rx}.

This is called the relative topology of A. Let f : X — Y. The restriction
fla=four:A—Y satisfies fla(a) = f(a) for every a € A C X.

Exercise. Prove Tietze’s Extension Theorem: Let X be a compact
Hausdorff space, K C X closed and f € C(K). Then there exists F' € C(X)
such that F|x = f.

Example. Let (X, 7) be a topological space. Let o be the C'(X) = C(X, 7)-
induced topology, i.e. the weakest topology on X making the all 7-continuous
functions continuous. Obviously, o C 7, and C(X,0) = C(X, 7). If (X, 7) is
a compact Hausdorff space it is easy to check that o = 7.

Example. Let XY be topological spaces with bases Bx, By, respectively.
Recall that the product topology for X x Y = {(x,y) | z € X, y € Y} has
a base

{U><V|U€B)(, VEBy}.
This topology is actually induced by the family

{px : X XY =X, py : X xY =Y},

where the coordinate projections px and py are defined by px((z,y)) = «
and py ((z,y)) = v.

Product topology. Let X; be aset for every j € J. The Cartesian product

X:HX]-

jed
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is the set of the mappings
x:J— UXj such that Vje J: z(j) € Xj.

jed

Due to the Axiom of Choice, X is non-empty if all X, are non-empty. The
mapping
pi: X = X;, x—x;=ux(j),

is called the jth coordinate projection. Let (X, 7;) be topological spaces.
Let X :=[[;c; X; be the Cartesian product. Then the {p; | j € J}-induced
topology on X is called the product topology of X.

If X; =Y forall j € J, it is customary to write

[[X=Y'={r1/:7-Y}

JjeJ

Weak*-topology. Let z — ||z|| be the norm of a normed vector space X
over a field K € {R, C}. The dual space X’ = L(X,K) of X is set of bounded
linear functionals f : X — K, having a norm

[fIl== sup [f(z)].

zeX: |jz||<1

This endows X’ with a Banach space structure. However, it is often better
to use a weaker topology for the dual: Let us define z(f) := f(x) for every
x € X and f € X’; this gives the interpretation X C X" := L(X' K),
because

(N = 1f @) < A1 ]l

So we may treat X as a set of functions X’ — K, and we define the weak*-
topology of X’ to be the X-induced topology of X’.

Let us state a basic property of induced topologies:

Proposition. Let X have the F-induced topology, and Y be a topological
space. A mapping g : Y — X is continuous if and only if f o g is continuous
for every f € F.
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Proof. If g is continuous then the composed mapping f o g is continuous
for every f € F.

Conversely, suppose f; o g is continuous for every f; € F, f : X — X;.
Let y € Y, V C X be open, g(y) € V. Then there exist {f;, }3_, C F and
open sets W;, C X, such that such that

gy) € () f;0(Wy,) C V.
k=1

Let .
U= ((fix 0 9)" (W)
k=1
Then U C Y is open, y € U, and g(U) C V; hence g : Y — X is continuous
at an arbitrary point y € Y, i.e. g € C(Y, X) O

Hausdorff preserved in products: It is easy to see that a Cartesian
product of Hausdorff spaces is always Hausdorff: If X =[] jesXjand z,y €
X, x # vy, then there exists j € J such that x; # y,;. Therefore there are
open sets U;, V; C X such that
mjer» yje‘/}7 Ujm‘/}:@'
Let U := pj’l(Uj) and V := p~*(V;). Then U,V C X are open,
xreU, yeV, UNnV=40.

Also compactness is preserved in products; this is stated in Tihonov’s Theo-
rem (Tychonoff’s Theorem). Before proving this we introduce a tool:

Non-Empty Finite InterSection (NEFIS) property. Let X be a set.
Let NEFIS(X) be the set of those families  C P(X) such that every
finite subfamily of F has a non-empty intersection. In other words, a family
F C P(X) belongs to NEFIS(X) if and only if ((F" # () for every finite
subfamily ' C F.

Lemma. A topological space X is compact if and only if F ¢ NEFIS(X)
whenever F C P(X) is a family of closed sets satisfying (\F = 0.

Proof. Let X beaset,d C P(X),and F:={X\U | U €U}. Then

7= &x\U)=x\Ju,

veu

so that U is a cover of X if and only if (| F = 0. Now the claim follows the
definition of compactness O
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Tihonov’s Theorem (1935). Let X; be a compact space for every j € J.
Then X = HXj 18 compact.

jeJ

Proof. To avoid the trivial case, suppose X; # 0 for every j € J. Let
F € NEFIS(X) be afamily of closed sets. In order to prove the compactness
of X we have to show that (| F # 0.
Let
P:={G e NEFIS(X) | F CG}.

Let us equip the set P with a partial order relation <:

g S H definition g CH.

The Hausdorff Maximal Principle says that the chain {F} C P belongs
to a maximal chain C' C P. The reader may verify that G :=JC € P is a
maximal element of P.

Notice that the maximal element G may contain non-closed sets. For
every j € J the family

,(G) | G eg}
belongs to NEFI1S5(Xj;). Define

;= 1{p;(G) | G € G}.

Clearly also G; € NEFIS(X;), and the elements of G; are closed sets in X;.
Since X is compact, (G; # 0. Hence we may choose

Ij S ﬂg]

The Axiom of Choice provides the existence of the element z := (z;),ec; €
X. We shall show that x € (| F, which proves Tihonov’s Theorem.
If V; C Xj is a neighborhood of x; and G' € G then

pi(G) NV, #0,
because z; € p;(G). Thus
Gnp;t(Vy) #0

for every G € G, so that G U {p;'(V;)} belongs to P; the maximality of G
implies that
p;'(Vj) €G.
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Let V' € 7x be a neighborhood of x. Due to the definition of the product
topology,

for some finite index set {jx}p_, C J, where V,, C Xj, is a neighborhood
of zj,. Due to the maximality of G, any finite intersection of members of G
belongs to G, so that

;' (Vi) €6
k=1
Therefore for every G € G and V € V. () we have

GNV #£0.
Hence = € G for every G € G, yielding
__FCG —
xEﬂGE ﬂF:ﬂF=ﬂf>
Geg FeF FeF

so that N F # 0 O

Remark. Actually, Tihonov’s Theorem is equivalent to the Axiom of Choice;
we shall not prove this.

Banach—Alaoglu Theorem (1940). Let X be a normed C-vector space
(or a normed R-vector space). The norm-closed unit ball

K :=Bx(0,1) ={p € X": [|¢]lx <1}

of the dual space X' is weak*-compact.

Proof. Due to Tihonov,
— X
P:= [ eC: [N < |lz]} = D(O, [l[])

zeX

is compact in the product topology 7p. Any element f € P is a mapping
f:X — C suchthat f(z)<|z|.

Hence K = X' N P. Let 7y and 75 be the relative topologies of K inherited
from the weak*-topology 7x/ of X’ and the product topology 7p of P, re-
spectively. We shall prove that 7 = 75 and that K C P is closed; this would
show that K is a compact Hausdorff space.
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First, let p € X', f € P, S C X, and 6 > 0. Define

U(p,S,0) = {peX: zel=|pr— ox| <},
V(£.5.8) = {geP: xe8 = |olx)— f(x)] < 0}

Then

U

; U(p,S,0) | ¢ € X', SC X finite, 6 > 0},
YV =

{
{V(f,S,0)| feP, ScCX finite, § > 0}
are bases for the topologies 7x: and 7p, respectively. Clearly

KnU(¢,S,6)=KnV(s,S,9),

so that the topologies 7x and 7p agree on K, i.e. 71 = 7.

Still we have to show that K C P is closed. Let f € K C P. First we
show that f is linear. Take z,y € X, \,u € C and 6 > 0. Choose ¢5 € K
such that

f S V(¢57 {ZL’,y, Az + MQ},(S)

Then
|fOx + py) — (A f(@) + pf(y))]
< [fAz + py) — ds(Az + py)| + |9s(Ax + py) — (Af () + pf (y))]
= |fQx 4+ py) — ds(Ax + py)| + [Mesz — f(2)) + 1(Psy — f(y))]
< |fQx + py) — ds(Ax + py)| + A sz — f(2)] + |l [¢sy — f(v)]
< 6 (T4 A+ |pl)-

This holds for every § > 0, so that actually

fOz 4+ py) = M (@) + pf (y),
f is linear! Moreover, ||f|| < 1, because
|f(@)] < |f(x) = go| + |dsx] < 6+ [

Hence f € K, K is closed OJ
Remark. The Banach—Alaoglu Theorem implies that a bounded weak*-
closed subset of the dual space is a compact Hausdorff space in the relative

weak*-topology. However, in a normed space norm-closed balls are compact
if and only if the dimension is finite!

