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Toni Lassila: Model reduction and level set methods for shape optimization prob-
lems; Helsinki University of Technology Institute of Mathematics Research Reports
A593 (2010).

Abstract:
In this work two topics related to mathematical shape optimization are

considered. Topological optimization methods need not know the correct to-
pology (number of connected components and possible holes) of the optimal
shape beforehand. Shape optimization can be performed by a topological gra-
dient descent algorithm. Computational applications of topological optimiza-
tion and level set based shape optimization involve the optimal damping of
vibrating structures and an inverse problem of reconstructing a shape based
on noisy interferogram measurements.

For parametric shape optimization with partial differential constraints
the model reduction approach of reduced basis methods is considered. In the
reduced basis method a basis of snapshot solutions is used to construct a
problem-dependent approximation space that has much smaller dimension
than the underlying finite element approximations. The state constraints for
optimization are then replaced with their reduced basis approximation, lea-
ding to efficient shape optimization methods. Computational examples invol-
ve the optimal engineering design of airfoils in potential and thermal flow.

AMS subject classifications: 35R35, 49Q10, 65K10

Keywords: shape optimization, topological optimization, level set method, model
reduction, reduced basis method, partial differential equations



Toni Lassila: Mallien redusointi ja tasa-arvojoukkojen menetelmät muodon opti-
moinnin tehtäville

Tiivistelmä:
Tässä työssä tarkastellaan kahta matemaattiseen muodon optimointiin

liittyvää aihetta. Topologiset optimointimenetelmät eivät tarvitse etukäteis-
tietoa optimaalisen muodon oikeasta topologiasta (yhtenäisten komponent-
tien tai mahdollisten reikien lukumäärä). Muodon optimointia voidaan suo-
rittaa topologisen gradienttimenetelmän avulla. Topologisen optimoinnin ja
tasa-arvojoukkojen menetelmään perustavan muodon optimoinnin laskennal-
lisia sovelluksia työssä ovat värähtelevän rakenteen optimaalinen vaimennus
sekä inversio-ongelma, jossa muoto päätellään kohinaisista interferometrimit-
tauksista.

Parametrista riippuviin muodon optimointitehtäviin sovelletaan redusoi-
dun kannan menetelmää tehtävän laskennallisen kustannuksen pienentämi-
seksi, kun tehtävään liittyy osittaisdifferentiaaliyhtälörajoitteita. Redusoidun
kannan menetelmässä rakennetaan tehtävästä riippuva approksimaatioava-
ruus, jonka dimensio on paljon pienempi kuin vastaavan elementtimenetel-
män tuottaman approksimaation. Tilanyhtälörajoitteet korvataan redusoi-
dun kannan antamilla approksimaatioilla, mikä johtaa tehokkaaseen muodon
optimoinnin menetelmään. Laskennallisia esimerkkejä esitellään optimaali-
sesta suunnittelusta potentiaalivirtauksessa sekä lämpövirtauksissa.

Avainsanat: muodon optimointi, topologinen optimointi, tasa-arvojoukkojen
menetelmä, mallin redusointi, redusoidun kannan menetelmä, osittais-
differentiaaliyhtälöt
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I Summary

1 Introduction

This thesis develops and analyzes new numerical methods for shape opti-
mization as well as free boundary problems that can be treated with similar
methods. Shape optimization is a part of the field of mathematical optimiza-
tion theory that is concerned with finding a geometric shape (open subset
of Euclidean space with piecewise smooth boundary) that is optimal with
respect to some cost functional that depends explicitly or implicitly on the
shape. The implicit dependence on the shape is often through the solution
of a partial differential equation (PDE), in which case it is called a PDE
constrained shape optimization problems. Applications of PDE constrained
shape optimization arise for example in industrial design of structures. Shape
optimization is usually divided into two schools: parametric shape optimiza-
tion and shape sensitivity analysis. Another recent trend are the so-called
topological optimization methods.

Parametric shape optimization works by introducing first a way to de-
scribe the admissible shapes using a finite-dimensional parameter vector. The
shape optimization problem is then written as a finite-dimensional nonlinear
programming problem [9] with the parameters as the design variables. This
approach is common is engineering applications such as aero- and hydrody-
namic design [52] and structural design [41], because it can be readily coupled
with existing optimization software. The parameterizations can be obtained
using techniques such as boundary splines [25], basis shapes [68], or free-form
deformations [70], to mention a few options from literature.

Shape sensitivity analysis extends the concept of derivatives as a mea-
sure of sensitivity of the cost functional to small changes in the shapes. By
computing analytical expression for the shape derivative [74] it is possible
to talk about descent directions for shape functionals and thus extend ex-
isting finite-dimensional optimization algorithms to the infinite-dimensional
manifold of admissible shapes [75]. The shape sensitivity analysis can be per-
formed either in continuous or discrete setting [77]. It should be noted that
the resulting optimal design can be different depending on which step is per-
formed first (discretize first then optimize vs. optimize first then discretize)
[24].

Topological optimization methods remove the requirement that the shape
be described explicitly by its boundary curve/surface. Instead they use im-
plicit descriptions of the shapes using methods such as level sets [16, 18] or
phase-fields [12]. The first concepts of topological sensitivity can be found in
the works of Jean Céa in the 1970s [23]. Topological methods do not a priori
assume that the shape in question has a fixed topology. That is to say, its
number of connected components and their genus do not need to be fixed,
but can vary during the course of the optimization iteration. The shape
and topological optimization methods have also been successfully combined
[73, 78]. For a comprehensive review of topological optimization, see [30].
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A common feature in many shape optimization problems is the existence
of an underlying physical system that is modelled using partial differential
equations [31]. The shape defines the computational domain for the state
equations in PDE form, which can be solved to obtain the state of the system.
The value of the shape functional can then depend on both the state as well
as the shape. When deriving shape sensitivities the sensitivity of the state
solution must also be taken into account. This is often accomplished through
defining an adjoint state [45], which turns out (in the linear case) to be the
solution of a related PDE on the same domain. Together the state and adjoint
state can be used to compute the shape gradient in PDE-constrained shape
optimization problems. The adjoint approach has the benefit of minimizing
the number of PDE solutions needed to evaluate the shape gradient. This
is especially important in the nonparametric setting, or in parametric shape
optimization when the number of shape parameters is large.

