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We show how for any bounded operator or an element of a Banach algebra one
can construct a prcatical power series calculus
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1 Introduction

1.1 Motivation

To start with, consider the following question. Is it possible to have an algorithm, for-
mulated in Banach algebras, such that if an arbitrary element a is given in some algebra
A, then the algorithm computes f(a) for a given analytic function f . In this motivation
part, let this function be logarithm. We assume that we can create polynomials of a and
compute their norms. It turns out that the answer is positive in the following way. We
first run an algorithm searching for a polynomial p such that the function f is analytic
in a neighborhood of an associated set Vp:

Vp = {λ ∈ C | |p(λ)| ≤ ‖p(a)‖}.

In case of logarithm the requirement reduces to testing

0 /∈ Vp.

Then based on such a polynomial p we proceed to compute a power series representa-
tion for the logarithm, which is guaranteed to converge at a. In this paper we collect
and discuss properties and computational aspects of these series expansions, while the
search algorithm for suitable p has appeared in [11]. We shall now outline the approach
in more detail. We should add that in this discussion all computations are assumed to
be performed exactly.

1



1.2 Outline of the approach

Let a ∈ A be a given element in a complex unital Banach algebra A and denote by
σ̂(a) the polynomially convex hull of the spectrum of a (that is, fill in the possible holes
in σ(a)). We look at σ̂(a) because if we are given only the element a and assume that
our algorithm generates polynomials p(a) (or p(A)x for x ∈ X when A is an operator
in a Banach space X), then all our computations stay in the subalgebra generated by
a in A and we can only try to compute σ̂(a) as it is exactly the spectrum of a in this
subalgebra. Let Ω ⊂ C be open and such that σ̂(a) ⊂ Ω. If f is analytic in Ω, in short,
f ∈ H(Ω), then the holomorphic functional calculus allows one to define f(a) ∈ A
using the Cauchy integral formula in a way consistent with rational approximation of
f .

In the following we omit writing the unit in the algebra, so that for example in the
Cauchy formula we write the resolvent as a function from C \ σ̂(a) to A

λ 7→ (λ− a)−1.

Let Γ ⊂ Ω be a countour surrounding σ̂(a). Then the Cauchy formula defines
f(a):

f(a) =
1

2πi

∫
Γ

f(λ)(λ− a)−1dλ. (1.1)

However, in order to compute f(a) using (1.1) we need to know the resolvent along
Γ. For this we usually have only piecewise smooth approximations which in particular
imply that we loose the property of Cauchy integral being path independent. In [11] we
outlined a different approach which approximates the resolvent with rational functions.
This leads to a simple power series calculus which we approach by first having a look
at Taylor series.

Suppose there exists λ0 ∈ C such that

V := {λ ∈ C | |λ− λ0| ≤ ‖a− λ0‖} ⊂ Ω.

Then we can write for λ /∈ V

(λ− a)−1 =
1

λ− λ0
(1− 1

λ− λ0
(a− λ0))−1 =

∞∑
j=0

(a− λ0)j

(λ− λ0)j+1
(1.2)

and substitute this into (1.1) to get

f(a) =
∞∑
j=0

αj(a− λ0)j (1.3)

where the Taylor coefficients of f satisfy

αj =
1

2πi

∫
|λ−λ0|=r

f(λ)
(λ− λ0)j+1

dλ.

Thus, here the holomorphic functional calculus reduces to substituting a into the vari-
able in the Taylor series expansion of f around the center λ0.
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Our aim in this paper is to discuss the formulas for series expansions in a more
general situation where the first degree polynomial λ − λ0 is replaced by a monic
polynomial

p(λ) = (λ− λ1) · · · (λ− λd)
of degree d with distinct zeros λj . As before, let

Vp = {λ ∈ C | |p(λ)| ≤ ‖p(a)‖}
and compute q such that

p(λ)− p(z) = (λ− z)q(λ, z).
Then clearly the series expansion

(λ− a)−1 = q(λ, a)
∞∑
j=0

p(a)j

p(λ)j+1
(1.4)

converges for λ /∈ Vp.
In practical large scale computations with A ∈ B(H) one can try to run the usual

Arnoldi algorithm and draw the corresponding sets Vp and choose a p when Vp is
small enough. However, this may not always work. We have recently shown [11]
that convergent algorithms do exist. More precisely, there exists a procedure which
assumes at each step a finite number of minimization problems involving ‖P (a)‖ (in
case of operators this strictly speaking requires one to work with operator norms and
not on ‖P (A)x‖) over a set of polynomials P of fixed degree to be carried out. It
produces a sequence of polynomials pn and compact sets Kn such that

σ̂(a) ⊂ Vpn ⊂ Kn ⊂ Kn−1

and
σ̂(a) =

⋂
n≥1

Kn.