45



Miscellany on (Banach) algebras

Exercise. Let {A; | j € J} be a family of topological algebras. Endow
A= H A; with a structure of a topological algebra.

j€J
Before examining commutative Banach algebras in detail, we derive some
useful results that could have been treated already in earlier sections (but
we forgot to do so :)

Lemma. Let A be a commutative algebra and M be its ideal. Then M is
mazximal if and only if [0] is the only non-invertible element of A/ M.

Proof. Of course, here [x] means x + M, where z € A. Assume that M is
a maximal ideal. Take [z] # [0], so that © € M. Define

J=Az+M={ax+m|ac A me M}
Then clearly J # M C J, and J is a vector subspace of A. If y € A then
Jy=yJ =yAz +yM C Az + M =7,

so that either [ is an ideal or J = A. But since M is a maximal ideal
contained properly in J, we must have J = A. Thus there exist a € A and
m € M such that axz +m = 14. Then

[a][2] = Laypm = [2][al,

[z] is invertible in A/ M.

Conversely, assume that all the non-zero elements are invertible in A/ M.
Assume that J C A is an ideal containing M. Suppose J # M, and pick
r € J\ M. Now [z] # [0], so that for some y € A we have [z][y] = [L4].
Thereby

Leoy+ M E F+McT+T=J,

which is a contradiction, since no ideal can contain invertible elements.
Therefore we must have J = M, meaning that M is maximal O

Proposition. A maximal ideal in a Banach algebra is closed.

Proof. In a topological algebra, the closure of an ideal is either an ideal
or the whole algebra. Let M be a maximal ideal of a Banach algebra A.
The set G(A) C A of the invertible elements is open, and M N G(A) = ()
(because no ideal contains invertible elements). Thus M C M C A\ G(A),
so that M is an ideal containing a maximal ideal M; thus M = M 0
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Proposition. Let J be a closed ideal of a Banach algebra A. Then the quo-
tient vector space A/ J is a Banach algebra; moreover, A/ J is commutative
if A is commutative.

Proof. Let us denote [z] :== x + J for x € A. Since J is a closed vector
subspace, the quotient space A/J is a Banach space with the norm

= inf ]
(2] = (Il = inf lo + ]
Let x,y € A and € > 0. Then there exist 7, j € J such that
o+l < [zl + &, [ly+Jl <[]l +e.
Now (x +1i)(y + j) € [xy], so that

< @+ -+l
<l +dll fly + 4l

< (=1l +¢) (gl + )

= M= Myl + eI+ Nyl + 2);

Ifzy]l

since € > ( is arbitrary, we have

Tl < =T 1Tl

Finally, [[[1][| < [[1[} = 1 and [[fz}| = [[][1]|l < [[z]]l [I[1]], so that we have
I =1 N

Exercise. Let A be an algebra. The commutant of a subset S C A is
I'(S)={recA|VyeS: xy=uyz}
Prove the following claims:
(a) I'(S) C A is a subalgebra; I'(S) is closed if A is a topological algebra.
(b) S C T(I(S)).

(¢) If zy = yx for every x,y € S then I'(I'(S)) C A is a commutative
subalgebra, where opr(s))(2) = 04(2) for every z € I'(I'(S)).

47



8 Commutative Banach algebras

In this section we are interested in maximal ideals of commutative Banach
algebras. We shall learn that such algebras are closely related to algebras
of continuous functions on compact Hausdorff spaces: there is a natural far
from trivial homomorphism from a commutative Banach algebra A to an
algebra of functions on the set Hom(A, C), which can be endowed with a
canonical topology — related mathematics is called the Gelfand theory.
In the sequel, one should ponder this dilemma: which is more fundamental,
a space or algebras of functions on it?

Examples of commutative Banach algebras:

1. Our familiar C'(K), when K is a compact space.
2. L>(]0,1]), when [0, 1] is endowed with the Lebesgue measure.
3. A(Q) = C(Q) N H(Q), when Q C C is open and Q C C is compact.

4. M(R™), the convolution algebra of complex Borel measures on R", with
the Dirac delta distribution at 0 € R™ as the unit element, and endowed
with the total variation norm.

g

o

5. The algebra of matrices , where a, 3 € C; notice that this

«
0

algebra contains nilpotent elements!

Spectrum of algebra. The spectrum of an algebra A is
Spec(A) := Hom(A, C),

i.e. the set of homomorphisms A — C; such a homomorphism is called a
character of A.

Remark. The concept of spectrum is best suited for commutative al-
gebras, as C is a commutative algebra; here a character A — C should
actually be considered as an algebra representation A — L£(C). In order
to fully capture the structure of a non-commutative algebra, we should
study representations of type A — L(X), where the vector spaces X are
multi-dimensional; for instance, if H is a Hilbert space of dimension 2 or
greater then Spec(L(H)) = (). However, the spectrum of a commutative Ba-
nach algebra is rich, as there is a bijective correspondence between characters
and maximal ideals. Moreover, the spectrum of the algebra is akin to the
spectra of its elements:
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Theorem (Gelfand, 1940). Let A be a commutative Banach algebra.
Then:

(a) Every maximal ideal of A is of the form Ker(h) for some h € Spec(A);
(b) Ker(h) is a mazimal ideal for every h € Spec(A);

(c) x € A is invertible if and only if Yh € Spec(A) : h(x) # 0,

(d) = € A is invertible if and only if it is not in any ideal of A;

(

e) o(x) = {h(z) | h € Spec(A)}.

Proof.

(a) Let M C A be a maximal ideal; let [z] := z + M for x € A. Since
A is commutative and M is maximal, every non-zero element in the
quotient algebra A/M is invertible. We know that M is closed, so
that A/M is a Banach algebra. Due to the Gelfand-Mazur Theorem,
there exists an isometric isomorphism A € Hom(.A/ M, C). Then

h=(zx~— Az])): A—C
is a character, and

Ker(h) = Ker((x +— [z]) : A — A/M) = M.

(b) Let h : A — C be a character. Now h is a linear mapping, so that
the co-dimension of Ker(h) in A equals the dimension of h(A) C C,
which clearly is 1. Any ideal of co-dimension 1 in an algebra must be
maximal, so that Ker(h) is maximal.

(¢) If z € Ais invertible and h € Spec(A) then h(z) € C is invertible, that
is h(z) # 0. For the converse, assume that x € A is non-invertible.
Then

Ax = {ax | a € A}

is an ideal of A (notice that 1 = ar = za would mean that a = 7).
Hence by Krull’s Theorem, there is a maximal ideal M C A such
that Az C M. Then (a) provides a character h € Spec(.A) for which
Ker(h) = M. Especially, h(z) = 0.

(d) This follows from (a,b,c) directly.

(e) (c) is equivalent to
“r € A non-invertible if and only if 3h € Spec(A) : h(z) =07,
which is equivalent to
“A1 — x non-invertible if and only if 3h € Spec(A) : h(x) =\’ O
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Exercise. Let A be a Banach algebra and z,y € A such that zy = yx.
Prove that o(x +y) C o(z) + o(y) and o(zy) C o(x)o(y).

Exercise. Let A be the algebra of those functions f : R — C for which

=Y fae™ Ifl =D 1l < oo

nez ne’

Show that A is a commutative Banach algebra. Show that if f € A and
VeeR: f(z) #0then 1/f € A.

Gelfand transform. Let A be acommutative Banach algebra. The Gelfand
transform T of an element x € A is the function

T :Spec(A) — C, Z(¢) := ¢(x).
Let A := {Z : Spec(A) — C | z € A}. The mapping
A — JZ, T — I,

is called the Gelfand transform of A. We endow the set Spec(.A) with the A-
induced topology, called the Gelfand topology; this topological space is called
the mazimal ideal space of A (for a good reason, in the light of the previous
theorem). In other words, the Gelfand topology is the weakest topology on
Spec(.A) making every T a continuous function, i.e. the weakest topology on

Spec(A) for which A C C(Spec(A)).

Theorem (Gelfand, 1940). Let A be a commutative Banach algebra.
Then K = Spec(A) is a compact Hausdorff space in the Gelfand topol-
ogy, the Gelfand transform is a continuous homomorphism A — C(K), and
131 = sup [#(8)] = p(x) for cvery = € A

peK

Proof. The Gelfand transform is a homomorphism, since

\z(9) = p(Ax) = A(z) = AT(¢)

T+ y(0) = bz +y) = ¢x) + d(y) = F(¢) + §(¢) = (
TH(0) = dl(wy) = d(x)é(y) = T(d)F(9) =

T4(9) = ¢(14) = 1 =

for every A € C, z,y € A and ¢ € K. Moreover,
(K) ={%(¢) | ¢ € K} ={¢(x) | ¢ € Spec(A)} = o(z),

7)(9)
y)(9),
7y)(9),

©)(9);

9

8)

(A
_l’_
(
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implying
2] = plz) < [l]].

