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Analysis of H(div)-conforming �nite elements

for the Brinkman problem

Juho Könnö∗ Rolf Stenberg†

December 18, 2009

Abstract

The Brinkman equations describe the �ow of a viscous �uid in a porous

matrix. Mathematically the Brinkman model is a parameter-dependent

combination of the Darcy and Stokes models. We introduce a dual mixed

framework for the problem, and use H(div)-conforming �nite elements

together with Nitsche's method to obtain a stable formulation. We show

the formulation to be stable in a mesh-dependent norm for all values of the

parameter. We also introduce a postprocessing scheme for the pressure

along with a residual-based a posteriori estimator, which is shown to be

e�cient and reliable for all parameter values.

1 Introduction

In soil mechanics, the Brinkman equation describes the �ow of a viscous �uid in
a very porous medium. For a derivation of and details on the equations we refer
to [17, 1, 2, 3, 21]. As opposed to the Darcy model widely used in soil mechan-
ics, the Brinkman model adds an e�ective viscosity to the equations. Typical
applications of the equations lie in oil exploration, groundwater modelling, and
some special applications, such as heat pipes [15]. The Brinkman model is also
often used as a coupling layer between a free surface �ow and a porous Darcy
�ow [10]. Mathematically, the Brinkman equations are a parameter-dependent
combination of the Darcy and Stokes equations.

We study the application of H(div)-conforming �nite elements designed
for the Darcy problem to the more complicated Brinkman problem. H(div)-
elements have been considered for the closely related Stokes problem in [9, 26,
14]. Our model constitutes an approximation with non-conforming basis func-
tions, since in the discretizations of theH(div)-space only the normal component
of the velocity is continuous on interelement boundaries. To enforce the tangen-
tial continuity, we use the so-called Nitsche's method introduced in [20]. This
in turn requires the use of a mesh-dependent bilinear form. The method has
a strong resemblance to totally discontinuous Galerkin methods for the Stokes
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equation, cf. [12]. The motivation for using this non-conforming approximation
is the fact that H(div)-conforming elements are widely used in industry for solv-
ing the Darcy equations, and we want to derive a way of easily incorporating
viscosity to the existing solvers, along with a rigorous mathematical analysis.
In Part II of this paper we will report on numerical benchmark studies with our
methods.

Methods based on Stokes elements are studied in e.g. [13, 5].
The structure of the article is as follows. First, we formulate the Brinkman

problem mathematically and introduce the corresponding variational formula-
tion. Then we introduce the �nite element spaces used for the discretization
along with the mesh-dependent energy norms in which the error is measured.
We derive a priori convergence results for this discretization, which implies the
possibility of improving the accuracy of the pressure approximation via post-
processing. This is addressed in a separate section, where we provide optimal
a priori convergence results for the postprocessed solution. Finally, we end the
paper with the a posteriori error analysis. A residual-based a posteriori error
estimator is introduced. It is then shown that the estimator is both reliable and
e�cient for all values of the viscosity parameter.

We use standard notation throughout the paper. We denote by C,C1, C2

etc. generic constants, that are not always identical in value, but are always
independent of the parameter t and the mesh size h.

2 The Brinkman model

Let Ω ⊂ Rn, with n = 2, 3, be a domain with a polygonal or polyhedral bound-
ary. We denote by u the velocity �eld of the �uid and by p the pore pres-
sure. The equations are scaled as presented in [11], with the single parameter
t representing the e�ective viscosity of the �uid, which is assumed constant for
simplicity. With this notation, the Brinkman equations are

−t2∆u+ u−∇p = f , in Ω (2.1)

div u = g, in Ω (2.2)

For t > 0, the equations are formally a Stokes problem. The solution
(u, p) is sought in V × Q = [H1

0 (Ω)]n × L2
0(Ω). For the case t = 0 we

get the Darcy problem, and accordingly the solution space can be chosen as
V × Q = H(div,Ω) × L2

0(Ω). For simplicity of the mathematical analysis, we
consider for the case t > 0 homogenous Dirichlet boundary conditions for the
velocity �eld. Thus the boundary conditions are

u = 0. (2.3)

For the limiting Darcy case t = 0 we assume Neumann conditions

u·n = 0. (2.4)

In the following, we denote by (· , · )D the standard L2 inner product over
a set D ⊂ Rn. If D = Ω, the subscript is dropped for convenience. Similarly,
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〈· , · 〉B is the L2 inner product over a set B ⊂ Rn−1. We de�ne the following
bilinear forms

a(u,v) = t2(∇u,∇v) + (u,v), (2.5)

b(v, p) = (div v, p), (2.6)

and
B(u, p;v, q) = a(u,v) + b(v, p) + b(u, q). (2.7)

The weak formulation of the Brinkman problem then reads: Find (u, p) ∈
V ×Q such that

B(u, p;v, q) = (f ,v) + (g, q), ∀(v, q) ∈ V ×Q. (2.8)

3 Solution by mixed �nite elements

Let Kh be a shape-regular partition of Ω into simplices. As usual, the diameter
of an element K is denoted by hK , and the global mesh size h is de�ned as
h = maxK∈Kh

hK . We denote by Eh the set of all faces of Kh. We write hE for
the diameter of a face E.