The solution of the state and adjoint state equations is the computation-
ally most involving part of PDE-constrained shape optimization problems.
As analytical solutions of PDEs are available only in very simple domains
the applied shape optimization methods found in literature almost always
rely on numerical approximations to the PDE solutions. The most popular
choice for discretization is the finite element method (FEM) [13], where a
discrete mesh is constructed on the given domain and the solution to the
variational formulation of the PDE is sought in a finite-dimensional subspace
of piecewise polynomial functions that have support only on a limited num-
ber of elements of the discrete mesh. The FEM results in a large system
of linear equations to be solved with methods of computational linear alge-
bra [33]. In realistic applied shape optimization problems these systems can
have millions of degrees of freedom. In shape optimization problems there
is the additional cost of reassembling the matrix corresponding to the linear
system, because the mesh and by extension the matrix depend heavily on
the domain (and thus the shape). Because the cost of the PDE solutions
dominates the computational workload of applied shape optimization, there
is much interest in more efficient methods for approximating the solutions
of the state and adjoint state equations. This leads to the model reduction
techniques for parametric PDEs discussed in this thesis.

The structure of this thesis is the following: in Sect. 2 the most important
aspects of numerical methods for shape optimization are briefly reviewed. In
Sect. 3 a prototype shape optimization problem with elliptic PDE constraints
is defined. In Sect. 4 the approach of describing the shapes with implicit
functions is introduced, and level set methods for shape optimization are
discussed. A special case of these are the topological level set methods.
In Sect. 5 the attention turns to the question of surrogate optimization
via a model reduction of the state equations. The reduced basis method is
introduced, as well as the related empirical interpolation method. In Sect. 6
the contributions of the thesis to the state of the art are outlined. The rest
of the thesis contains the actual research contributions in the form of five
independent research articles.
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2 Review of numerical methods for shape optimization

Numerical methods for shape optimization require first choosing how to rep-
resent the shapes. A geometric shape can be represented in a multitude
of ways, and the choice of its representation dictates the type of numerical
scheme. Three different approaches can be identified. These are boundary
tracking methods, immersed boundary methods, and fixed domain methods.

In boundary tracking methods there exists an explicit description of the
boundary of the shape at all times, and it is possible to construct a discrete
mesh on geometry that matches the boundary. Then the FEM can be applied
on the discrete mesh to compute numerical approximations for the shape gra-
dients, a descent step can be performed in the discrete sense by moving the
boundary mesh points in such a way that the value of the cost functional
is expected to decrease, and then the mesh is updated to reflect the new
geometry and this step is iterated until a sufficiently improved design has
been found. The gradients are usually computed by the adjoint approach for
computational efficiency, and can either be derived analytically or obtained
through a process known as algorithmic differentiation [36]. The latter refers
to the application of the chain rule of derivation directly to algorithmic pro-
gram codes, and enables the applied shape optimization of very complicated
systems where the analytical derivatives are not easily forthcoming.

In immersed boundary methods an explicit description of the boundary
is not used. While an approximation of the boundary can usually be con-
structed, it is preferred to work without it. When the shape optimization
problem includes partial differential equation constraints, the computational
domain is extended from just the (a priori unknown) shape to a fixed exte-
rior domain and then the PDE coefficients become the optimization variables
that codify the geometric shape to be optimized. This is the fictitious do-
main approach [38]. The classical idea of discrete 0-1 optimization, where
each discretization cell either contains material or doesn’t, has been largely
abandoned [11] as refining the discretization mesh tends to result in un-
wanted “swiss cheese” type optimal solutions. The homogenization approach
[2], where the design variables vary continuously in the range (0, 1), is pre-
ferred. The drawback is that sometimes the resulting optimal shapes have
fuzzy boundaries and a post-processing step may be required to recover the
final shape.

In this thesis the fixed domain approach is also applied. This means
that the admissible shapes are taken to be images of a fixed reference shape
under a smooth, invertible mapping. The shape mapping can be defined as
a function of a finite-number of parameters, which makes it a parametric
shape optimization problem. The state equations are then mapped back
to the reference domain and become parameter-dependent PDEs on a fixed
domain. This approach is suitable for small deformations of shapes, without
any topological changes. The difficulties relating to geometric variability are
removed, but the parameter-dependence of the PDE coefficients makes the
analysis and numerical solution of these equations more challenging.

11



3 Prototype shape optimization problem

To fix terms and the notation a prototype PDE constrained shape optimiza-
tion problem is introduced next. Let Sad be the set of admissible shapes
Ω ⊂ Rd. Define for each Ω the Hilbert space X(Ω) of functions on Ω with
norm || · ||X . Let J : X(Ω) → R be lower-semicontinuous functional in a
suitable topology, i.e.:

For every convergent sequence {vn}∞n=1 s.t. vn → v0 it holds that
lim inf
v→v0

J(v) ≥ J(v0)

The prototype for a PDE constrained shape optimization problem is to find
the optimal shape Ω∗ that solves

min
Ω∈Sad

J(u(Ω))

s.t. A(u(Ω), v) = F (v) for all v ∈ V (Ω),
(3.1)

where V (Ω) ⊂ X(Ω) is a subspace of all functions v satisfying the Dirichlet
boundary condition

v ≡ 0 on Γd ⊂ ∂Ω. (3.2)

The PDE is given in the variational form with A : X(Ω) × X(Ω) → R an
elliptic bilinear form, i.e. there exist constants α > 0 and γ > 0 s.t.