Clearly K is a Hausdorff space. What about compactness? Now K =
Hom(A, C) is a subset of the closed unit ball of the dual Banach space A’;
by the Banach—Alaoglu Theorem, this unit ball is compact in the weak*-
topology. Recall that the weak*-topology 74/ of A’ is the A-induced topology,
with the interpretation A C A”; thus the Gelfand topology 7 is the relative
weak*-topology, i.e.

TK — T.A’|K-
To prove that 7x is compact, it is sufficient to show that K C A’ is closed in
the weak*-topology.

Let f € A’ be in the weak*-closure of K. We have to prove that f € K,
ie.

flay) = f(2)f(y) and f(1)=1.
Let x,y € A, e > 0. Let S := {1,z,y,zy}. Using the notation of the proof
of Banach—Alaoglu Theorem,

U(f,S,e)={veA: zeS= |[pz— fz| <&}
is a weak*-neighborhood of f. Thus choose h. € K NU(f,S,e). Then
1 ()] = k(1) — F(1)] <&
e > 0 being arbitrary, we have f(1) = 1. Noticing that |h.(z)| < ||z||, we get

|f(zy) — f(2)f(y)]
< f(xy) = he(y)| + |he(zy) — he(@) f(y)| + |he(2) f(y) — f(2) f(y)]
= |f(zy) = he(zy)| + |he(@)] - |he(y) — f(W)] + [he(x) — f(2)] - | f(y)]
< e (I +[lzl +[f W

This holds for every € > 0, so that actually

flxey) = f(@)f(y);

we have proven that f is a homomorphism, f € K O

Exercise. Let A be a commutative Banach algebra. Its radical Rad(A) is
the intersection of all the maximal ideals of A. Show that

Rad(A) =Ker(z — 7)) ={r € A| p(x) =0},

where x +— 7 is the Gelfand transform. Show that nilpotent elements of A
belong to the radical.
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Exercise. Let X be a finite set. Describe the Gelfand transform of F(X).

Exercise. Describe the Gelfand transform of the algebra of matrices (((); g ) ,
where a, 3 € C.

Theorem. Let X be a compact Hausdorff space. Then Spec(C(X)) is
homeomorphic to X .

Proof. For x € X, let us define the function
hy :C(X)—C, f~ f(z) (evaluation at z € X).
This is clearly a homomorphism, and hence we may define the mapping
¢ : X — Spec(C(X)), x> hy.

Let us prove that ¢ is a homeomorphism.
If x,y € X, © # y, then Urysohn’s Lemma provides f € C'(X) such that
f(x) # f(y). Thereby hy(f) # hy(f), yielding ¢(z) = hy # hy = ¢(y);

thus ¢ is injective. It is also surjective: Namely, let us assume that h €
Spec(C(X)) \ ¢(X). Now Ker(h) C C(X) is a maximal ideal, and for every
x € X we may choose

fz € Ker(h) \ Ker(h,) C C(X).
Then U, := f71(C\ {0}) € V(z), so that
U={U,|reX}

is an open cover of X, which due to the compactness has a finite subcover
{Us,}j—y CU. Since f,, € Ker(h), the function

F=d 1P =D fufey
Jj=1 Jj=1

belongs to Ker(h). Clearly f(z) # 0 for every x € X. Therefore g € C'(X)
with g(x) = 1/f(z) is the inverse element of f; this is a contradiction, since
no invertible element belongs to an ideal. Thus ¢ must be surjective.

We have proven that ¢ : X — Spec(C(X)) is a bijection. Thereby X and
Spec(C(X)) can be identified as sets. The Gelfand-topology of Spec(C(X)) is
then identified with the C'(X)-induced topology ¢ of X, which is weaker than
the original topology 7 of X. Hence ¢ : (X, 7) — Spec(C(X)) is continuous.
Actually, o = 7, because a continuous bijection from a compact space to a
Hausdorff space is a homeomorphism O
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Corollary. Let X and Y be compact Hausdorff spaces. Then the Banach
algebras C'(X) and C(Y') are isomorphic if and only if X is homeomorphic
toY.

Proof. By the previous Theorem, X = Spec(C(X)) and Y = Spec(C(Y)).
If C(X) and C(Y) are isomorphic Banach algebras then
)
X = Spec(C(X)) = Spec(C(Y)) =Y.

Conversely, a homeomorphism ¢ : X — Y begets a Banach algebra iso-
morphism

P:C(Y) - C(X), (®f)(z):= f(o(z)),

as the reader easily verifies O
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9 Polynomial approximations: Stone—Weierstrass

In this section we study densities of subalgebras in C'(X). These results will
be applied in characterizing function algebras among Banach algebras. First
we study continuous functions on [a, b] C R:

Weierstrass Theorem (1885). Polynomials are dense in C([a,b]).

Proof. Evidently, it is enough to consider the case [a,b] = [0,1]. Let f €

C([0,1]), and let g(x) = f(x) = (f(0) + (f(1) = f(0))z); then g € C(R) if we
define g(x) = 0 for x € R\ [0,1]. For n € N let us define &, : R — [0, 0o by

1(1_&, when |z| < 1,
k() := Jo (=) at
0, when |z] > 1.

Then define P, := g * k,, (convolution of g and k,,), that is

P.(x) = /OO glx —1t) ku(t) dt = /OO g(t) ky(z —1t) dt

o0 o0

-/ g(0) ke — 1) dt,

and from this last formula we see that P, is a polynomial on [0, 1]. Notice
that P, is real-valued if f is real-valued. Take any ¢ > 0. Function g is
uniformly continuous, so that there exists ¢ > 0 such that

Ve,yeR: jz—y| <d=|g(x) —gy)| <e.
Let ||g|| = tem[gulc} lg(t)]. Take x € [0, 1]. Then

P —a@) = | [ o=k at—g) [ h0 4
~ |/ o= 0=t k)
< [ lote =0 - o)l o) at
< /Tzugu Bt dt+/_ze 0 dt+/5lzugu bat) dt

< 4Hg\|/ t) dt +e.

The reader may verify that f 5 Fn(t) dt  —,_o 0O for every § > 0. Hence
1Qn = fll =n—oe 0, where Qu(z) = Po(x) + f(0) + (f(1) — f(0))z [
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Exercise. Show that the last claim in the proof of Weierstrass Theorem is
true.

For f : X — C let us define f* : X — C by f*(x) := f(z), and define
|f| : X = Cby |f|(z) :==|f(x)]. Asubalgebra A C F(X) is called involutive
if f* € A whenever f € A.

Stone—Weierstrass Theorem (1937). Let X be a compact space. Let
A C C(X) be an involutive subalgebra separating the points of X. Then A
is dense in C(X).

Proof. If f € A then f* € A, so that the real part Rf =
to A. Let us define

A7 belongs
2
Ar = {Rf | f € A};

this is a R-subalgebra of the R-algebra C'(X,R) of continuous real-valued
functions on X. Then

A={f+ig| f,g € Ar},

so that Ag separates the points of X. If we can show that Ag is dense in
C(X,R) then A would be dense in C(X).

First we have to show that Ag is closed under taking maximums and
minimums. For f, g € C(X,R) we define

max(f, g)(x) := max(f(x),g(x)), min(f,g)(z) := min(f(z),g(z)).
Notice that Ag is an algebra over the field R. Since

_f+g+|f—g|

max(f,g)_ 2 9 ) _f+g_|f_g|7

it is enough to prove that |h| € A whenever h € Ag. Let h € Ag. By the
Weierstrass Theorem there is a sequence of polynomials P, : R — R such
that

Po(x) —nooo |2]

uniformly on the interval [—||h|[, ||||]. Thereby
12} = Ba(h)]] =nc0 0,

where P, (h)(x) := P,(h(z)). Since P,(h) € Ag for every n, this implies that
|h| € Ag. Now we know that max(f, g), min(f, g) € Ag whenever f,g € Ag.
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Now we are ready to prove that f € C(X,R) can be approximated by
elements of Ag. Take ¢ > 0 and x,y € X, z # y. Since Ay separates the
points of X, we may pick h € Ag such that h(z) # h(y). Let g.. = f(z)1,

e bR —hl) 4 h() = hie)
Gay(2) = hz) = h(y) (z) + hy) = h(z) f().
Here g4, g2y € Ag, since Ag is an algebra. Furthermore,
gey(@) = f(2), gay(y) = f(y)-
Due to the continuity of g,,, there is an open set V,,, € V(y) such that
2 € Vi = f(2) —e < guy(2).