In particular, the representation (1.4) holds for λ /∈ Vpn with p = pn. So, if f ∈ H(Ω)
and σ̂(a) ⊂ Ω one obtains after a finite number of steps using this procedure a p such
that

σ̂(a) ⊂ Vp ⊂ Ω.

Substituting now (1.4) into (1.1) yields

f(a) =
∞∑
j=0

cj(a)p(a)j (1.5)

where cj’s are polynomials with deg(cj) < deg(p). This is very efficient if p(a) is
small. In the extreme case for matrices with minimal polynomial we have p(A) = 0
and f(A) = c0(A), but our emphasis is in the case where deg(p) is relatively small
and ‖p(a)‖ of moderate size.

The expansion (1.5) corresponds to expanding f into a multicentric power series
or Jacobi series

f(z) =
∞∑
j=0

cj(z)p(z)j (1.6)
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where λ1, . . . , λd, the roots of p, all have equal importance as local centers. Denote by
δk ∈ Pd−1 the Lagrange interpolation basis polynomials at λj’s

δk(λ) =
1

p′(λk)

∏
j 6=k

(λ− λj) (1.7)

so that any P ∈ Pd−1 can uniquely be written as

P (z) =
d∑
k=1

P (λk)δk(z).

Let now cj ∈ Pd−1 be given and put αkj = cj(λk). If we now set for k = 1, . . . , d

fk(w) =
∞∑
j=0

αkjw
j , (1.8)

then we obtain from (1.6) a multicentric representation of f w.r.t. centers λ1, . . . , λd:

f(z) =
d∑
k=1

δk(z)fk(p(z)). (1.9)

We shall first discuss the existence and uniqueness of multicentric representations with-
out smoothness assumptions on f . If, however, f is holomorphic, then each fk is holo-
morphic as well and can be expanded into convergent power series (1.8) which can be
combined back into a multicentric power series (1.6). It turns out that the Taylor coef-
ficients αkj of fk can be computed recursively by explicit substitution if the derivatives
of f are available at all centers λk.

We should point out that we do not assume Ω to be connected. In fact, this allows
one to obtain Riesz projectors by defining f to be locally constant. Yet, in multicentric
repsentation the functions fk are in such a case not locally constant.

We shall derive all, as such rather elementary, formulas in detail and provide simple
bounds to control the convergence and the error when truncating the representations.
We do believe that many of the formulas have been used in the past but we have not
found them. Much of the tradition assumes any change of variable to be univalent, here
we force it to be d-valent.

We close this introductory section by formulating a result for f ∈ H(Ω). Recall
that if Ω ⊂ C is open, then we can have compact sets Kn ⊂ Kn+1 ⊂ Ω so that

Ω =
⋃
n≥1

Kn.

Suppose we are given a compact K ⊂ Ω. Then by Hilbert Lemniscate Theorem, see
e.g. [12], p 158, there exists a polynomial p and a contour Γ surrounding K inside Ω
so that

max
z∈K
|p(z)| < min

λ∈Γ
|p(λ)|.

This then implies that the corresponding multicentric power series of f converges ab-
solutely inside K.
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Remark 1.1. When we work with operatorsA their powers are often considered either
impossible or expensive to be carried out. Observe, however, that if one is able to
form p(A) with a relatively low degree polynomial p then the holomorphic functional
calculus can be performed on operator-vector level by creating the power series in an
obvious manner. Further, even if forming p(A) would be impossible in practise, the
calculus can be carried out on vector level, provided that one can compute a reliable
estimate of ‖p(A)‖.

1.3 Remarks on the history

Series expansions of the form (1.6) were introduced and discussed by C.G.J. Jacobi
without use of the Cauchy integral. Jacobi died 1851 and the notes, dated 1847, ap-
peared posthumously 1856 [5].

After Jacobi the topic was discussed e.g. by Laguerre and Hilbert before Alfred
Kienast discussed it in his inaugural dissertation 1906 [6]. The main properties of
Jacobi series are shortly discussed in [14] and [7].

Many results in unit disc for power series have their counterparts for sets bounded
by lemniscates if one uses the Jacobi series expansions as basic tool to represent the
functions. For example, Fekete [3] has versions on Landau-Schotky theorems and
Curtiss [2] studied questions related to boundary behavior.

There exists additionally a notationally appealing formulation of the series as fol-
lows. Schweizer [13] defines Jacobi derivative by setting

Dp =
d∑
k=1

1
p′(λk)

∂

∂λk
.