A(v, v) ≥ α||v||2X , for all v ∈ X(Ω) (coercivity)

|A(u, v)| ≤ γ||u||X ||v||X , for all u, v ∈ X(Ω) (continuity)
(3.3)

and F : X(Ω)→ R a continuous linear form. The function u(Ω) is called the
state solution on a given domain Ω. By suitable regularity assumptions for
the admissible shapes Sad, for example the ε-cone property or the uniform
Lipschitz property [62], one can prove the existence of an optimal shape Ω∗

via an argument of a minimizing sequence and the lower-semicontinuity of
J . For further analysis on the requirements for Sad and the topologies used
to guarantee the existence of solutions to shape optimization problems, see
[39].

The discrete version of the prototype problem (3.1) involves for each Ω
a domain-dependent quasi-uniform ([13], p.108) triangular mesh Th,Ω with
elements K ∈ Th,Ω having diameter hK s.t. h := maxK∈Th,Ω

hK , and the
finite element subspace of continuous piecewise-polynomial functions

Vh(Ω) := {v ∈ V (Ω) ∩ C(Ω) : v|K ∈ Pk(K)} (3.4)

where Pk(K) denotes the space of polynomials of degree no greater than k on
K. Denote the set of all polygonal domains as Spoly. The discretized shape
optimization problem is to find the optimal polygonal shape Ω∗h that solves

min
Ωh∈Sad∩Spoly

J(uh(Ωh))

s.t. A(uh(Ωh), vh) = F (vh) for all vh ∈ Vh(Ωh).
(3.5)

The discrete problem satisfies the mesh-independence principle [46] if its
solution for h small enough is independent of the choice of the discretization
mesh Th,Ω. The convergence of Ω∗h → Ω∗ as h→ 0 is discussed e.g. in [29].
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4 Level set methods in shape optimization

In the level set formulation the shapes Ω are represented as the level sets of
Lipschitz-continuous functions φ : Rd → R, called implicit functions. Define

Ω = {x | φ(x) < 0}, Ωc = {x | φ(x) ≥ 0}. (4.6)

In addition the requirement that ∇φ(x) 6= 0 almost everywhere on ∂Ω is
imposed. This enforces a sharp interface between Ω and its open complement.
The benefit of the implicit function approach is that there is no need for
an explicit description for the boundary of the shape, which simplifies the
implementation of numerical schemes because the mesh does not necessarily
have to conform to the boundary of the shape.

4.1 Shape functionals for implicit functions

In the shape optimization problem (3.1) the shape Ω can now be replaced
with its implicit function representant φ. For the two elementary types of
shape functionals, the area and perimeter functionals, the transformation
rules are obtained as in [18]

J(Ω) =

∫
Ω

f(x) dx ⇐⇒ J(φ) =

∫
Rd

H(−φ(x))f(x) dx (4.7)

J(Ω) =

∫
∂Ω

g(x) ds ⇐⇒ J(φ) =

∫
Rd

δ0(φ(x))|∇φ(x)|g(x) dx(4.8)

where H(φ) is the Heaviside step function and δ0(φ) the delta distribution at
φ = 0. The classical shape sensitivity analysis can now be performed in terms
of the implicit function φ. Let w ∈ W 1,∞(Rd,Rd) be a smooth velocity field.
If the level sets of φ are transported according to the velocity field w in time
t, their evolution is described by the level set partial-differential equation

∂φ(x, t)

∂t
+w(x) · ∇φ(x, t) = 0, (x, t) ∈ Rd × (0, T )

φ(x, 0) = φ0(x), x ∈ Rd.
(4.9)

The left-hand side is simply the Eulerian (material) derivative of φ. Note
that the choice and scaling of the function φ0(x) do not matter away from
the boundary ∂Ω. The classical shape derivative of J at Ω in the direction w
can then be computed using the speed method [79] and the implicit function
as the Gâteaux-derivative

dSJ(Ω;w) = lim
τ→0+

J(φ(·, τ))− J(φ(·, 0))

τ
, (4.10)

where φ(x, τ) satisfies (4.9). There are also alternative implicit function
approaches that can be used to treat PDE constrained shape optimization
problems, see [54].
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4.2 Shape gradients and the descent algorithm

In addition to facilitating the computation of the shape derivatives, the level
set formulation also allows one to write a descent algorithm for shape op-
timization. The Hadamard-Zolésio structure theorem [26] states that with
some mild regularity assumptions the shape derivative takes the form

dSJ(Ω;w) =

∫
∂Ω

(w · n)∇J(x) ds, (4.11)

where n is the exterior unit normal field at the boundary ∂Ω, and ∇J ∈
L2(∂Ω) is called the shape gradient (in the L2 sense) that has support only
on the boundary of the shape. Once the gradient has been computed, eval-
uations of the derivatives for different directions w is inexpensive. It is also
possible to define different gradients by changing the inner product. Given
any subspace V ⊂ L2(∂Ω) endowed with an inner product 〈v1, v2〉V that
makes the space complete the gradient with respect to the inner product in
V can be defined as the unique element ∇V J that satisfies

〈∇V J, v〉V =

∫
∂Ω

(∇V J)v dΩ, for all v ∈ V. (4.12)

Note that for the implicit function φ the exterior unit normal n at the bound-
ary ∂Ω can be computed by n = ∇φ/|∇φ|.