Now {V,, | y € X} is an open cover of the compact space X, so that there
is a finite subcover {V,,, | 1 < j < n}. Define

— Imax ..
o = (255, Gavs

gz € Ag, because Ay is closed under taking maximums. Moreover,
Vze X: f(z) —e < gu(2).

Due to the continuity of g, (and since g,(x) = f(z)), there is an open set
U, € V(z) such that

z€e€U, = g.(2) < f(2) +e.

Now {U, | x € X} is an open cover of the compact space X, so that there is
a finite subcover {U,, | 1 <i < m}. Define

= min ¢, ;
g 1§z‘§mgm“

g € Ag, because Ag is closed under taking minimums. Moreover,
Vze X: g(z) < f(z) +e.
Thus

f(z) —e < min g,,(2) = g(2) < f(2) +e,

that is |g(z) — f(2)| < € for every z € X, i.e. ||g— f|| < . Hence Ag is dense
in C(X,R) implying that A is dense in C'(X) O
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Remark. Notice that under the assumptions of the Stone—Weierstrass The-
orem, the compact space is actually a compact Hausdorff space, since con-
tinuous functions separate the points.

Exercise. Let K be a compact Hausdorff space, ) # S C K, and J C
C(K) be an ideal. Let us define

Z(S)={feC(K)|VxeS: f(x)=0},
V(J)={xeK|VYfeJ: f(z) =0}

Prove that

(a) Z(S) € C(K) a closed ideal,

(b) V(J) C K is a closed non-empty subset,

(¢) V(Z(S)) = S (hint: Urysohn), and

(d) Z(V(7)) =T

Lesson to be learned:

topology of K goes hand in hand with the (closed) ideal structure of C'(K).
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10 Cr*-algebras

Now we are finally in the position to abstractly characterize algebras C'(X)
among Banach algebras: according to Gelfand and Naimark, the category of
compact Hausdorff spaces is equivalent to the category of commutative C*-
algebras. The class of C*-algebras behaves nicely, and the related functional
analysis adequately deserves the name “non-commutative topology”.

Involutive algebra. An algebra A is a x-algebra (“star-algebra” or an
involutive algebra) if there is a mapping (z — z*) : A — A satisfying

(A\2)" =X", (z+y) =2"+y", () =y, (@) =2

for every z,y € A and \ € C; such a mapping is called an involution. In other
words, an involution is a conjugate-linear anti-multiplicative self-invertible
mapping A — A.

A x-homomorphism ¢ : A — B between involutive algebras A and B is
an algebra homomorphism satisfying

for every x € A. The set of all *-homomorphisms between x-algebras A and
B is denoted by Hom*(A, B).

Cr-algebra. A (C*-algebra A is an involutive Banach algebra such that
lo* 2| = [l«]*

for every x € A.

Examples.

1. The Banach algebra C is a C*-algebra with the involution A — \* = X,
i.e. the complex conjugation.

2. If K is a compact space then C'(K) is a commutative C*-algebra with

the involution f +— f* by complex conjugation, f*(z) := f(z).

3. L>=([0,1]) is a C*-algebra, when the involution is as above.

4. A(D(0,1)) =C <]D(0, 1)> N H(D(0,1)) is an involutive Banach algebra
with f*(z) := f(Z), but it is not a C*-algebra.
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5. The radical of a commutative C*-algebra is always the trivial {0}, and
thus 0 is the only nilpotent element. Hence for instance the algebra of

matrices (g g) (where «, § € C) cannot be a C*-algebra.

6. If H is a Hilbert space then £(H) is a C*-algebra when the involution
is the usual adjunction A — A*, and clearly any norm-closed involutive
subalgebra of L(H) is also a C*-algebra. Actually, there are no others,
but we shall not prove this fact in these lecture notes:

Gelfand—Naimark Theorem (1943). If A is a C*-algebra then there
exists a Hilbert space H and an isometric x-homomorphism onto a closed
involutive subalgebra of L(H) 0J

However, we shall characterize the commutative case: the Gelfand trans-
form of a commutative C*-algebra A will turn out to be an isometric iso-
morphism A — C(Spec(A)), so that A “is” the function algebra C'(K) for
the compact Hausdorff space K = Spec(.A)! Before going into this, we prove
some related results.

Proposition. Let A be a x-algebra. Then 1" = 1, x € A is invertible if
and only if x* € A is invertible, and o(z*) = o(z) :={\ | A € o(x)}.

Proof. First,

second,
(V2 =z ) =1" =1 =1 = (z )" = 2*(z"))";
third, _
Al —z" = (A1) — 2" = (A\1)" — 2" = (\1 —2)",
which concludes the proof O

Proposition. Let A be a C*-algebra, and x = z* € A. Then o(x) C R.

Proof. Assume that A € o(z) \ R, i.e. A = \; 44\, for some \; € R with
Ao # 0. Hence we may define y := (z— A1)/ € A. Now y* = y. Moreover,
i € o(y), because

oy AN —z

il1—y= N
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Take t € R. Then t + 1 € o(t1 — iy), because

(t+ 1)1 — (11 —iy) = —i(il — y).

Thereby
t+1)? < p(tl—iy)?
< [l -yl
o o .
= (1 —ay)* (11 — iy)||
LT iy - i) = P14
< 4l
so that 2t + 1 < ||y|| for every ¢ € R; a contradiction O

Corollary. Let A a C*-algebra, ¢ : A — C a homomorphism, and x € A.
Then ¢(x*) = ¢(z), i.e. ¢ is a x-homomorphism.

Proof. Define the “real part” and the “imaginary part” of x by

T+ z* r —x*
u = , U= —.
2 21

Then x = u + v, u* = u, v* = v, and 2* = u — iv. Since a homomorphism
maps invertibles to invertibles, we have ¢(u) € o(u); we know that o(u) C R,
because u* = u. Similarly we obtain ¢(v) € R. Thereby

¢(z7) = ¢(u — ) = ¢(u) —ip(v) = d(u) +ip(v) = ¢(u +iv) = ¢(z);
this means that Hom" (A, C) = Hom(A, C) O

Exercise. Let A be a Banach algebra, B its closed subalgebra, and = € B.
Prove the following facts:

(a) G(B) is open and closed in G(A) N B.

(b) o4(x) C op(x) and dog(x) C Do4(x).

(c) If C\ o4(x) is connected then o 4(x) = op(x).

Using the results of the exercise above, the reader can prove the following
important fact on the invariance of spectrum in C*-algebras:

Exercise. Let A be a C*-algebra and B its C*-subalgebra. Show that
og(z) = o4(x) for every x € B.
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Lemma. Let A be a C*-algebra. Then ||z||*> = p(x*z) for every x € A.

Proof. Now
* * * * * * C* *
[(z*2)?|| = [|(z*z) (z*z) || = (e 2)* (z*z)|| = ||la*z|?,

so that by induction
I(z"2)*" || = [l

for every n € N. Therefore applying the Spectral Radius Formula, we get

on I 1/2n /2n

platz) = lim [|(z"2) [ = lim [la”2]*' " = ||z"a]],

the result we wanted O

Exercise. Let A be a C*-algebra. Show that there can be at most one
C*-algebra norm on an involutive Banach algebra. Moreover, prove that if
A, B are C*-algebras then ¢ € Hom"(A, B) is continuous and has a norm

ol = 1.

Commutative Gelfand—Naimark. Let A be a commutative C*-algebra.
Then the Gelfand transform (x — z) : A — C(Spec(A)) is an isometric
x-150morphism.

Proof. Let K = Spec(A). We already know that the Gelfand transform is
a Banach algebra homomorphism A4 — C(K). Let x € A and ¢ € K. Since
¢ is actually a x-homomorphism, we get

v(¢) = d(a”) = o(z) = T(9) = T (¢);

the Gelfand transform is a *-homomorphism.
Now we have proven that A C C(K) is an involutive subalgebra separat-

ing the points of K. Stone-Weierstrass Theorem thus says that A is dense
in C(K). If we can show that the Gelfand transform A — A is an isometry
then we must have A = C'(K): Take x € A. Then

12112 = 2% = |lz7z]| “E™ plaz) = )2,

ie [[z] = [l«| 0

Exercise. Show that an injective *-homomorphism between C*-algebras is
an isometry. (Hint: Gelfand transform.)
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Exercise. A linear functional f on a C*-algebra A is called positive if
f(z*x) > 0 for every z € A. Show that the positive functionals separate
the points of A.

Exercise. Prove that the involution of a C*-algebra cannot be altered with-
out destroying the C*-property ||z*z| = ||z||*.