A basically straightforward calculation gives cj(z) = 1
j!Djp[c0(z)] and thus

f(z) =
∞∑
j=0

1
j!
Djp[c0(z)]p(z)j .

We shall not discuss this in the following as it seems not to offer advantages towards
implementation.

To this end it is natural to wonder why Jacobi series is not part of every day practise.
A possible answer could go as follows. A mathematical concept or approach becomes
widely known if it is either easy to use as a tool in applications, or it is helpful when
one introduces known structures for beginners, or there are still hard unsolved questions
nearby. Clearly, without modern computers the computations with Jacobi series based
on arbitrary polynomials p would have been really laborious and hence not practical.
Second, several naturally emerging generalizations of properties of analytic functions
in discs were discussed long ago and that research tradition essentially died out before
the modern computers were around. Thus, it dropped off from the "toolbox" of basic
complex analysis.

My own interest in this grew up as follows. In [8] and in [9] I introduced and
studied the polynomial numerical hulls

V k(a) =
⋂

deg(p)≤k
Vp
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and pointed out that intersecting Vp over all polynomials gives the polynomial convex
hull of the spectrum. In [10] I studied operator valued meromorphic functions and
in particular low rank perturbation theory of operators: what is the inherent invariant
property of resolvents which stay invariant in low rank perturbations - while the spec-
trum may move essentially uncontrolled. It then became natural to ask [11] whether we
can compute the spectrum and in particular whether the resolvent could be represented
with just one expression allowing the holomorphic functional calculus to be performed
with path independent integrations, without need to discretize the integrals. Some au-
thors use Jacobi series to name series expansions by Jacobi polynomials. It took me
long time to notice that the series discussed in this paper were also called Jacobi se-
ries. Meanwhile I had given lectures on multicentric series - this paper was essentially
written before finding the early related papers.

2 Multicentric representation of functions

2.1 Existence and uniqueness
Let p ∈ Pd be monic with distinct zeros λj and denote by δk ∈ Pd−1 the polynomials
satisfying

δk(λj) = δjk

so that
δk(λ) =

1
p′(λk)

∏
j 6=k

(λ− λj). (2.1)

To discuss the existence and uniqueness of the decomposition

f(z) =
d∑
k=1

δk(z) fk(p(z)) (2.2)

we write it as a linear system of equations. Letw ∈ C be given and denote by z1, . . . , zd
the solutions of

p(z) = w. (2.3)

As we assume p to have distinct zeros, for small w we have d distinct analytic branches
zj = zj(w) with zj(0) = λj . For this discussion we do not need to introduce the full
structure of the Riemann surface of p(z) − w. It suffices to recall that all branches
can be treated as separate analytic functions of a complex variable with the following
exception. At critical points λc we have p′(λc) = 0 and those branches zj which at the
critical value wc = p(λc) satisfy zj(wc) = λc cannot be treated as analytic functions
separately around wc.

Let now w be a noncritical value, so the roots zj are all distinct. Denote f(zj) =
bj(w) and let b(w) ∈ Cd be the corresponding vector. Set

D(w) = (δk(zj))jk

and denote by x(w) ∈ Cd the vector with the unknown function values fk(w) as
components. Then (2.2) can be written as

D(w)x(w) = b(w). (2.4)
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To see that D is nonsingular, put

Q(z) =
d∑
k=1

xkδk(z)

so that Q ∈ Pd−1. Thus (2.4) corresponds to asking solution for the following interpo-
lation problem:

Q(zj) = f(zj), for j = 1, . . . , d

which has a unique solution as the points zj are assumed to be distinct.

Lemma 2.1. The function
w 7→ D(w)−1 (2.5)

is analytic away from the critical values.

Proof. The matrix valued function w 7→ D(w) is analytic except at critical values and
as it is also nonsingular, its inverse is also analytic.

Above we needed the values of f at all points zj in order to pin down the represen-
tation. For that purpose we introduce the following concept.

Definition 2.2. A set V ⊂ C is p-balanced if

p−1(p(V )) = V.

Thus, V is p-balanced if for every λ ∈ V all roots zj of

p(z) = p(λ)

also belong to V .

Example 2.3. Sets of the form

V = {λ ∈ C | |p(λ)| ≤ R}

and
V0 = {λ ∈ C | |p(λ)| ≤ R and p(λ) is a noncritical value of p}

are p-balanced.

We can summarize the situation as follows.

Theorem 2.4. Let V0 ⊂ C be p-balanced containing no critical points of p. Then for
every function

f : V0 → C

there exists unique functions
fk : p(V0)→ C (2.6)

such that for z ∈ V0

f(z) =
d∑
k=1

δk(z)fk(p(z)). (2.7)
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2.2 Continuity of the representation

The multicentric representation inherits all the smoothness of f , as long as we stay
away from critical values of p.