We introduce the jump and average of a piecewise smooth scalar function f
as follows. Let E = ∂K ∩ ∂K ′ be an interior face shared by two elements K
and K ′. Then the jump of f over E is de�ned by

[[f ]] = f |K − f |K′ . (3.1)

and the average as

{f} =
1
2

(f |K + f |K′). (3.2)

For vector valued functions, we de�ne the jumps and averages analogously.

3.1 The mixed method and the norms

Mixed �nite element discretization of the problem is based on �nite element
spaces Vh × Qh ⊂ H(div,Ω) × L2

0(Ω) of piecewise polynomial functions with
respect to Kh. We will focus here on the Raviart-Thomas (RT) and Brezzi-
Douglas-Marini (BDM) families of elements [8]. In three dimensions the coun-
terparts are the Nédélec elements [19] and the BDDF elements [7].That is, for an
approximation of order k ≥ 1, the �ux space Vh is taken as one of the following
two spaces

V RT
h = {v ∈ H(div,Ω) | v|K ∈ [Pk−1(K)]n ⊕ xP̃k−1(K) ∀K ∈ Kh}, (3.3)

V BDM
h = {v ∈ H(div,Ω) | v|K ∈ [Pk(K)]n ∀K ∈ Kh}, (3.4)

where P̃k−1(K) denotes the homogeneous polynomials of degree k − 1. The
pressure is approximated in the space

Qh = {q ∈ L2
0(Ω) | q|K ∈ Pk−1(K) ∀K ∈ Kh}. (3.5)

Notice that V RT
h ⊂ V BDM

h and QBDM
h = QRT

h . The combination of spaces
satis�es the following equilibrium property:

div Vh ⊂ Qh. (3.6)
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To assure the stability of the non-conforming approximation, we use Nitsche's
method [13, 20] with a suitably chosen stabilization parameter α. We de�ne the
following mesh-dependent bilinear form

Bh(u, p;v, q) = ah(u,v) + b(v, p) + b(u, q), (3.7)

in which

ah(u,v) = (u,v) + t2
∑

K∈Kh

(∇u,∇v)K (3.8)

+ t2
∑

E∈Eh

{ α
hE
〈[[u]], [[v]]〉E − 〈{∂u

∂n
}, [[v]]〉E − 〈{∂v

∂n
}, [[u]]〉E}.

Then the discrete problem is to �nd uh ∈ Vh and ph ∈ Qh such that

Bh(uh, ph;v, q) = (f ,v) + (g, q), ∀(v, q) ∈ Vh ×Qh. (3.9)

We introduce the following mesh-dependent norms for the problem. For the
velocity we use

‖u‖2t,h = ‖u‖2 + t2

( ∑
K∈Kh

‖∇u‖20,K +
∑

E∈Eh

1
hE
‖[[u· τ ]]‖20,E

)
, (3.10)

and for the pressure

|||p|||2t,h =
∑

K∈Kh

h2
K

h2
K + t2

‖∇p‖20,K +
∑

E∈Eh

hE

h2
E + t2

‖[[p]]‖20,E . (3.11)

Note that both of the norms are also parameter dependent.

3.2 A priori analysis

First we prove the consistency of the modi�ed method. For the exact solution
(u, p) it holds [[u]]|E = 0. Inserting u into the modi�ed part of the bilinear
form, we have using element-by-element partial integration

ah(u,v) = (u,v) + t2

( ∑
K∈Kh

(∇u,∇v)K −
∑

E∈Eh

〈{∂u
∂n
}, [[v]]〉E

)

= (u,v) + t2
∑

K∈Kh

{(∇u,∇v)K − 〈∂u
∂n

,v〉∂K}

= (u,v) + t2
∑

K∈Kh

(−∆u,v)K

= (−t2∆u+ u,v).

This gives us the following result.

Theorem 3.1. The exact solution (u, p) ∈ V ×Q satis�es

Bh(u, p;v, q) = (f ,v) + (g, q), ∀(v, q) ∈ Vh ×Qh. (3.12)
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Next we prove the stability of ah(· , · ) in the mesh-dependent norm (3.10).
The stability only holds in the discrete space Vh. First we recall, as shown
in [24], that the normal derivative can be estimated as

hE‖∂v
∂n
‖20,E ≤ CI‖∇v‖20,K , ∀v ∈ Vh. (3.13)

Lemma 3.2. The bilinear form ah(· , · ) is coercive in the discrete space Vh;

there exists a positive constant C such that

ah(v,v) ≥ C‖v‖2t,h, ∀v ∈ Vh. (3.14)