An element z of a C*-algebra is called normal if x*x = xx*. We use the
commutative Gelfand—Naimark Theorem to create the so called continuous
functional calculus at a normal element — a non-commutative C*-algebra
admits some commutative studies:

Theorem. Let A be a C*-algebra, and x € A be a normal element. Let . =
(A= A) 1 o(x) — C. Then there ezists a unique isometric x-homomorphism

¢ : C(o(z)) — A such that ¢(1) = = and ¢(C(o(x))) is the C*-algebra
generated by x, i.e. the smallest C*-algebra containing {z}.

Proof. Let B be the C*-algebra generated by x. Since z is normal, B
is commutative. Let Gel = (y — ¥y) : B — C(Spec(B)) be the Gelfand
transform of B. The reader may easily verify that

Z : Spec(B) — o(x)

is a continuous bijection from a compact space to a Hausdorff space; hence
it is a homeomorphism. Let us define the mapping

Cz : Clo(x)) — C(Spec(B)), (Czf)(h) = f(@(h)) = f(h(z));
C5 can be thought as a “transpose” of Z. Let us define
¢=Cel ' oCs: Clo(x)) — BC A

Then ¢ : C(o(x) — A is obviously an isometric *-homomorphism. Further-
more,

P(1) = Gel H(C5(1)) = Gel H(Z) = Gel ! (Gel(z)) = =.

Due to the Stone—Weierstrass Theorem, the x-algebra generated by ¢ €
C(o(z)) is dense in C(o(x)); since the *-homomorphism ¢ maps the gen-
erator ¢ to the generator x, the uniqueness of ¢ follows (]
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Remark. The s-homomorphism ¢ : C(o(z)) — A in above is called the
(continuous) functional calculus at the normal element ¢p(v) = ©z € A. If
p=(z+ Z?Zl a;z’) : C — C is a polynomial then it is natural to define
p(x) := Y 74 a;z’. Then actually

hence it is natural to define f(z) := ¢(f) for every f € C(o(x)). It is easy
to check that if f € C(o(x)) and h € Spec(B) then f(h(x)) = h(f(x)).

Exercise. Let A be a C*-algebra, z € A normal, f € C(o(z)), and g €
C(f(o(x))). Show that o(f(x)) = f(o(x)) and that (g0 f)(x) = g(f()).
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11 Metrizability

Next we try to construct metrics on compact spaces. We shall learn that a
compact space is metrizable if and only if the corresponding commutative
C*-algebra is separable. Metrizability is equivalent to the existence of a
countable family of continuous functions separating the points of the space.
As a vague analogy to the manifolds, the reader may view such a countable
family as a set of coordinate functions on the space.

Theorem. If F C C(X) is a countable family separating the points of a
compact space (X, 1) then X is metrizable.

Proof. Let F = {f,}>2, C C(X) separate the points of X. We can assume
that || f,|| < 1 for every n € N; otherwise consider for instance functions

z— fo(x)/(14 |fu(x)]). Let us define
d(x,y) := sup 27| fu(x) = fa(y)|

for every z,y € X. Next we prove that d : X x X — [0,00[ is a metric:
d(z,y) = 0 & x =y, because {f,}5°, is a separating family. Clearly also
d(z,y) = d(y,z) for every z,y € X. Let z,y,z € X. We have the triangle
inequality:

d(z,z) = Sup 27" ful®) = fu(2)]
< ilég(?_”lfn(x) = fa)| + 27" fu(y) — ful(2)])
< sup 27" fn() = fin(y)| + sup 27" fuly) — fu(2)]

= d(z,y) +d(y, 2).

Hence d is a metric on X.
Finally, let us prove that the metric topology coincides with the original
topology, 74 = 7: Let x € X, ¢ > 0. Take N € N such that 27 < £. Define

Un:= [, (D(ful2),2) € Ve(a), U=[)Un € Vi(a).

If y € U then
d(z,y) = sup 27| fu() — fuly)| <e.
ne

Thusz € U C By(z,e) = {y € X | d(x,y) < e}. This proves that the original
topology 7 is finer than the metric topology 74, i.e. 74 C 7. Combined with
the facts that (X,7) is compact and (X, 7,) is Hausdorff, this implies that
we must have 75 = 7 O
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Corollary. Let X be a compact Hausdorff space. Then X is metrizable if
and only if it has a countable basis.

Proof. Suppose X is a compact space, metrizable with a metric d. Let
r > 0. Then B, = {By(z,r) | * € X} is an open cover of X, thus having a

finite subcover B, C B,. Then B := U B, is a countable basis for X.
n=1
Conversely, suppose X is a compact Hausdorff space with a countable

basis B. Then the family
C:={(B1,By) € Bx B | B, C By}

is countable. For each (Bj, By) € C Urysohn’s Lemma provides a function
BB, € C(X) satisfying

fB1B2(E> = {O} and fB1B2(X \ BQ) = {1}
Next we show that the countable family
F =A{fpB,: (B1,Bs) €C} C O(X)

separates the points of X: Take z,y € X, x # y. Then W := X \ {y} €
V(z). Since X is a compact Hausdorff space, there exists U € V(z) such
that U ¢ W. Take B',B € B such that xt € B' ¢ B’ ¢ B C U. Then
fe(r) =0# 1= fpp(y). Thus X is metrizable O

Conclusion. Let X be a compact Hausdorff space. Then X is metrizable
if and only if C(X) is separable (i.e. contains a countable dense subset).

Proof. Suppose X is a metrizable compact space. Let F C C(X) be a
countable family separating the points of X (as in the proof of the previous
Corollary). Let G be the set of finite products of functions f for which
f € FUF U{1}; the set G = {g;}32, is countable. The linear span A of G
is the involutive algebra generated by F (the smallest *-algebra containing
F); due to the Stone-Weierstrass Theorem, A is dense in C'(X). If S C C is
a countable dense set then

{)\01 + Z)\jgj | n e Z+, ()‘j)?:o (- S}

J=1

is a countable dense subset of A, thereby dense in C(X).
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Conversely, assume that F = {f,}22, C C(X) is a dense subset. Take
x,y € X, © # y. By Urysohn’s Lemma there exists f € C(X) such that
f(z) =0#1= f(y). Take f, € F such that || f — fu|| < 1/2. Then

[fu(x)] <1/2 and  [fu(y)] > 1/2,

so that f,(x) # fu(y); F separates the points of X OJ

Exercise. Prove that a topological space with a countable basis is sepa-
rable. Prove that a metric space has a countable basis if and only if it is
separable.

Exercise. There are non-metrizable separable compact Hausdorff spaces!
Prove that X is such a space, where

X={f:001]=[0,1|z<y= flz) < f(y)}

is endowed with a relative topology. Hint: Tihonov’s Theorem.
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12 Algebras of Lipschitz functions

This section is devoted to metric properties, not merely metrizability. We
shall study how to recover the metric space structure from a normed algebra
of Lipschitz functions in the spirit of the Gelfand theory of commutative
Banach algebras. In the sequel, K € {R, C}.

Lipschitz mappings. Let (X, dx), (Y, dy) be metric spaces; often we drop
the subscripts from metrics, i.e. write d for both dx and dy without confu-
sion. A mapping f: X — Y is called Lipschitz if

A0 < o Va,y € X ¢ dy(f(x), f(y)) < C dx(z,y);
then the Lipschitz constant of fis
L(f) = mi{CeR|[Vr,yeX: d(f(z), f(y) <Cdzy)}

oy @)
ryeX: azy  d(T,Y) .

A mapping f : X — Y is called bi-Lipschitz (or a quasi-isometry) if it is
bijective and f, f~! are both Lipschitz.

Examples.

1. Lipschitz mappings are uniformly continuous, but not the vice versa:
for instance, (¢ — /1) : [0,1] — R is uniformly continuous, but not
Lipschitz.

2. The distance from x € X to a non-empty set A C X is defined by
d(z,A) =d(A,z) := ingd(x,a),
ac
Then dg = (x +— d(z, A)) : X — R is a Lipschitz mapping, L(d4) < 1;

notice that du(x) = 0 if and only if # € A. Thus there are plenty of
Lipschitz functions on a metric space.

Exercise. Let A, B C X be non-empty sets. Assume that the distance
between A, B is positive, i.e. d(A, B) > 0, where

d(A,B):= inf d(a,b).

acA, beB

Show that there exists a Lipschitz function f : X — R such that

0<f<1, f(4)={0}, f(B)=A{1}
This is the Lipschitz analogy of Urysohn’s Lemma.
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Tietze’s Extension Theorem (Lipschitz analogy). Let X be a metric
space, A C X non-empty, and f : A — K bounded. Then there exists
F: X — K such that

L(F) = L(f), when K = R,

FlA = f, HFHC(X) - ||f”C(A)7 {L(F) < \/5 L(f) when K = C.