Proposition 2.5. Let V0 ⊂ C be p-balanced containing no critical points of p and
suppose f , fk satisfy (2.7). If f ∈ Cm(V0) for some m ≥ 0, then fk ∈ Cm(p(V0)) for
all k. If f is analytic, so are fk.

Proof. This is clear combining (2.4) and Lemma 2.1.

It is natural to ask whether one can extend the decomposition smoothly to critical
points as well. We shall see later that this is automatic if f is analytic but the following
example shows that f ∈ C∞ is not enough.

Example 2.6. Let p(λ) = λ2 − 1 so that we have a critical point at origin. Denoting
δ1(z) = (1 + z)/2 and δ2(z) = (1− z)/2 we obtain

f1(z2 − 1) =
1
2

[f(z) + f(−z)] +
f(z)− f(−z)

2z
(2.8)

f2(z2 − 1) =
1
2

[f(z) + f(−z)]− f(z)− f(−z)
2z

. (2.9)

As z → 0 we see that fk(z2 − 1) tends to a limit if f is analytic at origin. On the other
hand let f(z) = Re z = x which is in C∞, then radial limits exist at origin, however,
depending on the angle. In this example we have

δ1(z) =
1 + z

2

and
δ2(z) =

1− z
2

and so we have
2∑
k=1

δk(z)fk(z2 − 1) = f(z).

Critical values come up also when f is defined and analytic near each λj but their
analytic continuations don’t match. Here is an example.

Example 2.7. Consider the Riesz spectral projection which is obtained by assuming f
to be identically 1 near one component of the spectrum and vanish in a neighborhood
of the rest of the spectrum. We may demonstrate this using Example 2.6.

Let f ≡ 1 near 1 and vanish identically near −1. We have, for |w| < 1

(1 + w)1/2 = 1 +
1
2
w − 1

8
w2 +

1
16
w3 − · · ·

and
(1 + w)−1/2 = 1− 1

2
w +

3
8
w2 − 5

16
w3 + · · · .

Let us compute the two-centric representation first around 1. There with z = (1+w)1/2

δ1(z) = 1 +
1
4
w − 1

16
w2 +

1
32
w3 − · · ·

8



and
δ2(z) = −1

4
w +

1
16
w2 − 1

32
w3 − · · ·

From (2.8) and (2.9) we obtain

f1(w) = 1− 1
4
w +

3
16
w2 − 5

32
w3 + · · ·

f2(w) =
1
4
w − 3

16
w2 +

5
32
w3 − · · ·

This gives

δ1(z)f1(w) = 1 +
1
16
w2 − 1

16
w3 + · · ·

and
δ2(z)f2(w) = − 1

16
w2 +

1
16
w3 − · · ·

so their sum is identically 1. Near -1 we have

δ1(z) = −1
4
w +

1
16
w2 − 1

32
w3 − · · ·

and
δ2(z) = 1 +

1
4
w − 1

16
w2 +

1
32
w3 − · · ·

which gives

δ1(z)f1(w) = −1
4
w +

1
8
w2 − 3

32
w3 + · · ·

and
δ2(z)f2(w) =

1
4
w − 1

8
w2 +

3
32
w3 − · · ·

So, near -1 their sum vanishes identically. Suppose now that A ∈ B(X) is such that
with B = A2 − 1 we have ‖B‖ < 1 or more sharply, the spectral radius ρ(B) < 1.
Since

δ1(A) =
1 +A

2
, δ2(A) =

1−A
2

we get using the power series expansions for fk

f(A) =
2∑
k=1

δk(A)fk(B) =
1
2

+A(
1
2
− 1

4
B +

3
16
B2 − 5

32
B3 + · · · ).

This satisfies f(A)2 = f(A) and gives the spectral projection onto the invariant sub-
space related to the part of spectrum which satisfies |λ2 − 1| < 1 and Reλ > 0.
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3 Decomposing the Cauchy integral

3.1 Decomposing the Cauchy kernel
Consider the Cauchy kernel 1/(λ− z) which gives the Cauchy integral formula

f(z) =
1

2πi

∫
γ

f(λ)
dλ

λ− z (3.1)

for analytic functions f . We decompose the kernel and then substituting the decompo-
sition into (3.1) yields the decomposition of all analytic functions f .

The idea is easily seen from factoring

p(λ)− p(z) = (λ− z)q(λ, z)

and then writing
1

λ− z =
q(λ, z)

p(λ)− p(z) .