Proof. First we note that by Young's inequality

−2
∑

E∈Eh

〈{∂v
∂n
}, [[v]]〉E = −

∑
K∈Kh

〈∂v
∂n

, [[v]]〉∂K

≥ −
∑

K∈Kh

‖∂v
∂n
‖0,∂K‖[[v]]‖0,∂K

≥ −(
∑

K∈Kh

hK‖∂v
∂n
‖20,∂K)1/2(

∑
K∈Kh

h−1
K ‖[[v]]‖20,∂K)1/2

≥ − 1
2ε

∑
K∈Kh

hK‖∂v
∂n
‖20,∂K −

ε

2

∑
K∈Kh

h−1
K ‖[[v]]‖20,∂K

≥ −CI

2ε

∑
K∈Kh

‖∇v‖20,K −
ε

2

∑
K∈Kh

h−1
K ‖[[v]]‖20,∂K ,

for an arbitrary ε > 0. This immediately gives

ah(v,v) = ‖v‖20 + t2
∑

K∈Kh

‖∇v‖20,E + t2
∑

E∈Eh

(
α

hK
‖[[v]]‖20,E − 2〈∂v

∂n
, [[v]]〉E)

≥ min{1− CI

2ε
, α− ε

2
}‖v‖2t,h. (3.15)

Here CI is the constant from the discrete trace inequality (3.13). Since ε and
α are free parameters, choosing ε > CI/2 and α > ε/2, we have the desired
result.

Next, we prove the discrete Brezzi-Babuska stability condition. Recall that
we only have to prove the condition in the Raviart-Thomas case since V RT

h ⊂
V BDM

h .

Lemma 3.3. There exists a positive constant C such that

sup
v∈Vh

b(v, q)
‖v‖t,h ≥ C|||q|||t,h, ∀q ∈ Qh. (3.16)

Proof. We recall that the local degrees of freedom for the RT family are

〈v·n, z〉E , ∀z ∈ Pk−1(E), (3.17)

(v, z)K , ∀z ∈ [Pk−2(K)]n. (3.18)
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Thus, for a given q ∈ Qh we de�ne v by

〈v·n, z〉E =
hK

h2
K + t2

〈[[q]], z〉E , ∀z ∈ Pk−1(E), (3.19)

(v, z)K = − h2
K

h2
K + t2

(∇q, z)K ∀z ∈ [Pk−2(K)]n.

Choosing z = [[q]] ∈ Pk−1(E) and z = ∇q ∈ [Pk−2(K)]n gives

〈v·n, [[q]]〉E =
hK

h2
K + t2

‖[[q]]‖20,E , (3.20)

(v,∇q)K = − h2
K

h2
K + t2

‖∇q‖20,K . (3.21)

An explicit inspection of the degrees of freedom yields the relation

h2
K + t2

h2
K

‖v‖20,K ≤
hK

h2
K + t2

‖[[q]]‖20,E +
h2

K

h2
K + t2

‖∇q‖20,K . (3.22)

Thus, using scaling arguments, we have

‖v‖2t,h ≤ C
∑

K∈Kh

h2
K + t2

h2
K

‖v‖20,K ≤ C|||q|||2t,h. (3.23)

Next we use element-by-element partial integration on b(v, q), and apply the
de�nitions (3.19) to get

b(v, q) =
∑

K∈Kh

−(v,∇q)K +
∑

E∈Eh

〈v·n, q〉E (3.24)

=
∑

K∈Kh

h2
K

h2
K + t2

(∇q,∇q)K +
∑

E∈Eh

hK

h2
K + t2

〈[[q]], [[q]]〉E (3.25)

= |||q|||2t,h. (3.26)

Combining (3.23) and (3.24) gives (3.16).

By the above stability results for ah(· , · ) and b(· , · ) the following stability
result holds, see e.g. [8].

Lemma 3.4. For some positive constant C it holds

sup
(v,q)∈Vh×Qh

Bh(r, s;v, q)
‖v‖t,h + |||q|||t,h ≥ C(‖r‖t,h + |||s|||t,h), ∀(r, s) ∈ Vh ×Qh. (3.27)

For interpolation in H(div), a special interpolation operator is required. We
use the interpolation operator Rh : H(div,Ω) → Vh introduced by Schöberl
in [22] satisfying

(div (v −Rhv), q) = 0, ∀q ∈ Qh. (3.28)

The interpolant satis�es the following properties. We denote by Ph : L2(Ω) →
Qh the L2-projection. The equilibrium property (3.6) implies

(div v, q − Phq) = 0, ∀v ∈ Vh. (3.29)
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Furthermore, we have the commuting diagram property:

div Rh = Phdiv. (3.30)

Traditionally the interpolation operator has been de�ned based on the moments
of the normal component of the velocity on the boundaries. By using the alter-
native interpolation operator of [22] we need not the extra regularity assumption
of the edge-based interpolation operators. In the following, the standard Sobolev
norm of order k is denoted ‖· ‖k. The main result of the chapter is the following
quasioptimal a priori result:

Theorem 3.5. There is a positive constant C such that

‖u− uh‖t,h + |||Php− ph|||t,h ≤ C‖u−Rhu‖t,h. (3.31)

Proof. By Lemma 3.4 there exists functions (v, q) ∈ Vh × Qh such that
‖v‖t,h + |||q|||t,h ≤ C, and

‖uh −Rhu‖t,h + |||ph − Php|||t,h ≤ Bh(uh −Rhu, ph − Php;v, q) (3.32)

= ah(uh −Rhu,v) + (div v, ph − Php) + (div (uh −Rhu), q)
= ah(u−Rhu,v) + (div v, p− Php) + (div (u−Rhu), q),

where the last line follows from the consistency of the method given by The-
orem 3.1. By using the interpolation properties (3.28) and (3.29), we arrive
at

‖uh −Rhu‖t,h + |||ph − Php|||t,h ≤ ah(u−Rhu,v) ≤ C‖u−Rhu‖t,h. (3.33)

Using the triangle inequality yields the result of the theorem.