A gradient descent algorithm for shapes proceeds as follows: Let Ω0 be
an initial guess for the shape and φ0 a corresponding implicit function. For
each iteration k = 0, 1, 2, . . . the shape gradient ∇V J at Ωk is computed
and in (4.9) the normal velocity field set equal to the negative gradient,
w = −(∇V J)(∇φ/|∇φ|). This results in the evolution equation for the kth
descent step

∂φ(x, t)

∂t
−∇V J(x)|∇φ(x, t)| = 0, (x, t) ∈ Rd × (0,∆t)

φ(x, 0) = φk(x), x ∈ Rd.
(4.13)

to be solved for a short pseudo-time step ∆t > 0. The shape for the next
iteration, Ωk+1, is given as the 0-level set of φ(·,∆t). If the pseudo-time step
is small enough this iteration will result in a sequence of shapes {Ωk}∞k=1 that
gives monotonically decreasing values in J(Ωk). To choose the length of the
pseudo-time step ∆t without an expensive line search procedure, one can use
e.g. the Armijo rule [6].

Equation (4.9) is nonlinear evolution equation of the Hamilton-Jacobi
class of PDEs:

∂φ(x, t)

∂t
+H(∇φ(x, t)) = G(x, t), (x, t) ∈ Rd × (0, T ). (4.14)

Typically, existence and uniqueness of solutions can be shown in the weak
sense of viscosity solutions [49]. This means the equation is converted to a
hyperbolic-parabolic type

∂φ(x, t)

∂t
−∇V J(x)|∇φ(x, t)| = ε4φ(x, t), (x, t) ∈ Rd × (0, T ), (4.15)
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by adding an artificial viscosity term, where 4 =
∑d

i=1 ∂xixi
denotes the

Laplace operator, and studying the convergence of solutions as ε → 0. Nu-
merical solution schemes for level set equations are based on shock-capturing
schemes [37, 47] originally designed for the numerical resolution of hyperbolic
conservation laws, which retain the sharp boundary of the evolving interface
without excessively smoothing out the details as is usually the case with ar-
tificial viscosity schemes. For more details on the numerical solution of level
set equations, see [60, 71].

4.3 Topological level set methods

While the level set approach does permit certain types of topological changes
due to the implicit description of the boundary of the shape, the speed
method is still limited to diffeomorphic images of the initial shape and thus
in practice can be slow or even unable to discover the correct topology in the
case that the optimal shape consists of disjoint components. The topological
derivative was defined in [72] as

dTJ(Ω;x0) =


lim
ρ→0+

J(Ω ∪B(x0, ρ))− J(Ω)

|B(x0, ρ)|
, x0 /∈ Ω

lim
ρ→0+

J(Ω ∩B(x0, ρ))− J(Ω)

|B(x0, ρ)|
, x0 ∈ Ω

(4.16)

where B(x0, ρ) denotes a ball of radius ρ centered at x0, and |B| its d-
dimensional measure. Intuitively, the topological derivative measures the
change of J when a small ball is added to Ω at x0 (when x0 6∈ Ω) or when
a small hole is created in Ω at x0 (when x0 ∈ Ω). The challenge in im-
plementing topological methods is related to deriving the exact asymptotic
expression of the derivative from (4.16), which typically requires sophisti-
cated mathematical analysis tools. With certain assumptions on the state
equations (mainly a Dirichlet boundary condition) a simpler computation
can provide the desired topological sensitivity [40].

It turns out that topological derivatives have a strong connection with
the classical shape derivative (4.10) [58]. For many problems, such as the
minimum compliance problem of linear elasticity, the topological derivative
turns out to be equivalent to the shape gradient up to a constant [22]. When
the topological derivative exists and can be computed, similarly to the shape
gradient, a gradient descent algorithm for the implicit function can be for-
mulated and implemented by solving the evolution equation

∂φ(x, t)

∂t
= ∇TJ(φ,x, t), (x, t) ∈ Rd × (0, T ), (4.17)

where the topological gradient is defined as in [17]

∇TJ(φ,x, t) = −sgn [φ(x, t)] dT (Ω(t);x). (4.18)
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4.4 Extension to geometric inverse problems

Many geometric inverse problems can be cast as shape optimization problems
and solved by the level set approach by following the formulation in [16, 69].
Examples include various inverse scattering problems [27] and the inverse
elasticity problem [10]. The general setup of the forward problem is: given
the system state u an observation y is made

y = G(u) (4.19)

where the imaging operator G : X(Ω)→ Y maps the state to some topological
space Y of observations. In the inverse problem context the observation y is
given, but the state u is unknown and to be reconstructed. It is assumed that
the state depends as before on a variable domain Ω, so that u = u(Ω), and
also an approximation to Ω is to be reconstructed. The difficulty lies in the
fact that the inverse operator G−1 is typically not continuous with respect
to the observations, i.e. the inverse problem is ill-posed. Furthermore, the
measurement y is often polluted with noise, y = ŷ + ε, where ŷ is the true
observation and ε is a realization of a noise process. Thus it is usual to
minimize the least-squares functional

min
Ω∈Sreg

||G(u(Ω))− y||2, (4.20)

where the subset of admissible shapes Sreg ⊂ Sad consists of suitably regu-
larized shapes that recover the continuous dependence of the state u on the
observation y. The inverse problem is now written as a shape optimization
problem of the type (3.1), and the level set based approach detailed above
can be used. Another way to regularize the inverse problem is to use alter-
native gradients of the type (4.12) and the evolution equation (4.13) in the
descent algorithm, see e.g. [16, 64].