Lemma 3.1. Let

p(λ) =
d∏
j=1

(λ− λj)

where all roots λk are distinct and let δk be as in (2.1). Then

p(λ)− p(z) = (λ− z)
d∑
k=1

p′(λk)δk(λ)δk(z). (3.2)

Proof. Since

δk(λ) =
1

p′(λk)

∏
j 6=k

(λ− λj)

we have
p(λ) = (λ− λk)p′(λk)δk(λ). (3.3)

Interpolating the constant function gives

d∑
k=1

δk(z) = 1

which together with (3.3) yields

p(λ) =
d∑
k=1

(λ− λk)p′(λk)δk(λ)δk(z).

Interchanging here λ and z and taking the difference concludes the proof.

Definition 3.2. Given a monic p ∈ Pd with simple zeros λk we set

Kk(λ,w) = p′(λk)
δk(λ)

p(λ)− w =
1

λ− λk
p(λ)

p(λ)− w. (3.4)
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Combining this definition with the previous lemma gives

Proposition 3.3. For p(λ) 6= p(z) we have

d∑
k=1

δk(z)Kk(λ, p(z)) =
1

λ− z . (3.5)

Remark 3.4. Denote by zj = zj(w) the roots of p(z) = w, so that

p′(λ)
p(λ)− w =

d∑
j=1

1
λ− zj(w)

.

Since

p′(λ) =
d∑
k=1

p′(λk)δk(λ)

we obtain
d∑
k=1

Kk(λ,w) =
d∑
j=1

1
λ− zj(w)

. (3.6)

Example 3.5. Let p(λ) = λ2 − 1 as in Example 2.6. Then

K1(λ,w) =
λ+ 1

λ2 − 1− w and K2(λ,w) =
λ− 1

λ2 − 1− w,

while
1

λ− z1(w)
=
λ+
√

1 + w

λ2 − 1− w and
1

λ− z2(w)
=
λ−√1 + w

λ2 − 1− w

3.2 Decomposing analytic functions

Given a monic polynomial p ∈ Pd with simple zeros λk and ρ > 0, let γρ consist of
points λ ∈ C such that

|p(λ)| = ρd. (3.7)

Thus, for small ρ γρ consists of d circular curves around the zeros λk, while for large
ρ the curve reduces to just one circular contour. The curve γρ divides the plane into
one unbounded component, ext(γρ) and bounded components, which we denote by
int(γρ). By maximum principle

z ∈ int(γρ) if and only if |p(z)| < ρd. (3.8)

Thus we can use (3.5) to decompose our analytic function.

Theorem 3.6. Let Ω ⊂ C be open containing the zeros λk of p. Suppose ρ > 0 is such
that

int(γρ) ∪ γρ ⊂ Ω.

Given f ∈ H(Ω) set for |w| < ρd

fk(w) =
1

2πi

∫
γρ

Kk(λ,w)f(λ)dλ. (3.9)
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Then fk are analytic in |w| < ρd and for z ∈ int(γρ) we have

f(z) =
d∑
k=1

δk(z)fk(p(z)).

Proof. Since |w| < ρd = |p(λ)| the kernel Kk is analytic in w and therefore so are the
functions fk. The claim then follows from combining the Cauchy integral representa-
tion of f with (3.5).

Remark 3.7. Observe that fk are defined and analytic also at possible critical values.

We shall consider the convergence of the Taylor series of fk and the multicentric
power series of f below but first we point out that the kernels Kk(λ,w) can be used
also in defining the decomposition of C1-functions on the plane.

3.3 Pompeiu’s formula

If f is not analytic, but has continuous first derivatives, then ∂f 6≡ 0 where ∂f(z) =
1
2 ( ∂
∂x + i ∂∂y )f(x+ iy). From Stokes’s theorem one can derive the following Pompeiu’s

formula.

Lemma 3.8. Let V be open with boundary consisting of a finite number of continuously
differentiable Jordan curves. Suppose u has continuous first derivatives in and up to
boundary of V . Then for z ∈ V

u(z) =
1

2πi

∫
∂V

u(λ)
λ− z dλ+

1
2πi

∫
V

∂u(λ)
λ− z dλ ∧ dλ. (3.10)

Proof. See e.g. p.263 in [4].

We may now substitute (3.5) into Pompeiu’s formula to get the following.

Theorem 3.9. Let Ω ⊂ C be open containing the zeros λk of p. Suppose ρ > 0 is such
that

int(γρ) ∪ γρ ⊂ Ω.

Given f ∈ C1(Ω) set for noncritical w such that |w| < ρd

fk(w) =
1

2πi

∫
γρ

Kk(λ,w)f(λ)dλ+
1

2πi

∫
int(γρ)

Kk(λ,w) ∂f(λ) dλ ∧ dλ (3.11)

Then fk ∈ C1 away from critical values and for corresponding z ∈ int(γρ) we have

f(z) =
d∑
k=1

δk(z)fk(p(z)).