Analogously to the dual mixed formulation of the Poisson problem discussed
e.g. in [4, 23, 18], we have a superconvergence result for |||ph − Php|||t,h. This
implies that the pressure solution can be improved by local postprocessing.
Assuming full regularity, we conclude the chapter with the following a priori
result:

‖u− uh‖t,h + |||Php− ph|||t,h ≤
{
C(hk + thk−1)‖u‖k, for RT,
C(hk+1 + thk)‖u‖k+1, for BDM.

(3.34)

4 Postprocessing method

In this section we present a postprocessing method for the pressure in the spirit
of [18]. We seek the postprocessed pressure in an augmented space Q∗h ⊃ Qh,
de�ned as

Q∗h =

{
{q ∈ L2

0(Ω) | q|K ∈ Pk(K) ∀K ∈ Kh}, for RT,
{q ∈ L2

0(Ω) | q|K ∈ Pk+1(K) ∀K ∈ Kh}, for BDM.
(4.1)

The postprosessing method is: �nd p∗h ∈ Q∗h such that

Php
∗
h = ph (4.2)

(∇p∗h,∇q)K = (−t2∆uh + uh − f ,∇q)K , ∀q ∈ (I − Ph)Q∗h|K . (4.3)
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The method can be compactly treated as an integral part of the problem by
embedding it into the bilinear form. We introduce the modi�ed bilinear form

B∗h(u, p∗;v, q∗) = Bh(u, p∗;v, q∗)+
∑

K∈Kh

h2
K

h2
K + t2

(−∇p∗+u−t2∆u,∇(I−Ph)q∗)K .

(4.4)
The postprocessed problem is then: �nd (uh, p

∗
h) ∈ Vh×Q∗h such that for every

pair (v, q∗) ∈ Vh ×Q∗h it holds

B∗h(uh, p
∗
h;v, q∗) = Lh(f , Phg;v, q∗), (4.5)

in which

Lh(f , g;v, q∗) = (f ,v) + (g, q∗) +
∑

K∈Kh

h2
K

h2
K + t2

(f ,∇(I − Ph)q∗)K . (4.6)

We have the following theorem relating the solution of the postprocessed prob-
lem to the original problem.

Theorem 4.1. Let (uh, p
∗
h) ∈ Vh × Q∗h be the solution of the problem (4.5)

and set ph = Php
∗
h. Then (uh, ph) ∈ Vh × Qh is the solution of the original

problem (3.9). Conversely, if (uh, ph) ∈ Vh ×Qh is the solution of the original

problem (3.9) and p∗h is de�ned as above, then (uh, p
∗
h) ∈ Vh×Q∗h is the solution

to (4.5).

Proof. Testing with (v, 0) ∈ Vh ×Q∗h and using the equilibrium property (3.6)
yields

B∗h(uh, p
∗
h;v, 0) = ah(uh,v) + (div v, p∗h)

= ah(uh,v) + (div v, Php
∗
h)

= ah(uh,v) + (div v, ph) = (f ,v).

On the other hand, testing with (0, Phq
∗) ∈ Vh ×Qh ⊂ Vh ×Q∗h gives

B∗h(uh, p
∗
h; 0, Phq

∗) = (div uh, Phq
∗) = (g, Phq

∗).

Combining the above two equations yields the original problem (3.9) and �rst
part of the assertion is proved. Next take (uh, ph) to be the solution of (3.9),
and p∗h the postprocessed pressure de�ned above. Using the de�nition of the
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postprocessed pressure and the equilibrium property, we have

B∗h(uh, p
∗
h;v, q∗) = B∗h(uh, p

∗
h;v, Phq

∗) + B∗h(uh, p
∗
h; 0, (I − Ph)q∗)

= ah(uh,v) + (div v, p∗h) + (div uh, Phq
∗)

+
∑

K∈Kh

h2
K

h2
K + t2

(−t2∆uh + uh −∇p∗h,∇(I − Ph)Phq
∗)K

+ (div uh, (I − Ph)q∗) +
∑

K∈Kh

h2
K

h2
K + t2

(f ,∇(I − Ph)2q∗)K

+
h2

K

h2
K + t2

(−t2∆uh + uh −∇p∗h − f ,∇(I − Ph)2q∗)K

= ah(uh,v) + (div v, Php
∗
h) + (div uh, Phq

∗)

+ (div uh, Ph(I − Ph)q∗) +
∑

K∈Kh

h2
K

h2
K + t2

(f ,∇(I − Ph)2q∗)K

= Lh(f , Phg;v, q∗)

for arbritrary (v, q∗) ∈ Vh × Q∗h. Thus the second part of the assertion is
valid.

