
Basic Matrix Operations

This example shows basic techniques and functions for working with matrices in the MATLAB®
language.

% Copyright 1984-2012 The MathWorks, Inc.
% These are my first notes
% Slight modifications by HA (30.10.2016)

First, let's create a simple vector with 9 elements called a.

a = [1 2 3 4 6 4 3 4 5]

a =

 1 2 3 4 6 4 3 4 5

Now let's add 2 to each element of our vector, a, and store the result in a new vector.

Notice how MATLAB requires no special handling of vector or matrix math.

b = a + 2

b =

 3 4 5 6 8 6 5 6 7

Creating graphs in MATLAB is as easy as one command. Let's plot the result of our vector addition with
grid lines.

plot(b)
grid on

hold on
plot(b,'r*')

MATLAB can make other graph types as well, with axis labels.

hold off

bar(b)
xlabel('Sample #')
ylabel('Pounds');shg

MATLAB can use symbols in plots as well. Here is an example using stars to mark the points. MATLAB
offers a variety of other symbols and line types.

plot(b,'*')
axis([0 10 0 10]);

shg

One area in which MATLAB excels is matrix computation.

Creating a matrix is as easy as making a vector, using semicolons (;) to separate the rows of a matrix.

A = [1 2 0; 2 5 -1; 4 10 -1]

A =

 1 2 0
 2 5 -1
 4 10 -1

We can easily find the transpose of the matrix A.

B = A'

B =

 1 2 4
 2 5 10
 0 -1 -1

Now let's multiply these two matrices together.

Note again that MATLAB doesn't require you to deal with matrices as a collection of numbers. MATLAB
knows when you are dealing with matrices and adjusts your calculations accordingly.

C = A * B

C =

 5 12 24
 12 30 59
 24 59 117

[A B C]

ans =

 1 2 0 1 2 4 5 12 24
 2 5 -1 2 5 10 12 30 59
 4 10 -1 0 -1 -1 24 59 117

Instead of doing a matrix multiply, we can multiply the corresponding elements of two matrices or
vectors using the .* operator.

C = A .* B;
cells=([{A} {B} {C}])

cells =
 [3×3 double] [3×3 double] [3×3 double]

cells{1:3}

ans =

 1 2 0
 2 5 -1
 4 10 -1

ans =

 1 2 4
 2 5 10
 0 -1 -1

ans =

 1 4 0
 4 25 -10
 0 -10 1

cellplot(cells)

Let's use the matrix A to solve the equation, A*x = b. We do this by using the \ (backslash) operator.

b=[1;2;3];x = A\b

x =

 3
 -1
 -1

Now we can show that A*x is equal to b.

r = A*x - b

MATLAB has functions for nearly every type of common matrix calculation.

There are functions to obtain eigenvalues ...

[v,lam]=eig(A)

v =

 -0.2440 -0.9107 0.4472
 -0.3333 0.3333 0.0000
 -0.9107 -0.2440 0.8944

lam =

 3.7321 0 0

 0 0.2679 0
 0 0 1.0000

... as well as the singular values.

But let's stop here now !

svd(A)

The "poly" function generates a vector containing the coefficients of the characteristic polynomial.

The characteristic polynomial of a matrix A is

p = round(poly(A))

We can easily find the roots of a polynomial using the roots function.

These are actually the eigenvalues of the original matrix.

roots(p)

Convolution

MATLAB has many applications beyond just matrix computation.

To convolve two vectors ...

q = conv(p,p)

Symbolic form: multiplication of polynomials

syms x
psym=x^3-5*x^2+5*x-1
qsym=psym*psym
expand(qsym)
q
% Agreement.

... or convolve again and plot the result.

r = conv(p,q)
plot(r);

At any time, we can get a listing of the variables we have stored in memory using the who or whos
command.

whos

You can get the value of a particular variable by typing its name.

A
% disp(A)

You can have more than one statement on a single line by separating each statement with commas or
semicolons.

If you don't assign a variable to store the result of an operation, the result is stored in a temporary
variable called ans.

sqrt(-1)

As you can see, MATLAB easily deals with complex numbers in its calculations.

displayEndOfDemoMessage(mfilename)