Proof. As long as w is noncritical the roots zj of p(λ) − w are simple so that all
singularities in the area integral are integrable as

Kk(λ,w) = p′(λk)
δk(λ)∏d

j=1(λ− zj)
.
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4 Computation and estimates for the Jacobi series

4.1 Recursion

We consider next the computation of the multicentric power series assuming that f is
analytic and it is possible to compute accurately derivatives of f at roots of p. We show
that the coefficients for the power series of fk

fk(w) =
∞∑
n=0

1
n!
f

(n)
k (0)wn

can be computed using an explicit recursion. The recursion is given in Proposition 4.3,
while Proposition 4.5 shows the convergence estimates.

Let us put
ϕk(z) = fk(p(z))

so that our decomposition reads

f =
d∑
k=1

δkϕk. (4.1)

Lemma 4.1.

f (n) =
d∑
k=1

n∑
m=0

(
n

m

)
δ

(n−m)
k ϕ

(m)
k . (4.2)

Observe that since δk ∈ Pd−1 the polynomials δ(n−m)
k vanish for n−m ≥ d.

Lemma 4.2. If ψ(z) = g(p(z)) where p ∈ Pd then for n ≥ 1

ψ(n) =
n∑

m=1

bnmg
(m) (4.3)

where the polynomials bnm are determined by

bn+1,m = bn,m−1 p
′ + b′n,m (4.4)

with bn,0 = 0, b11 = p′ and bn,m = 0 for m > n.

For simplicity, we state that b00 = 1 and observe that bnn = (p′)n. We obtain an
infinite lower triangular matrix B = (bn,m) with polynomial entries:

B =



1
p′

p(2) (p′)2

p(3) 3p′p(2) (p′)3

p(4) 4p′p(3) + 3(p′′)2 6(p′)2p′′ (p′)4

· · · · ·
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Proposition 4.3. We can now solve f (n)
j (0) in terms of f (n)(λj) and of f (m)

k (0) with
m = 0, . . . , n− 1 from

(p′(λj))nf
(n)
j (0) = f (n)(λj)−

d∑
k=1

n−1∑
m=0

(
n

m

)
δ

(n−m)
k (λj)

m∑
l=0

bml(λj)f
(l)
k (0). (4.5)

Proof. The formula follows by substituting and noting that δk(λj) = δkj .

4.2 Convergence estimates

We shall now estimate the convergence of the power series

fk(w) =
∞∑
j=0

αkjw
j . (4.6)

For |w| < |p(λ)| = ρd we have from (3.4)

Kk(λ,w) =
1

λ− λk
∞∑
j=0

(
w

p(λ)
)j . (4.7)

Then we obtain the following representation for the Taylor coefficients of fk.

Proposition 4.4.

αkn =
1
n!
f

(n)
k (0) =

1
2πi

∫
γρ

f(λ)
p(λ)n

dλ

λ− λk . (4.8)

This gives us immediately simple bounds. In fact, let

M(ρ) = M(ρ, p, f) = max
|p(λ)|≤ρd

|f(λ)| (4.9)

and put

Lk(ρ) =
1

2π

∫
γρ

|dλ|
|λ− λk| . (4.10)

Then clearly

Proposition 4.5.
1
n!
|f (n)
k (0)| ≤ Lk(ρ) M(ρ) ρ−dn (4.11)

and

fk(w) =
∞∑
n=0

1
n!
f

(n)
k (0) wn (4.12)

holds for |w| < ρd with

|fk(w)| ≤ Lk(ρ) M(ρ)
ρd

ρd − |w| . (4.13)
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Remark 4.6. This bound (4.13) can be obtained directly without power series repre-
sentation by estimating from (3.4) along γρ

|Kk(λ,w)| ≤ 1
|λ− λk|

ρd

ρd − |w| .

Then (4.13) follows from

|fk(w)| ≤ 1
2π

∫
γρ

|Kk(λ,w)| |f(λ)||dλ|.

4.3 Further estimates

Consider next the multicentric power series

f(z) =
∞∑
j=0

cj(z)p(z)j (4.14)

where cj ∈ Pd−1. The convergence of this series is directly linked with those of fk’s.
In fact, from

f(z) =
d∑
k=1

δk(z)fk(p(z)

we obtain

cj(z) =
d∑
k=1

δk(z)αkj (4.15)

which gives substituting λk = z

αkj = cj(λk). (4.16)

Therefore, bounds for the Taylor coefficients αkj of fk’s and bounds for the conver-
gence of (4.14) carry essentially the same information.