Next we show that the postprocessed method is stable in the discrete spaces.
For this we need the following lemma, essentially proved in [18].

Lemma 4.2. There exists positive constants C1, C2 such that for every q
∗ ∈ Q∗h

it holds

|||q∗|||t,h ≤ |||Phq
∗|||t,h + |||(I − Ph)q∗|||t,h ≤ C2|||q∗|||t,h, (4.7)

C1|||q∗|||t,h ≤ |||Phq
∗|||t,h +

( ∑
K∈Kh

‖∇(I − Ph)q∗‖20,K

)1/2

≤ C2|||q∗|||t,h. (4.8)

Since (I − Ph)q∗ is L2-orthogonal to piecewise constant functions, we further-

more have the following estimate, with C3 > 0,

|||(I − Ph)q∗|||t,h ≤ C3

( ∑
K∈Kh

‖∇(I − Ph)q∗‖20,K

)1/2

. (4.9)

We are now ready to prove the main stability result.

Theorem 4.3. There exists C > 0 such that for every (u, p∗) ∈ Vh × Q∗h it

holds

sup
(v,q∗)∈Vh×Q∗h

B∗h(u, p∗;v, q∗)
‖v‖t,h + |||q∗|||t,h ≥ C(‖u‖t,h + |||p∗|||t,h). (4.10)

Proof. Let (u, p∗) ∈ Vh ×Q∗h be arbitrary. Choosing q∗ = q ∈ Qh we have

B∗h(u, p∗;v, q) = ah(u,v) + (div v, p∗) + (div u, q)
= ah(u,v) + (div v, Php

∗) + (div u, q)
= Bh(u, Php

∗;v, q).
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Thus Lemma 3.4 guarantees that there exists (v, q) ∈ Vh ×Qh such that
‖v‖t,h + |||q|||t,h ≤ C(‖u‖t,h + |||Php

∗|||t,h) and

Bh(u, p∗;v, q) ≥ C(‖u‖t,h + |||Php
∗|||t,h). (4.11)

Next, we choose (v, q∗) = (0, (I − Ph)p∗) ∈ Vh ×Q∗h.

B∗h(u, p∗; 0, (I − Ph)p∗)

= (div u, (I − Ph)p∗) +
∑

K∈Kh

h2
K

h2
K + t2

(−∇p∗ + u− t2∆u,∇(I − Ph)p∗)K

≥ −C(‖u‖t,h|||(I − Ph)p∗|||t,h) +
∑

K∈Kh

h2
K

h2
K + t2

‖∇(I − Ph)p∗‖20,K

+
∑

K∈Kh

h2
K

h2
K + t2

(−∇Php
∗ + u− t2∆u,∇(I − Ph)p∗)K

≥ −C(‖u‖t,h + |||Php
∗|||t,h)|||(I − Ph)p∗|||t,h +

∑
K∈Kh

h2
K

h2
K + t2

‖∇(I − Ph)p∗‖20,K

−
( ∑

K∈Kh

h2
K

h2
K + t2

‖t2∆u‖20,K

)1/2

|||(I − Ph)p∗|||t,h.

We can estimate the term containing the Laplacian using the inverse inequality
as follows:∑

K∈Kh

h2
K

h2
K + t2

‖t2∆u‖20,K ≤
∑

K∈Kh

t2h2
K

h2
K + t2

1
h2

K

‖t∇u‖20,K ≤ t2
∑

K∈Kh

‖∇u‖20,K .

Using Young's inequality and the norm equivalence (4.9), we have for any ε > 0

B∗h(u, p∗; 0, (I − Ph)p∗) ≥ −C1

2ε
(‖u‖t,h + |||Php

∗|||t,h)2 − ε

2
|||(I − Ph)p∗|||2t,h

+
∑

K∈Kh

h2
K

h2
K + t2

‖∇(I − Ph)p∗‖20,K

≥ −C1

2ε
(‖u‖t,h + |||Php

∗|||t,h)2

+

(
1− C̃2ε

2

) ∑
K∈Kh

h2
K

h2
K + t2

‖∇(I − Ph)p∗‖20,K .

Choosing ε = 1/C1 yields, with C3 = C1C2/2,

B∗h(u, p∗; 0, (I − Ph)p∗) ≥− C3(‖u‖t,h + |||Php
∗|||t,h)2 (4.12)

+
1
2

∑
K∈Kh

h2
K

h2
K + t2

‖∇(I − Ph)p∗‖20,K .

Combining estimates (4.11) and (4.12), the norm equivalence (4.8), and choosing
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δ su�ciently small, we have

B∗h(u, p∗;v, q + δ(I − Ph)p∗) ≥ (1− δC3)(‖u‖t,h + |||Php
∗|||t,h)2

δC3

∑
K∈Kh

‖∇(I − Ph)p∗‖20,K

≥ C(‖u‖t,h + |||p∗|||t,h)2.