5 Model reduction in parametric shape optimization

A large part of the complexity of solving PDE constrained shape optimiza-
tion problems is the cost of the PDE solution. Numerical optimization al-
gorithms tend to involve a large number of constraint and cost functional
evaluations, and since every one of these involves the solution of a poten-
tially highly complex and computationally expensive PDE, there is a need
for more efficient solution methods. Model reduction and surrogate opti-
mization ideas have been very popular for shape optimization problems with
PDE constraints. The theory of model order reduction for linear systems of
ordinary differential equations [5] and PDEs is well-known; unfortunately in
shape optimization the problems are inherently nonlinear (the solution of the
PDE depends on the domain Ω in a strongly nonlinear way) and therefore
new approaches in model reduction that also work with nonlinear problems
need to be developed.

In surrogate optimization [65] the full PDE-constrained optimization prob-
lem is replaced with an inexpensive approximate optimization problem. This
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can involve replacing the cost function with a simpler one, replacing the con-
straints with near-equivalent ones, or a combination of both techniques. The
space mapping approach [7] considers a two-level approach, where a coarse
level model is used for the majority of the optimization steps, while a more
accurate fine level model is used periodically to guarantee that the resulting
designs do not become too unrealistic. The reduced basis surrogate opti-
mization method was first presented in [59], where the state equations, their
linear outputs, as well as their first- and second-order sensitivities were all
treated with the reduced basis method to obtain a comprehensive surrogate
optimization framework. In that work the error bounds for solutions of the
reduced state equations were taken into account in the modified cost func-
tion to obtain a type of optimization method “in the presence of (modelling)
uncertainty”. For optimization in time-dependent systems there are also ap-
proaches using the proper orthogonal decomposition (POD) [48] that looks
for a set of principal eigenmodes of an ensemble of trajectories of a dynamical
system. The subspace spanned by these eigenmodes can be used as a type
of surrogate model [15] of the state equations in time.

The main interest in this thesis lies in the model reduction of the paramet-
ric shape optimization when the shape parameters have been incorporated
into the PDE constraints by a geometric transformation back to a fixed ref-
erence domain.

5.1 Parameterization of the computational domain

The first step in casting (3.1) as a parametric shape optimization problem
is to introduce a reference domain Ω0, a finite-dimensional parameter vector
µ ∈ D, a low-dimensional parameter range D ⊂ RP (e.g. P < 20), and
a parametric map F ( · ;µ) : Ω0 → Ω(µ) that is at least C1 smooth and
invertible. The admissible shapes Ω are then assumed to belong in the range
of the parametric domain map when applied to the reference shape, that is
for all Ω ∈ Sad there exists a µ ∈ D s.t.

Ω(µ) = F (Ω0;µ). (5.21)

Using this map as a transformation it is possible map the PDE constraints in
(3.1) on to a fixed domain. For example, the standard elliptic bilinear form

A(u, v) =

∫
Ω

[A(x)∇u · ∇v + b(x)uv] dx, (5.22)

where A(x) ∈ L∞(Rd,Rd×d) is symmetric and uniformly positive definite
over all of Ω, i.e.

〈A(x)v, v〉
||v||2

≥ a0 > 0 for all v 6= 0,x ∈ Ω, (5.23)

and b(x) ≥ 0, transforms into

Ã(ũ, ṽ;µ) =

∫
Ω0

[
Ã(x̃,µ)∇̃ũ · ∇̃ṽ + b̃(x̃,µ)ũṽ

]
dx (5.24)
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according to

Ã(x̃,µ) := J−TF (x̃;µ)A(F (x̃;µ))J−1
F (x̃;µ) |JF (x̃;µ)| (5.25)

b̃(x̃,µ) := b(F (x̃;µ)) |JF (x̃;µ)|, (5.26)

where JF denotes the Jacobian matrix of F , i.e. [JF ]ij := ∂Fi

∂exj
, and |JF | its

determinant. The transformed problem coefficients now depend explicitly on
the parameters, and it can be easily verified that also the transformed prob-
lem is elliptic. All quantities denoted with tildes live on the fixed reference
domain Ω0 and can be mapped to their counterparts on the original domain
Ω. The parametric shape optimization problem in the fixed domain is

min
µ∈D

J(ũ(µ))

s.t. Ã(ũ(µ), ṽ;µ) = F̃ (ṽ;µ) for all ṽ ∈ V (Ω0).
(5.27)

The bilinear form Ã and the linear form F̃ are now parametric, that is
to say the coefficient functions depend explicitly on the parameter vector
µ. Once the parametric shape optimization problem has been obtained,
model reduction methods for the efficient evaluation of the parametric PDE
constraint can be studied. The focus from here on is on the discrete model
problem (3.5). To this end the discrete version of the aforementioned problem
can be defined in a similar way:

min
µ∈D

J(ũh(µ))

s.t. Ã(ũh(µ), ṽh;µ) = F̃ (ṽh;µ) for all ṽh ∈ Vh(Ω0).
(5.28)

Assume that existence of solutions can be shown for the infinite-dimensional
problems (3.1) and (5.27), that the mesh-independence principle is in effect,
and that the discretization parameter h is chosen small enough in the FEM.
After these assumptions it suffices to work with a fixed mesh T̃h on the ref-
erence domain Ω0. The parametric formulation with the fixed domain/fixed
mesh -assumptions enable the use of the reduced basis methods for model
reduction of the state PDEs, which shall be discussed next.