As before, suppose f ∈ H(Ω) and int(γρ) ∪ γρ ⊂ Ω. Then (4.14) converges for
|p(z)| < ρd and for z ∈ int(γρ)

cj(z) =
1

2πi

∫
γρ

q(λ, z)f(λ)
p(λ)j+1

dλ. (4.17)

Here

q(λ, z) =
p(λ)− p(z)
λ− z .

This was the starting point for our study, see introduction above and [ON, 09]. In order
to estimate cj directly from this we put

C(ρ) =
1

2π

∫
γρ

|q(λ, z)|
|p(λ)| |dλ| (4.18)

We formulate for reference the following simple fact.
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Lemma 4.7. For p ∈ Pd there exist constants D1 and D2 such that for all ρ > 0,
z ∈ int(γρ) and k = 1, . . . , d

|δk(z)| ≤ D1 +D2 ρ
d−1 (4.19)

Then in particular

|cj(z)| ≤ (D1 +D2 ρ
d−1)

d∑
k=1

|αkj |. (4.20)

Proof. For large ρ the curve γρ is essentially a circle of radius ρ and as δk is of degree
d− 1 the claim follows.

Next we focus on C(ρ).

Proposition 4.8. Let p ∈ Pd be monic with distinct zeros. Then there exists C such
that for all ρ > 0

C(ρ) =
1

2π

∫
γρ

|q(λ, z)|
|p(λ)| |dλ| ≤ C. (4.21)

In particular for z ∈ int(γρ)

|cj(z)| ≤ CM(ρ)ρ−dj . (4.22)

Proof. From (4.17) we obtain, as along γρ we have |p(λ)| = ρd

|cj(z)| ≤ C(ρ)M(ρ)ρ−dj .

Thus, we need to conclude that C(ρ) is uniformly bounded. It is clear that C(ρ) is
continuous. Consider first small values of ρ. Since

q(λ, z) =
d∑
k=1

p′(λk)δk(λ)δk(z) = p(λ)
d∑
k=1

δk(z)
λ− λk , (4.23)

we obtain by the previous estimate

C(ρ) ≤ (D1 +D2ρ
d−1)

d∑
k=1

Lk(ρ).

This shows thatC(ρ) is bounded for small ρ, as we show below that Lk(ρ) is uniformly
bounded in ρ.

Consider now large values of ρ. However, it follows from the following Lemma
that

lim sup
ρ→∞

C(ρ) ≤ d,

which completes the proof.

Lemma 4.9.
max
z,λ∈γρ

|q(λ, z)|
|p(λ)| ≤ d ρ

−1 +O(ρ−2) (4.24)

as ρ→∞.

16



Proof. Let
p(λ) = λd + a1λ

d−1 + . . .

and assume ρ is large enough so that γρ is nearly circular. Along γρ we have p(λ(ϕ)) =
ρdeidϕ, so that with some constant b

λ(ϕ) = ρeiϕ − a1 + bρ−1e−iϕ +O(ρ−2) (4.25)

and in particular
|λ(ϕ)| = ρ+O(1). (4.26)

In order to estimate |q(λ, z)| we write

q(λ, z) =
p(λ)− p(z)
λ− z .

Since along γρ

|λj − zj |
|λ− z| ≤ |λ|

j−1 + |λ|j−2|z|+ · · ·+ |z|j−1 ≤ j(ρ+O(1))j−1

we obtain

|q(λ, z)| ≤ d (ρ+O(1))d−1 + (d− 1)|a1|(ρ+O(1))d−2 + . . . .

Thus |q(λ, z)|
|p(λ)| =

|q(λ, z)|
ρd

≤ d ρ−1 +O(ρ−2)

completing the proof of the lemma.

It remains to consider the constants Lk(ρ).

Proposition 4.10. Let p ∈ Pd be monic with distinct zeros. Then there exists a constant
L such that for all k = 1, . . . , d and ρ > 0

Lk(ρ) =
1

2π

∫
γρ

|dλ|
|λ− λk| ≤ L. (4.27)

Proof. Again, for ρ small enough γρ consists of d nearly circular contours and it is
easily concluded that integral around λk approaches 1 as ρ decreases while the other
integrals tend to 0. On the other hand for ρ large enough γρ consists just one nearly
circular component and the integral around it again approaches 1 as ρ → ∞. Since
Lk(ρ) is continuous in ρ it is uniformly bounded.

Remark 4.11. It would be interesting to know how large the constants C and L can
be. For example, if p(λ) = λd − 1, then for ρ = 1 γρ surrounds each root of unity and
visits in between at origin.