Furthermore,

‖v‖t,h + |||q + δ(I − Ph)p∗|||t,h ≤ ‖v‖t,h + |||q|||t,h + δ|||(I − Ph)p∗|||t,h
≤ C(‖u‖t,h + |||Php

∗|||t,h) + δ|||(I − Ph)p∗|||t,h
≤ C(‖u‖t,h + |||p∗|||t,h),

yielding the desired result.

We have the following a priori result, which shows that given su�cient reg-
ularity, the postprocessed displacement converges with an optimal rate.

Theorem 4.4. For the postprocessed solution (uh, p
∗
h) it holds

‖u− uh‖t,h + |||p− p∗h|||t,h ≤ C inf
q∗∈Q∗h

{
‖u−Rhu‖t,h + |||p− q∗|||t,h (4.13)

+ (
∑

K∈Kh

h2
K

h2
K + t2

‖ − ∇q∗ +Rhu− t2∆Rhu− f‖20,K)1/2
}
.

Proof. Let q∗ ∈ Q∗h. From Theorem 4.3 it follows that we have a pair (v, r∗) ∈
Vh ×Q∗h such that ‖v‖t,h + |||r∗|||t,h ≤ C and

‖uh −Rhu‖t,h + |||p∗h − q∗|||t,h ≤ CB∗h(uh −Rhu, p
∗
h − q∗;v, r∗).

Combining the de�nition of the postprocessed problem and the consistency re-
sult 3.1 gives

‖uh −Rhu‖t,h + |||p∗h − q∗|||t,h ≤ CB∗h(u−Rhu, p− q∗;v, r∗)− (g − Phg, r
∗)

= ah(u−Rhu,v) + (div v, p− q∗) + (div (u−Rhu), r∗)− (g − Phg, r
∗)∑

K∈Kh

h2
K

h2
K + t2

(−∇(p− q∗) + (u−Rhu)− t2∆(u−Rhu),∇(I − Ph)r∗)K .

The last two terms on the second line cancel by the commuting diagram prop-
erty (3.30). Inserting f into the last equation we have

‖uh −Rhu‖t,h + |||p∗h − q∗|||t,h ≤ C{‖u−Rhu‖t,h‖v‖t,h + |||p− q∗|||t,h‖v‖t,h
+ (

∑
K∈Kh

h2
K

h2
K + t2

‖∇q∗ −Rhu+ t2∆Rhu+ f‖20,K)1/2|||r∗|||t,h.

Thus the assertion is proved using the triangle equality and the above result.

Assuming full regularity, we have the following optimal a priori result for
the postprocessed problem.

Theorem 4.5. For the solution (uh, p
∗
h) of the postprocessed problem (4.5),

assuming su�cient regularity of the solution, it holds

‖u− uh‖t,h + |||p− p∗h|||t,h ≤
{
C(hk + thk−1)‖u‖k, for RT,
C(hk+1 + thk)‖u‖k+1, for BDM.

(4.14)
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5 A posteriori estimates

In this section we derive a residual-based a posteriori estimator for the post-
processed solution. It should be noted that the postprocessing is vital for a
properly functioning estimator. Our derivation of the a posteriori estimator is
based on the following saturation assumption. Let Kh/2 be a uniformly re�ned
subtriangulation of Kh, then the saturation assumption is [6, 18]

‖u− uh/2‖t,h/2 + |||p− p∗h/2|||t,h/2 ≤ β(‖u− uh‖t,h + |||p− p∗h|||t,h), (5.1)

where the constant β < 1. The triangle inequality gives

‖u− uh‖t,h + |||p− p∗h|||t,h ≤
1

1− β (‖uh/2 − uh‖t,h/2 + |||p∗h/2 − p∗h|||t,h/2). (5.2)

We divide the estimator into two distinct parts, one de�ned over the elements
and one over the edges of the mesh. The elementwise and edgewise estimators
are de�ned as

η2
K =

h2
K

h2
K + t2

‖ − t2∆uh + uh −∇p∗h − f‖20,K + (t2 + h2
K)‖g − Phg‖20,K ,

(5.3)

η2
E =

t2

hE
‖[[uh]]‖20,E +

hE

h2
E + t2

‖[[p∗h]]‖20,E +
hE

h2
E + t2

‖[[t2 ∂uh

∂n
]]‖20,E . (5.4)

The global estimator is

η =

( ∑
K∈Kh

η2
K +

∑
E∈Eh

η2
E

)1/2

. (5.5)

Note that setting t = 0 gives the standard estimator for the Darcy problem, see
e.g. [16, 18]. In the following, we address the reliability and e�ciency of the
estimator and show the terms of the estimator to be properly matched to one
another.

5.1 Reliability

First we focus on the reliability and prove the following theorem. Note that the
upper bound holds uniformly for all values of the parameter t with the constant
C independent of t.