Proof. Here || f||c(a) :=sup,ec4 |f(2)]. When L(f) = oo, define F: X — K
by Fla = f, F(X \ A) = {0}. For the rest of the proof, suppose L(f) < occ.
Let us start with the case K = R. Define G : X — R by

G(x) = it (f(a) + L(f) d(z,a)),

a€A

so that G|4 = f, as the reader may verify. Define F': X — R by

) - {GW when [G(@)] < [/ lcc,

G(x
Ifllewy o, when |G(2)] > || fllow

Clearly Fla = f, [|[Fllex) = | fllecay, and L(f) < L(F) < L(G); let us then
show that L(G) = L(f). Suppose z,y € X. Take ¢ > 0. Choose a. € A such
that G(y) > f(ac) + L(f) d(y,a.) — . Then

)

G(x) = Gly t(f(a) + L(f) d(z,a)) = G(y)

< (flae) + L(f) d(z, ac)) = (f(ac) + L(f) d(y, ac) —€)
= L(f) (d(%as) d(y, a:)) + ¢
< L(f) d(x,y) +

which yields G(z) — G(y) < L(f) d(z,y). Symmetrically, G(y) — G(z) <
L(f) d(x,y), so that |G(z) — G(y)| < L(f) d(x,y). Hence we have proven
that L(G) < L(f), which completes the proof of the case K = R.

Let us consider the case K = C. Let f; = R(f), fo = $(f). Then using
the R-result we can extend fi,fo : A — R to functions F;,F5 : X — R
satisfying

Fila=fi,  L(F;) = L(f;) < L(f),  Fjllec) = Ifilloa
Let us define G : X — C by G = F} +1F5, and define F': X — C by

F(x) = G(z), when [G(2)] < | flloa)
Il S, when |G(z)| > || fllee
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Then || Fllcxy = ||fllcca). Moreover, we obtain L(G) < v/2 L(f), because
2] < V2 max{|R(2)|,|I(2)|} for every z € C; hence

L(f) < L(F) < L(G) < V2 L(f),

completing the proof O

Lipschitz spaces. Let X be a metric space. Let
Lip(X) = Lip(X,K) := {f : X = K [[fllLip = max([|fllox), L(f)) < oo}

A pointed metric space is a metric space X with a distinguished element, the
base point ex = e € X; let

Lipy(X) = Lipy (X, K) := {f : X = K| f(e) =0, L(f) < oo}

Notice that if the diameter diam(X) = sup, ,cx d(7,y) of the space is finite
then Lipy(X) is contained in Lip(X),

Exercise. Show that Lip(X) is a Banach space with the norm f — || f||Lip-
Show that Lip,(X) is a Banach space with the norm f — L(f). Show that
these spaces are topological algebras if diam(X) < oo.

Arens—Eells space. Let X be a metric space, z,y € X. The xy-atom is
the function mg, : X — K defined by

May(x) =1, myy(y) = —1, my(2) = 0 otherwise.

A molecule on X is a linear combination m = Z?Zl aj Mg,y of such atoms;
then {x € X | m(x) # 0} is a finite set and ) _ m(x) = 0. Let M denote
the K-vector space of the molecules on X. Notice that a molecule may have
several representations as a linear combination of atoms. Let us define a
mapping m — ||ml|ag : M — R by

|m||ag := inf {Z la;| d(zj,y;): n€ZT, m= Zaj mmjyj} ;

J=1 J=1

obviously this is a seminorm on the space of the molecules, but we shall
prove that it is actually a norm; for the time being, we have to define the
Arens—Eells space AE(X) for X by completing the vector space M with
respect to the Arens—Eells-seminorm m + ||m|/4g modulo the subspace

{v: [lvllag = 0}.
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Theorem. The Banach space dual of AE(X) is isometrically isomorphic
to Lipy(X).

Proof. Let us define two linear mappings 77 : AFE(X) — Lipy(X) and
T5 : Lipy(X) — AE(X) by

(Th9)(z) = p(mae), (Taf)(m Z fly

yeX

where e € X is the base point, and m € M is a molecule (so that Ty f is
uniquely extended to a linear functional on AE(X)). These definitions are
sound indeed: Firstly,

(T19)(e) = ¢(mee) = ¢(0) =0,

(T10)(2) = (1) (W) = |P(mae = mye)| = |d(may)| < (@] Iy ]| a5
< el d(x,y),

so that T1¢ € Lipy(X) and L(T1¢) < ||¢||; we have even proven that T} €
L(AE(X), Lipg(X)) with norm [|T|| < 1. Secondly, let ¢ > 0 and m € M.
We may choose (a;)7_; C K and ((x;,y;))j=; C X x X such that

n n
m=a; may, > laj| dx;y) < |mllag+e.

j=1 Jj=1
Then

n

(TQf) Zaj mxjyj

j=1

< Z|aj| f () — f(y;)]

< L(f) Z\aﬂ d(z;,y;)

< L(f) ([mllae +¢),

n

> a; (f(xy) = fy)

=1

[(T2f)(m)] =

meaning that Ty € L£(Lipy(X), AE(X)') with norm ||T3]| < 1. Next we notice
that Tp = T "

(TU(Tof)) (@) = (Tof)(mae) = D f(y) maely) = f(z) = fle) = f(x),

yeX
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(T(Tig)(m) = Y (Tid)(y) mly) = Y d(my.) m(y)

yeX yeX

= ¢ (Z m(y) mye> = ¢(m).

yeX

Finally, for f € Lip,(X) we have

L(f) = L(LT2f) < T 1T/ < T2 f1] < (TR L0F) < L(f),

so that 15,71} = T{l are isometries O

Remark. Let us denote
((f;m) = (f,m)) : Lipy(X) x AE(X) — K

where

(f,m)=>_ fx) m(x)

zeX

if m € M. From now on, the weak*-topology of Lip,(X) refers to the AE(X)-
induced topology, with the interpretation

AE(X) C AE(X)" 2 Lipy(X)'.

Next we show how X is canonically embedded in the Arens—Eells space:

Corollary. The Arens—FEells seminorm m > ||ml|lag is a norm, and the
mapping (x +— mye) : X — AE(X) is an isometry.

Proof. Take m € M, m # 0. Choose x, € X such that m(xy) # 0. Due to
the theorem above,

Hahn—Banach
[mllag = sup  [(f,m)| = sup
fEAE(X)||fII<1 f€Lipy(X):L(f)<1

> flz) m(x)

rzeX

Let A := {e}U{z € X | m(z) # 0}. Let r := d(x, A\{zo}). By the Lipschitz
analogy of Tietze’s Extension Theorem, there exists fy € Lipy(X,R) such
that fo(xo) =7 >0, fo(A\ {zo}) = {0}, and L(fy) = 1. Thereby

Y folw) m(x)

zeX

lmllag = |(fo,m)| = = [fo(wo) m(xo)| >0,
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i.e. m — ||m|/ag is actually a norm.
Let z,y € X. Clearly ||myy||lar < d(z,y). Define d,(2) := d(z,y)—d(e, y),

where e € X is the base point. Now d,, € Lip,(X) and L(d,) = 1, so that

> dy(2) may(2)| = |dy(x) — dy(y)]

zeX

[mayllam = Kdy, may)| =

= d(z,y).

Hence [|mye = myellap = [[mayllap = d(z, y) B

Nets and convergence. A partial order (J, <) is called a directed if
VijeJIked: i<k j<k

A net in a topological space (X, 7) is a family (z;);c; C X, where J = (J, <)
is directed. A net (x;);e; C X converges to a point x € X, denoted by

Tj— T Or Tj —jcj& OF :B:hmxj:yen}:zj,

if for every U € V,(x) there exists jy € J such that z; € U whenever jy < j.

An example of a net is a sequence (z,)nen C X, where N has the usual
partial order; sequences characterize topology in spaces of countable local
bases, for instance metric spaces. But there are more complicated topologies,
where sequences are not enough; for example, weak*-topology for infinite-
dimensional spaces.

Exercise. Nets can be used to characterize the topology: Let (X, 7) be a
topological space and A C X. Show that + € A C X if and only if there
exists a net (z;)je; C A such that z; — x. Let f : X — Y, show that
felCX,Y)ifandonlyifx; -2z € X = f(x;) — f(z) €Y.

(Hint: define a partial order relation on V,(x) by U <V < V C U.)

Lemma. Let E be a Banach space. The weak*-converging nets in E' are

bounded.