17



4.4 Polynomial approximations

Given

f(z) =
∞∑
j=0

cj(z)p(z)j

denote

Fn(z) =
n∑
j=0

cj(z)p(z)j (4.28)

and put for the error along γρ

En(ρ) = max
z∈γρ
|f(z)− Fn(z)|. (4.29)

We have the following bound for the error.

Proposition 4.12. Suppose f is analytic on and inside γρ and let r < ρ. Then

En(r) ≤ C(ρ)M(ρ)
ρd

ρd − rd (
r

ρ
)(n+1)d. (4.30)

The following can be viewed as an adaptation of Schwarz lemma.

Proposition 4.13. Let Ω ⊂ C be a domain and assume that Z(ρ) ⊂ Ω. Then for r < ρ

En(r) ≤ En(ρ) (
r

ρ
)(n+1)d. (4.31)

Proof. Along ∂Z(ρ) we have

|f(z)− Fn(z)
p(z)n+1

| ≤ En(ρ) ρ−d(n+1) (4.32)

which by maximum principle holds also for z ∈ Z(ρ).

Next we consider Rouché’s theorem.

Proposition 4.14. If for some r < ρ we have along γr

|Fn(z)| < |f(z)| (4.33)

then f has at least d(n+ 1) zeros inside γr.

Proof. By Rouché’s theorem f and f − Fn have equally many zeros, counted with
multiplicities, inside γr. But f − Fn vanishes there at least d(n+ 1) times.
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5 Basic operations

5.1 Evaluation

Suppose that the multiplication in A is the costly operation compared to forming sums
and scalar multiplications. Given a ∈ A and a holomorphic f consider evaluation of
f(a) using approximations Fn(a) as in Section 4.4. We have organized the recursion
above to first compute the coefficients αkj after which one can compute either the
series fk(p(a)) and then take the combination using δk(a) or one proceeds to compute
the coefficient polynomials

cj(a) =
d∑
k=1

αkjδk(a)

and then forms Fn(a) directly. If n is large compared with d then clearly the former
contains fewer multiplications in the algebra while the latter is to be preferred if d is
large compared with n. Further, if n is not chosen in advance, each new power of
p(a) requires d+1 multiplications in the former and only two in the latter. Thus the
best organization may vary from case to case. One should also notice that the different
orders of summations may have different error sensitivities.

If the algebra is just the complex number field, then more can be said. In Lagrange
interpolation barycentric interpolation formula is often preferred. A discussion about
this can be found in [1]. In our notation Lagrange interpolation corresponds to replac-
ing f by

c0(z) =
d∑
k=1

δk(z)fk(0)

We arrive at barycentric form as follows. Since

1 =
d∑
k=1

δk(z) = p(z)
d∑
k=1

1
p′(λk)

1
z − λk ,

and

c0(z) =
d∑
k=1

δk(z)fk(0) = p(z)
d∑
k=1

1
p′(λk)

fk(0)
z − λk ,

we obtain by dividing

c0(z) =

∑d
k=1

1
p′(λk)

fk(0)
z−λk∑d

k=1
1

p′(λk)
1

z−λk
.

Formally this would suggest a generalization as follows:
Compute w = p(z) from

w−1 =
d∑
k=1

1
p′(λk)

1
z − λk

and evaluate

f(z) =
d∑
k=1

δk(z)fk(w)
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from

f(z) = w
d∑
k=1

1
p′(λk)

fk(w)
z − λk .

It is clear that we cannot effectively use this formulation in functional calculus in Ba-
nach algebras, as we do not have the necessary inverses at hand.

5.2 Adding and multiplying

Suppose f(z) =
∑d

1 δk(z)fk(p(z)) and g(z) =
∑d

1 δk(z)gk(p(z)). Then the sum can
be formed in an obvious way:

f(z) + g(z) =
d∑
k=1

δk(z)(fk(p(z)) + gk(p(z))). (5.1)

To obtain a formula for the product of two functions one has to have the polynomials
δmδn ∈ P2d−2 precomputed in a suitable way. Given any Q ∈ P2d−2 there are unique
polynomials R,S ∈ Pd−1 such that

Q = R+ S p.

Using this one computes for 1 ≤ i, j ≤ d polynomials

Rij(z) =
d∑
k=1

rijk δk(z) and Sij(z) =
d∑
k=1

sijk δk(z)

such that
δi(z)δj(z) = Rij(z) + p(z)Sij(z). (5.2)

Then denoting

hk(w) =
d∑

i,j=1

(rijk + sijk w) fi(w) gj(w) (5.3)

we obtain

f(z)g(z) =
d∑
k=1

δk(z)hk(p(z)). (5.4)

Observe that (5.2) depends only on the polynomial p.
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