5.2 Reduced basis methods

A generic model reduction framework for parametric PDEs are the reduced
basis methods [61, 67]. The idea was developed in the 1980s in the nonlinear
structural mechanics community [3, 32, 57, 63]. The aim is to construct
a low-dimensional approximation for the discretized state equations in the
PDE constraint of (5.28). To accomplish this, a parametric manifold of PDE
solutions is sampled at a few well-chosen parametric points and snapshot
solutions of the PDE are computed using the finite element method for solving
PDEs numerically. The snapshots are used to construct a low-dimensional
space, where Galerkin projection is used for the approximation. To guarantee
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approximation stability, a posteriori estimators for the error between the
reduced basis approximation and the finite element solution are constructed.

Because the bilinear form depends on the parameter, a parameter inde-
pendent norm should be first defined. Choose a reference parameter µ̄ ∈ D
and define the parameter-independent inner product

〈ũ, ṽ〉X := Ã(ũ, ṽ; µ̄) (5.29)

and the norm
||ṽ||X :=

√
〈ṽ, ṽ〉X . (5.30)

In the reduced basis framework a small collection of parameter values {µn}Nn=1

are used to construct a basis for Galerkin projection for the parametric PDE.
Let {ũh(µn)}Nn=1 be the finite element solutions for the chosen parameter val-
ues, and define

V N
h := span(ũh(µ1), ũh(µ2), . . . , ũh(µN)) (5.31)

the reduced basis approximation space. First construct an X-orthogonal
basis for V N

h with the Gram-Schmidt procedure
ζ1 = ũh(µ1)/||ũh(µ1)||X

zn = ũh(µn)−
n−1∑
k=1

ζk
〈ζk, ũh(µn)〉X
||ζk||2X

for n = 2, 3, . . . , N

ζn = zn/||zn||X for n = 2, 3, . . . , N

. (5.32)

This step in necessary because otherwise the conditioning of the linear system
deteriorates for even small N . The reduced basis Galerkin method then looks
for a solution ũNh (µ) ∈ V N

h s.t.

Ã(ũNh (µ), ζn;µ) = F̃ (ζn;µ), for all n = 1, 2, . . . , N. (5.33)

Now ũNh (µ) gives an approximation to the finite element solution ũh(µ).
When the dimension of the reduced basis space N is much smaller than the
dimension of the finite element space N it is to be expected that the problem
(5.33) is efficiently solvable for any µ. The surrogate optimization algorithm
that is obtained by replacing the full state equations with their reduced basis
counterparts reads:

min
µ∈D

J(ũ(µ))

s.t. Ã(ũNh (µ), ṽ;µ) = F̃ (ṽ;µ) for all ṽ ∈ V N
h .

(5.34)

A priori the complexity of solving the reduced basis system (5.33) depends
only on N , but it turns out that to obtain an efficient method for assembling
the system without an explicit workload dependence on N , the following
assumption of affine parametric dependence is needed:

Ã(ũ, ṽ;µ) =

Qa∑
q=1

Θq
a(µ)Ãq(ũ, ṽ) (5.35)

19



and

F̃ (ṽ;µ) =

Qf∑
q=1

Θq
f (µ)F̃ q(ṽ), (5.36)

where the parametric coefficient functions Θq
a and Θq

f should be efficiently
evaluable. Then the problem (5.33) splits into parameter-dependent and
-independent parts

Qa∑
q=1

Θq
a(µ)Ãq(ũNh (µ), ζn) =

Qf∑
q=1

Θq
f (µ)F̃ q(ζn), for all n = 1, 2, . . . , N

(5.37)
or in matrix form (

Qa∑
q=1

Θq
a(µ)Aq

)
U =

Qf∑
q=1

Θq
f (µ)F q, (5.38)

where
[Aq]n,n′ := Ãq(ζn′ , ζn), [F q]n := F̃ q(ζn). (5.39)

Thus the system matrices Aq and right-hand sides F q can be assembled once
in the beginning (offline stage), stored, and then for every µ the parametric
coefficients can be evaluated to assemble and solve the system (5.39) (online
stage).

The accuracy and convergence of the reduced basis approximation uNh
affect the optimization results obtained from the surrogate problem (5.34).
It is to be expected that a poor approximation to the state equations results
in either suboptimal or infeasible designs because the constraints are not
properly enforced. There is little a priori convergence theory for reduced basis
approximations. In the best case the convergence is exponential [14, 51], so
that the relative error of the reduced basis approximation behaves like

||ũh − ũNh ||X
||ũh||X

≤ Ce−kN (5.40)

for some constants C, k > 0 after a critical cutoff point N > Ncrit has been
reached. Therefore much interest lies in the construction of reliable and
efficient a posteriori error estimates for ||ũh − ũNh ||X . One option (see [61],
Chapter 4 for the full details) is to use the residual-based estimator

∆n(µ) :=
||Rn(·;µ)||X′
αLB(µ)

, (5.41)

where the residual is defined as the dual element

Rn(ṽ;µ) := F (ṽ;µ)− a(ũnh(µ), ṽ;µ) ∈ X ′(Ω0) (5.42)

and αLB(µ) > 0 is a computable lower bound for the coercivity constant
α0(µ), i.e.