Proof. Let f; — f in the weak*-topology of E', i.e. (fj,¢) — (f,¢) € K
for every ¢ € E. Define T; : E — K by ¢ — (f;, ¢). Since T;¢ — (f, ¢) € K,
we have sup;c; [Tj¢| < oo for every ¢ € E, so that C' := sup,¢; ||T}]| < oo
according to the Banach—Steinhaus Theorem. Thereby

Hahn—Banach Hahn—Banach
(P21 —— sup  [(fj,¢)| = sup [Tjo| =" [[T;|| < C,
PEE:||4]I<1 PEE:||¢|I<1
so that the net (f;);es C E’' is bounded O
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Proposition. On bounded subsets of Lipy(X) the weak*-topology is the
topology of pointwise convergence. Moreover, if X is compact, on bounded
sets these topologies coincide with the topology of uniform convergence.

Proof. Let & C Lipy(X) be a bounded set containing a net (f;);es such that
f; — [ in the weak*-topology. Endow the norm-closure £ with the relative

weak*-topology 71, and also with the topology 75 of pointwise convergence.
If x € X then

fi(w) = fi(x) = fi(e) = (fj, Mae) — (f,mae) = f(2) — f(e) = f(2),

i.e. f; — f pointwise. This means that the topology of pointwise convergence
is weaker than the weak*-topology, 7 C 7. Now 71 is compact due to the
Banach—Alaoglu Theorem, and of course 7, is Hausdorff; hence 71 = 75, the
weak*-topology and the topology of the pointwise convergence coincide on
bounded subsets.

Now suppose X is a compact metric space. Uniform convergence trivially
implies pointwise convergence. Let (f;);e; C € be as above, f; — f point-
wise. Since £ is bounded, there exists C' < oo such that L(g) < C for every
g € €. Tt is easy to check that L(f) < C. Take e > 0. Since X is compact,
there exists {z;};2, C X such that

Vee X dke{l,--- ,n.}: dlx,zg) <e.
Due to the pointwise convergence f; — f, there exists j. € J such that
|fi(@k) = flzp)| <e

for every k € {1,---,n.} whenever j. < j. Take x € X. Take k €
{1,--- ,n.} such that d(x,z;) < e. Then

|fi(x) = ()] f3(2) = Fi(i)| + | fi(n) = FQ)] + | () = f(2)]
L(f;) d(x,2x) + & + L(f) d(zy, @)
Ce+e+Ce = (2C+1)e.

IA AN A

Thereby || f;— fllc(x) — 0; pointwise convergence on bounded subsets implies
uniform convergence, when X is compact 0

Algebra Lip,(X). Let X be a metric space such that diam(X) < oc.
In the sequel, we shall call Lip,(X) an algebra, even though 1 ¢ Lip,(X).
An algebra homomorphism between such non-unital algebras is a linear and
multiplicative mapping; then even the O-mapping is a homomorphism!
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Proposition. Let X,Y be metric spaces with finite diameters, with the
respective base points ex,ey. Let g ' Y — X be a Lipschitz mapping such
that g(ey) = ex. Then the mapping

Ly Lipy(X) — Lipy(Y), fr fog,

is an algebra homomorphism, and ||L,|| = L(g).

Proof. If f € Lipy(X) and z,y € Y then

|f(g(x)) — flg))| < L(f) d(g(x),g(y)) < L(f) L(g) d(z,y).

Hence L(Lyf) = L(f og) < L(f) L(g), implying ||Ly|| < L(g). Take yo € Y.

Define fo € Lipy(X) by fo(z) := d(z, g(y0)) —d(ex, 9(yo)), so that L(fo) = 1.
Take y € Y, y # yo. Then

ILgll > L(Lg(fo))
o [Lefo)(y) = (Lefo) (o)l _ dlg(y), 9(w0))
- d(y, o) d(y,yo)

so that ||L,|| > L(g); hence ||L,|| = L(g).
If X € Kand f,h € Lipy(X) then
LyAf)=(Af)og=A(fog)=AL,f,
Ly(f+h)=(f+h)og=fog+hog=Lyf+ Lyh,
Ly(fh) = (fh)og=(fog)(hog) = (Lsf)(Lgh),

so that L, is a homomorphism O

Order-completeness. Non-empty B C Lip(X, R) is called order-complete
if

supG,infG € B
for every bounded family G C B. Here supremums and infimums are point-
wise, naturally.

Uniform separation. A family F C Lipy(X) separates uniformly the
points of X if

dC <ocoVz,y € X dg€ F: L(g) < C, |g(x) — g(y)| = d(z,y).

In a striking resemblance with the “classical” Stone-Weierstrass Theorem,
we have the following:
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Theorem (Lipschitz Stone—Weierstrass). Let X be a compact metric
space. Let A be an involutive, weak*-closed subalgebra of Lipy(X) separating

the points of X uniformly. Then A = Lipy(X).

Proof. Asin the proof of the “classical” Stone—Weierstrass Theorem, invo-
lutivity justifies our concentration on the R-scalar case, where the involution
is trivial, f* = f. Hence we assume that A is a weak*-closed R-subalgebra
of Lipy(X, R) separating the points of X uniformly.

Let us show that B = A + R1 is closed under the pointwise convergence
of bounded nets. Let (g;)je; C B be a bounded net converging to pointwise
to g € Lip(X); here g; = f; + A\;1 with f; € A and \; € R. Especially

Aj = file) + A = gjle) — gle) € R.

Thus

fi(z) = gj(z) = X — g(x) —g(e) € R,
ie. f; — g — g(e)l pointwise. But (f;)je; C A is a bounded net, so that
fi — g—g(e)1 in the weak*-topology; since A is weak*-closed, g—g(e)1 € A.
Thereby

g=1(g—g(e)l)+g(e)l € A+ R1 = B;

B is closed under the pointwise convergence of bounded nets.
Let us show that B is order-complete. First, let g € B. Take € > 0. Let

ge(x) ==/ g(x)? + 2.

By the Weierstrass Approximation Theorem, there exists a sequence (Px,)5>
of real-valued polynomials such that P.,(0) = ¢ and

/ d o

P () —noo ” 12 +e? = Nz
uniformly on [—||gl|c(x), [|9]lcx)]; consequently, (Pe,(g))o>, C Bisabounded
sequence, converging uniformly to g.; hence P.,(g) — g¢. also pointwise.
Since B is closed under the pointwise convergence of bounded nets, we deduce
ge € B; consequently, (g:)o<c<1 is a bounded net in B, so that gy := lim. o+ g-
belongs to B. But go(z) = |g(x)]|, so that g € B implies |g| € B. Therefore if
f,9 € B then

_f+g  |f+ydl _ftg |f+ydl

max(f,g) = 5 + 5 min(f,g) = 5 5

belong to B. Let G C B be a bounded non-empty family. Let H C Lip(X, R)
be the smallest family closed under taking maximums and minimums and

75



containing G. Now H C B, since B is closed under taking maximums and
minimums. Moreover, H is bounded. Clearly

supG =supH € Lip(X,R) and infG =infH € Lip(X,R).

Let g := supG € Lip(X,R). Take ¢ > 0. For each x € X there exists
gz € G such that g(x) — e < g,(z). Due to the continuity of g,, there exists
U, € V(x) such that ¢g(y) — ¢ < ¢.(y) for every y € U,. Then {U, | x € X}
is an open cover of the compact space X, so that there is a finite subcover
{U,, | 1 <j<n}. Let h. :=max(gqs,, - ;9z,) € H. Then
9(x) — e < he(x) < g(x)

for every x € X, so that (h.)o<c<1 C H C B is a bounded net, h. —. o+ g.
Hence sup G = g € B, because B is closed under the pointwise convergence of
bounded nets. Similarly one proves that inf G € B. Thus B is order-complete.