Theorem 5.1. Suppose that the saturation assumption holds. Then there exists

a constant C > 0 such that

‖u− uh‖t,h + |||p− p∗h|||t,h ≤ Cη. (5.6)

Proof. Due to (5.2) we only have to prove the result

‖uh/2 − uh‖t,h/2 + |||p∗h/2 − p∗h|||t,h/2 ≤ Cη. (5.7)

By the stability result of Theorem 4.3 we can �nd (v, q∗) ∈ Vh/2 × Q∗h/2 such
that ‖v‖t,h/2 + |||q∗|||t,h/2 ≤ C for which it holds

‖uh/2 − uh‖t,h/2 + |||p∗h/2 − p∗h|||t,h/2 ≤ B∗h/2(uh/2 − uh, p
∗
h/2 − p∗h;v, q∗). (5.8)

12



Next, we add and subtract Rhv ∈ Vh and Phq
∗ ∈ Q∗h from the test functions v

and q∗. For the projections Ph/2 and Ph it holds Ph/2Ph = Ph, which implies
(I−Ph/2)(I−Ph) = (I−Ph/2). This property will be important in the analysis
to follow. We introduce the following notation:

B∗h/2(uh/2 − uh, p
∗
h/2 − p∗h;v, q∗) = I + II, (5.9)

in which

I = B∗h/2(uh/2 − uh, p
∗
h/2 − p∗h;v −Rhv, q

∗ − Phq
∗), (5.10)

II = B∗h/2(uh/2 − uh, p
∗
h/2 − p∗h;Rhv, Phq

∗). (5.11)

Keeping in mind that (uh/2, p
∗
h/2) is the solution on the re�ned mesh, we have

I = Lh/2(f , Ph/2g;v −Rhv, q
∗ − Phq

∗)− Bh/2(uh, p
∗
h;v −Rhv, q

∗ − Phq
∗)

= Ia + Ib + Ic,

in which

Ia = (f ,v −Rhv)− ah/2(uh,v −Rhv)− (div(v −Rhv), p∗h), (5.12)

Ib = (Ph/2g, q
∗ − Phq

∗)− (div uh, q
∗ − Phq

∗), (5.13)

Ic =
∑

K∈Kh

h2
K

h2
K + 4t2

(∇p∗h − uh + t2∆uh + f ,∇(I − Ph/2)q∗). (5.14)

We have the following interpolation estimate for Rhv ∈ Vh:

h2
K + t2

h2
K

‖v −Rhv‖20,K ≤ C(‖v‖20,K + t2‖∇v‖20,K) ≤ ‖v‖2t,h. (5.15)

The following shorthand notation for the residual is used

RK = (−t2∆uh + uh −∇p∗h − f)|K . (5.16)

To estimate the term Ia we �rst integrate by parts in the �rst and second term.
This gives

Ia =
∑

K∈Kh

{(t2∆uh − uh +∇p∗h + f ,v −Rhv)K − t2

2
〈[[∂uh

∂n
]],v −Rhv〉∂K}

+
∑

E∈Eh

{t2〈∂(v −Rhv)
∂n

, [[uh]]〉E − αt2

hK
〈[[uh]], [[v −Rhv]]〉E

− 〈(v −Rhv)·n, [[p∗h]]〉E}.

Using the inequality (3.13), scaling arguments, and the inequality (5.15) the
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term Ia can be estimated as

Ia ≤
∑

K∈Kh

{
(

h2
K

h2
K + t2

)1/2

‖RK‖0,K

(
h2

K + t2

h2
K

)1/2

‖v −Rhv‖0,K

+
(

hK

h2
K + t2

)1/2

‖[[t2 ∂uh

∂n
]]‖0,∂K

(
h2

K + t2

hK

)1/2

h
−1/2
K ‖v −Rhv‖0,K

+ t‖∇(v −Rhv)‖0,K
t

h1/2
‖[[uh]]‖0,∂K}

+
∑

E∈Eh

{ t

h
1/2
K

‖[[uh]]‖0,E
t

h
1/2
K

‖[[v −Rhv]]‖0,E

+
(

hK

h2
K + t2

)1/2

‖[[p∗h]]‖0,E

(
h2

K + t2

hK

)1/2

h
−1/2
K ‖v −Rhv‖0,K}

≤ C
( ∑

K∈Kh

h2
K

h2
K + t2

‖RK‖20,K +
∑

E∈Eh

{ t
2

hK
‖[[uh]]‖20,E

+
hK

h2
K + t2

‖[[t2 ∂uh

∂n
]]‖20,E +

hK

h2
K + t2

‖[[p∗h]]‖20,E}
)1/2

‖v‖t,h.

Turning to the term Ib, we have by the equilibrium property (3.6) the result

div uh = Phg.

Adding and subtracting the loading g gives

Ib = (Ph/2g − div uh, q
∗ − Phq

∗) = (Ph/2g − g + g − Phg, (I − Ph)q∗)

≤
∑

K∈Kh

{‖Ph/2g − g‖0,K + ‖Phg − g‖0,K}‖(I − Ph)q∗‖0,K

≤ C
∑

K∈Kh

(t2 + h2
K)1/2‖Phg − g‖0,K

(
h2

K

h2
K + t2

)1/2

‖∇q∗‖0,K

≤ C
( ∑

K∈Kh

(t2 + h2
K)‖Phg − g‖20,K

)1/2

|||q∗|||t,h.