αLB(µ) ≤ α0(µ) ≤ Ã(ũ, ũ;µ)

||ũ||2X
for all ũ ∈ Xh. (5.43)
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A parametric lower bound αLB for the coercivity constant can be constructed
by sampling the parameter space to find a proper set of linear constraints that
bounds the smallest eigenvalue from below, the so-called successive constraint
method [42, 43]. Estimator (5.41) satisfies

||ũh − ũnh||X ≤ ∆n(µ) for all µ ∈ D. (5.44)

Until now the strategy for choosing the parameter values used to construct
the snapshots has not been addressed. With the a posteriori estimate ∆n

in hand it is possible to use a greedy algorithm for the selection of a good
reduced approximation basis. The greedy approach was first proposed in [35],
and has since become the standard basis selection algorithm. Let Ξtrain ⊂
D be a large training sample of parameter points. From Ξtrain choose the
first parameter value µ1 according to some rule, and then proceed to find a
hierarchical set of parameter points

µn = arg max
µ∈Ξtrain

∆n−1(µ), for n = 2, 3, . . . , N. (5.45)

Intuitively: at each iteration add the parameter point that produces the
snapshot solution that is worst approximated by the previous reduced basis
approximation space. It is known that such a greedy algorithm does not
produce the optimal approximation subspace V N

∗ of dimension N , but there
are some recent indications [14] that the approximation spaces given by the
reduced basis greedy algorithm are not too far from the optimal ones.

5.3 Empirical interpolation method

One of the topics of this thesis relates to the fact that for parametric shape
optimization problems, assumption (5.35) is almost never valid unless special
care is taken to construct a suitable geometric decomposition (see [67], Sect.
5). The recently developed empirical interpolation method [8, 34, 50] has
been successfully applied to reduced basis reduction of nonaffinely param-
eterized problems, such as shape optimization. The empirical interpolation
method is a model reduction scheme that replaces the nonaffinely parameter-
ized bilinear form Ã(ũ, ṽ;µ) with an affinely parameterized approximation
of the form

Ã(u, v;µ) =

QEIM∑
q=1

ϑqa(µ)ÃqEIM(ũ, ṽ) + εEIM(x̃,µ), (5.46)

where the error term εEIM needs to be controlled to an acceptable tolerance.
Assume there exists a scalar function g(x,µ) ∈ C0(D;L∞(Ω)) depending

on both the spatial coordinates and the parameters in a nonaffine way. The
extension to matrix-valued functions via an elementwise procedure is obvious.
The objective is to find an approximate expansion of the form

gM(x,µ) =
M∑
j=1

Θj(µ)ζj(x). (5.47)
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In the empirical interpolation one seeks a set of interpolation points xj ∈ Ω
and a set of shape functions ζj(x) s.t. the expansion (5.47) is obtained
through solving the Lagrange interpolation problem

M∑
j=1

[B]Mi,jΘj(µ) = g(xi,µ), ∀ i = 1, . . . ,M (5.48)

where the M ×M interpolation matrix is defined elementwise as [B]Mi,j :=
ζj(x

i) for i, j = 1, . . . ,M . The method is detailed in Algorithm 1.

Algorithm 1 Empirical interpolation procedure as defined in [8]

Require: initial parameter value µ1 and large training set Ξtrain ⊂ D
1: Let m = 1.
2: Set the first shape function ζ1(x) := g(x,µ1), the approximation space
G1 := span(ζ1), and the interpolation point x1 := argmax

x∈Ω
|ζ1(x)|.

3: repeat
4: Solve the linear programming problem

µm+1 := argmax
µ∈Ξtrain

inf
v∈Gm

||g(·,µ)− v||L∞(Ω). (5.49)

5: Set the next shape function ζm+1(x) := g(x,µm+1) and the approxi-
mation space Gm+1 := span(ζ1, . . . , ζm+1).

6: Solve the interpolation problem

m∑
j=1

[B]mi,jΘ
m
j = ζm+1(xi), ∀ i = 1, . . . ,m (5.50)

with interpolation matrices [B]mi,j := ζj(x
i) for i, j = 1, . . . ,m.

7: Compute the residual

rm+1(x) := ζm+1(x)−
m∑
j=1

Θm
j ζj(x). (5.51)

8: Set the next interpolation point xm+1 := argmax
x∈Ω

|rm+1(x)|.

9: Let m→ m+ 1.
10: until the error max

µ∈Ξtrain

inf
v∈Gm−1

||g(·,µ)− v||L∞(Ω) < TOL

Without additional assumptions on the function g, the error of the empir-
ical interpolation approximation is bounded above by the best approximation
in the space GM [8]

||g(·,µ)− gM(·,µ)||L∞(Ω) ≤ (1 + ΛM) inf
v∈GM

||g(·,µ)− v||L∞(Ω), (5.52)
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but the Lebesgue constant only satisfies ΛM ≤ 2M − 1, which would indicate
a possibly poor quality approximation. With added parametric regularity it
is possible to give better bounds for the interpolation error [28]. In practice
the EIM has been quite useful for solving nonaffinely parameterized PDEs
with the reduced basis method [34, 56, 66].

Introducing the EIM approximation to the reduced basis equation (5.33)
requires modifications to the a posteriori error estimator (5.44). This was
first done in [55, 56]. The augmented estimator is of the form

||ũh − ũNh ||X ≤ ∆N(µ) + ∆EIM
N,M(µ). (5.53)

The term ∆EIM
N,M(µ) is a consistency error term that does not converge to 0

even as N → ∞ if the number of terms M in the affine expansion is kept
fixed. This is called the plateau effect [34].