Take f € Lipy(X,R). We have to show that f € A. We may assume

that L(f) < 1. Due to the uniform separation, for every x,y € X there
exists g, € A such that L(g,,) < C (C does not depend on z,y € X) and

|92y (2) = gay(y)| = d(z,y). Since |f(z) — f(y)| < L(f) d(z,y) < d(z,y)
and since A is an algebra, there exists h,, € A satisfying hy, (z) — hyy(y) =

f(z) — f(y) and L(h,,) < C. Define f,, € B by
oy = hay — (hay(y) — f(y))1.
Then foy(x) = f(x) and foy(y) = f(y), L(foy) = L(hay) < C, and
[ fayllec < [1hayllo + lhey (W) + [ (9)] < 2C + 1) r(X),

where r(X) := sup,cx d(z,e) < oo is the “radius” of the space. The family
(fay)zyex C B is hence bounded; due to the order-completeness of 13,

= inf su
f reX ye)g f:cy

belongs to B; but f(e) =0, so that f € A O

Quotient metrics. Let X be a compact metric space and A C Lipy(X) be
an involutive, weak*-closed subalgebra. Let R4 be the equivalence relation

(2,y) € Ra “EE" Ve A: f(z) = f(y).
Let [x] :={y € X | (x,y) € R4}. Let usendow X 4 := X/Ry = {[z] |z € X}

with the metric

dx,([z],[y]) == sup |f(z)— f(y)l.

fEAL(f)<1

Let 7 = (z = [2]) : X — X4. Recall that this induces a homomorphism
L.=(f~ fom):Lipy(X4) — Lipy(X).
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Corollary. Let X be a compact metric space, and let A be an involutive,
weak*-closed subalgebra of Lipy(X). Then L : Lipy(X4) — A C Lipy(X) is
a bounded algebra isomorphism Lipg(X_4) = A with a bounded inverse.

Exercise. Prove the previous Corollary.

Exercise. Show that weak*-closed ideals of Lip,(X) are involutive, when
X is compact. (Hint: Lipschitz—Stone-Weierstrass.)

Varieties and ideals. Let X be a metric space, S C X, and J C Lipy(X).
Then

Z(S):={f € Lipy(X) | Ve € S: f(z) =0}
is a weak*-closed ideal of Lip,(X) (the ideal of S), and

V(T)={zeX |VfeJ: f(x)=0}
is a closed subset of X (the variety of J).

Theorem. Let X be a compact metric space, J be a weak*-closed ideal of
Lipg(X). Then J =Z(V(J)).

Exercise. Prove the previous theorem. (Hint: show that d(z, V(7)) =
dx,([z],V(J)) for every & € X, use Lipschitz—Stone-Weierstrass.)

Corollary. Let X be a compact metric space, and let w : Lipy(X) — K
be an algebra homomorphism. Then w is weak*-continuous if and only if
w=uw, = (x— f(x)) for some z € X.

Proof. If w, := (z — f(z)) : Lipy(X) — K then w, = m,. € AE(X) in
the sense that (f,w,) = f(x) = (f, mse); hence evaluation homomorphisms
are weak*-continuous.

Conversely, let w : Lipy(X) — K be a weak*-continuous homomorphism.
Then Ker(w) is an weak*-closed ideal of Lipy(X), hence involutive. Thus
by the previous Theorem Ker(w) = Z(V') for some V' C X. Notice that
0 = w,; assume that w # 0. Since w is a surjective linear mapping onto K,
Ker(w) must be of co-dimension 1 in Lipy(X), and thereby V = {e,z} for
some r € X. Hence w = (f — Af(x)) for some A € K, A # 0. Choose
f € Lipy(X) such that f(z) =1, so that

A=w(f) =w(f?) =w(f) =\
This yields A =1, i.e. w=w, := (f — f(x)) O
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Spectra. In these lecture notes we started with unital algebras (which
we simply called “algebras”). At the present, we have encountered non-
unital algebras, e.g. Lipy(X) and its ideals on a compact metric space
X. In the sequel, let the word “algebra” stand for both unital and non-
unital algebras. We say that a homomorphism is a linear multiplicative
mapping between algebras such that if both algebras are unital then one
unit element is mapped to another; the set of homomorphisms A — B is
denoted by Hom(.A, B). Notice that 0 € Hom(.A, B) if and only if A or B is
non-unital. With these nominations, let the spectrum of a Banach space and
a commutative topological algebra A be

Spec(A) := Hom(A, K).
If furthermore A = E’ for a Banach space F, let
Spec”” (A) := {w € Spec(A) | w is weak*—continuous}.

Endow all these spectra with the metric given by the norm of the Banach
space A’; there are also the relative weak*-topologies of A’ on the spectra.

Theorem. Let X be a compact metric space. Then the metric topology and
the relative weak*-topology of Spec®” (Lipy(X)) are the same, and X is iso-
metric to Spec®” (Lipy(X)). Moreover, Spec®” (Lipy(X)) = Spec(Lipy(X)).

Proof. Let us denote A := Lip,(X). The weak*-topology on K := Spec” (A)
is the topology induced by the family {f | f € A}, where f : K — K is de-

-~

fined by f(w) := w(f) (sort of Gelfand transform).
The previous Corollary indicates that K is the set of evaluation homo-
morphisms w, = (f — f(z)), and we know that

L= (2 Mye =w,): X - AB(X) C A’

is an isometry. Hence X is isometric to K.

The norm topology of A’ is stronger than the weak*-topology, so that the
metric topology on K is stronger than the relative weak*-topology. Notice
that f, € A, where f,(w,) = f,(z) = d(z,y) — d(e, y); hence f, : K — R is

L1
weak*-continuous on K, so that f, (U) C K is weak*-open for every open
set U C R. Thus the metric ball

B(wy,e) = {wy: ||wa —wyl <e} = {w,: d(z,y) <e}
= {we: fylwn) <e—dle,y)}

78



is a weak*-open set. Clearly {B(wy,¢) | y € X, € > 0} is a basis for the
metric topology of the spectrum; thereby the metric topology is weaker than
the weak*-topology. Consequently, the topologies must be the same.

Let us extend w € Spec(A) C A’ linearly to w : Lip(X) — K by setting
w(1) = 1. Then @ € Spec(Lip(X)). Assume that for every x € X there
exists f, € Ker(@) such that f,(z) # 0. Then pick a neighborhood U, € V()
such that 0 ¢ f,(U,). Due to the compactness of X we may pick a finite
subcover {U,,}"_; out of the open cover {U, | # € X'}. Then

=D M fusl =D foy fo, € Ker(@);

so f belongs to an ideal of Lip(X'), but on the other hand f(x) > 0 for every
x € X, so that 1/f € Lip(X) as the reader may verify — a contradiction.
Hence there exists x € X such that f(z) = 0 for every f € Ker(@w). The
reader may prove analogies of the Lipschitz Stone—Weierstrass Theorem and
its consequences replacing (non-unital) subalgebras of Lip,(X) by (unital)
subalgebras of Lip(X); of course, the weak*-convergence has to be replaced
by the pointwise convergence of bounded nets; then it follows that Ker(w) =
{f € Lip(X) | f(x) =0}, which would imply that @ = (f — f(x)).

Hence w = (f — f(z)) for some z € X, and consequently w = w,.
Evaluation homomorphisms are weak*-continuous, so that we have proven
that Spec(A) = K O

Theorem. Let A be a Banach space and a non-unital commutative topo-
logical algebra, and endow Spec(A) with the relative metric of A'. Then
Spec(A) is a complete pointed metric space of finite diameter, and the ez-
tended Gelfand transform

(f = f) : A — Lipy(Spec(A)),
(where f(w) =w(f) for f € A and w € Spec(A)) is of norm < 1.

Proof. We may always endow A with an equivalent Banach algebra norm
(even though the algebra is non-unital). From the Gelfand theory of com-
mutative Banach algebras, we know that Spec(A) is a bounded weak*-closed
(even weak*-compact) subset of A’; hence the metric is complete, and the
diameter is finite.

Now let o — ||z|| be the original norm of A. Let ¢, € Spec(A). Then

Z(¢) —2()| = (¢ — ) (@) < [[¢ — || ||=],
so that L(Z) < ||z||. Notice that Z(0) = 0, so that the proof is complete [J
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Theorem. Let A be a commutative Banach algebra, and endow Spec(A)
with the relative metric of A'. Then Spec(A) is a complete metric space of

diameter at most 2, and the Gelfand transform (f — f) : A — Lip(Spec(A))
is of norm 1.

Proof. In the Gelfand theory we have seen that Spec(.A) belongs to the
closed unit ball of A’, so that the diameter of the spectrum is at most 2. If
¢ € Spec(A) and = € A then |Z(¢)| = |¢(z)| < ||z||, and the rest of the proof
is as in the previous Theorem O

Remark. Let A be a Banach space and a non-unital topological algebra.

If Spec(.A) is compact in the metric topology then the metric topology is the
relative weak*-topology, and Lip,(Spec(A)) C C(Spec(A)).
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More information on the lecture topics

Set theory and Axiom of Choice: [14, 12, 15].

Topology: [15, 9, 13, 10, 5].

Measure theory: [4, 5, 10, 12].

Basic functional analysis: [12, 11, 7, 9].

Banach algebras and C*-algebras: [8, 1, 11, 3, 9, 6] and practically any
book on advanced functional analysis (C*=B* in [11] :)

Lipschitz algebras: [16].

For those mastering these lecture notes:
Non-commutative geometry: [2, 6, 17].
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X1, 7
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