5.4 Extension to free boundary problems

A more general class called free boundary problems can be solved using sim-
ilar techniques as presented previously for shape optimization. Assume that
the boundaries of the admissible shapes consist of a suitably parameterized
free boundary part Σ(µ), and a fixed boundary part Γ, s.t. for all Ω(µ) ∈ Sad
it holds that

∂Ω(µ) = Σ(µ) ∪ Γ. (5.54)

The fixed domain approach is again taken to map from Ω0 to Ω(µ). An
abstract free boundary problem is to solve for ũ(µ) ∈ V (Ω0) that satisfies
the state equation

Ã(ũ(µ), ṽ;µ) = F̃ (ṽ;µ) for all ṽ ∈ V (Ω0) (5.55)

plus an auxiliary equation for determining the configuration of the free bound-
ary Σ(µ)

Ψ(ũ(µ),Σ(µ)) = 0 (5.56)

that closes the equation system.
The prototype shape optimization problem (3.1) can be formulated as an

abstract free boundary problem by taking the necessary optimality condition
that the shape derivative (4.11) must vanish at the optimal shape Ω∗, i.e.∫

Σ∗(µ) ∪ Γ

(w · n)∇J(x) ds = 0 for all w ∈ W 1,∞(Rd,Rd) (5.57)

as the weak form of an auxiliary equation (5.56). Conversely, the free bound-
ary problem can be formulated as a parametric shape optimization problem
for example as a least-squares problem

min
µ∈D

|Ψ(u(µ),Σ(µ))|2

s.t. A(ũ(µ), ṽ;µ) = F̃ (ṽ) for all ṽ ∈ V (Ω0).
(5.58)
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6 Contribution to the state of the art

This thesis addresses two main topics in applied shape optimization. The
first is shape optimization using level set methods, the other reduced basis
methods for model reduction in parametric shape optimization. In addition
to pure optimal shape design problems, this thesis also applies the techniques
developed for the aforementioned problems to a free boundary problem of
fluid-structure interaction.

6.1 Level set methods and shape optimization

In [A] a topological shape optimization method for the optimal damping
of the two-dimensional wave equation is studied. The objective is to find
the optimal design of a damper that has a fixed area and that minimizes
the energy at a fixed final time. While the topological derivative defined
according to (4.16) was not available for this problem at the time, in [53] it is
shown that the topological and shape derivatives for this particular problem
differ only by a factor of o(a) for small damping coefficients a > 0. Therefore,
a topological level set method originally proposed in [4] could be applied to
the problem to obtain a topological optimization algorithm that discovers the
correct number of disjoint components in about one fifth the number of level
set iterations needed. While all level set methods allow certain topological
changes of the shapes they can also get stuck in a shape bifurcation point
and generally do not permit new components to form away from the current
shapes. The topological method of [A] suffers from neither problem and
therefore it is a true topological level set method, unlike e.g. the method
proposed in [53].

The level set approach to shape optimization is applied in [B] to an inverse
problem of reconstructing a shape from its interferogram that is recast into
the form (4.20). Convexity of the admissible shapes is proved to be a sufficient
condition for the inverse problem to have a unique solution. Here the interest
is not to find the correct topology, but rather to modify the level set method
in such a way that the feasible shapes are restricted to be convex. The
convexity constraint can be difficult to handle in numerical computations,
and previous works on this topic [1, 19, 20, 21, 44] have involved a variety
of approaches. In contrast these previous works, [B] instead uses a curvature
penalization method that allows convexity to be temporarily broken. An
important aspect in the inverse problem context is the presence of noise
in the data that necessitates regularization before the shape optimization
formulation can be used. It turns out that replacing the standard L2 shape
gradient in the descent method with an H1-version defined by (4.12) is a
form of regularization.
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6.2 Reduced basis for parametric shape optimization

Article [C] studies a surrogate shape optimization method. The domain
parameterization is done with free-form deformations [70], which are a tech-
nique for flexible, mesh-independent shape parameterizations. The problem
is then mapped to a fixed reference domain according to (5.24), (5.25), and
(5.26), and the parameters enter the coefficients of the PDE. Reduced basis
methods are used to evaluate the state constraints efficiently. The proposed
approach is a generic parametric shape optimization framework. The bene-
fits of the optimization method are demonstrated on a classical problem of
inverse design of an airfoil in potential flow.

In [D] the same airfoil geometry is considered, but this time the PDE
model is the advection-diffusion equation and the optimization problem re-
sembles a turbine blade configuration problem in an exterior thermal flow.
The work concentrates on the a posteriori estimation of the reduced basis
approximation error, which had been missing in previous works such as [76].
The nonaffine parameterization arising from the free-form deformations ne-
cessitates the use of the empirical interpolation approximation (5.46) for the
diffusive coefficients, which in turn creates an additional error term in the re-
duced basis approximation. The error estimate of [55, 56] is extended to the
advection-diffusion case, and a reduced basis surrogate optimization method
with certified error bounds for such problems is obtained.

Article [E] utilizes the combination of free-form deformations and reduced
basis methods introduced in [C] for the efficient solution of a free boundary
problem of fluid-structure interaction. Steady incompressible flow in a chan-
nel with a flexible wall is modelled as a coupled problem involving the Stokes
equations for the fluid, and a 1-d elliptic equation for the displacement of the
flexible wall. The coupling condition (auxiliary equation (5.56) in this case)
states that the traction applied to the wall by the fluid should match the
displacement of the wall caused by the applied stress. These conditions are
treated in terms of the geometric parameters, by least squares minimization
(5.58) of the parametric structural displacement and the assumed displace-
ment caused by the traction applied by the fluid.
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tributed Parameter Structures. NATO Science Series E: Applied Sci-
ences, Kluwer Academic Publishers, pages 1152–1194, 1981.

31





(continued from the back cover)

A587 Antti Hannukainen, Rolf Stenberg, Martin Vohralı́k

A unified framework for a posteriori error estimation for the Stokes problem

May 2010

A586 Kui Du, Olavi Nevanlinna

Minimal residual methods for solving a class of R-linear systems of equations

May 2010

A585 Daniel Aalto

Boundedness of maximal operators and oscillation of functions in metric

measure spaces

March 2010

A584 Tapio Helin

Discretization and Bayesian modeling in inverse problems and imaging

February 2010

A583 Wolfgang Desch, Stig-Olof Londen

Semilinear stochastic integral equations in Lp

December 2009
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