Finally, for the term Ic we have by straightforward estimation and the inequal-
ity (4.7)

Ic ≤
∑

K∈Kh

(
h2

K

h2
K + t2

)1/2

‖RK‖0,K

(
h2

K

h2
K + t2

)1/2

‖∇(I − Ph/2)q∗‖0,K

≤
( ∑

K∈Kh

h2
K

h2
K + t2

‖RK‖20,K

)1/2

|||(I − Ph/2)q∗|||t,h/2

≤ C
( ∑

K∈Kh

h2
K

h2
K + t2

‖RK‖20,K

)1/2

|||q∗|||t,h/2.

Combining the above results we have

I = Ia + Ib + Ic ≤ Cη. (5.17)

14



Employing the fact that (I − Ph/2)Ph = 0, we have for the second term

II = B∗h/2(uh/2, p
∗
h/2;Rhv, Phq

∗)− B∗h/2(uh, p
∗
h;Rhv, Phq

∗)

= B∗h(uh, p
∗
h;Rhv, Phq

∗)− B∗h/2(uh, p
∗
h;Rhv, Phq

∗)

− Lh(Phg,f ;Rhv, Phq
∗) + Lh/2(Ph/2g,f ;Rhv, Phq

∗)

= t2
∑

E∈Eh

α

hK
〈[[uh]], [[Rhv]]〉E − t2

∑
E∈Eh

2α
hK
〈[[uh]], [[Rhv]]〉E

+
∑

K∈Kh

h2
K

h2
K + t2

(RK ,∇(I − Ph)Phq
∗)K

−
∑

K∈Kh

h2
K

h2
K + 4t2

(RK ,∇(I − Ph/2)Phq
∗)K

+ (Phg, Phq
∗)− (Ph/2g, Phq

∗)

= −t2
∑

E∈Eh

α

hK
〈[[uh]], [[Rhv]]〉E + (g, P 2

hq
∗ − Ph/2Phq

∗)

≤
∑

E∈Eh

αt

h
1/2
K

‖[[uh]]‖0,E
t

h
1/2
K

‖[[Rhv]]‖0,E

≤ C
(∑

E∈Eh

t2

hK
‖[[uh]]‖20,E

)1/2

‖v‖t,h.

Combining the estimates for parts I and II gives

B∗h/2(uh/2 − uh, p
∗
h/2 − p∗h;v, q∗) ≤ Cη, (5.18)

and thus the theorem holds.

5.2 E�ciency

Showing the estimator to be e�cient proves to be more tedious than for the case
of the pure Darcy �ow treated in [18]. Indeed, we have to resort to the standard
bubble function techniques to obtain the desired result. In the following we
denote by ωE the union of elements sharing an edge or face E. In addition, two
cut-o� functions ΨK and ΨE are introduced. The function ΨK has its support
in K and 0 ≤ ΨK ≤ 1, whilst ΨE is supported in ωE and 0 ≤ ΨE ≤ 1. Finally,
we need an extension operator χ : L2(E)→ L2(ωE) such that on the edge E it
coincides with the identity operator. We have the following lemma [25].

Lemma 5.2. For an element K with an edge E it holds, for any polynomials

p and σ,

‖ΨKp‖0,K ≤ ‖p‖0,K ≤ C‖Ψ1/2
K p‖0,K ,

‖∇(ΨKp)‖0,K ≤ Ch−1
K ‖ΨKp‖0,K ,

‖σ‖0,E ≤ C‖Ψ1/2
E p‖0,E ,

Ch
1/2
E ‖σ‖0,E ≤ ‖ΨEχσ‖0,K ≤ Ch1/2

E ‖σ‖0,E ,

‖∇(ΨEχσ)‖0,K ≤ Ch−1
K ‖ΨEχσ‖0,K .
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Using this cut-o� function allows us to prove the following theorem.

Theorem 5.3. There exists a constant C > 0 such that

η2 ≤ C
{
‖u− uh‖2t,h + |||p− p∗h|||2t,h (5.19)

+
∑

K∈Kh

( h2
K

h2
K + t2

‖f − fh‖20,K + (t2 + h2
K)‖g − Phg‖20,K

)}
.

Proof. We treat the terms separately. As before, we denote the �rst part of the
residual by RK , and further introduce the notation

RK,red = (−t2∆uh + uh −∇p∗h − fh)|K ,
w = ΨKRK,red.

We proceed by integrating by parts. Note that this gives no boundary terms
due to the cut-o� function. Inserting the exact solution and using the results of
Lemma 5.2, we have

‖RK,red‖20,K ≤ C‖Ψ1/2
K RK,red‖20,K = C(RK,red,w)K = C(RK + f − fh,w)K

= C{t2(∇(uh − u),∇w)K + (uh − u,w)K

− (∇(p∗h − p),w)K + (f − fh,w)K}
≤ C‖RK,red‖0,K{t2h−1

K ‖∇(uh − u)‖0,K + ‖uh − u‖0,K

+ ‖∇(p− p∗h)‖0,K + ‖f − fh‖0,K}.

Keeping in mind that ‖RK‖0,K ≤ ‖RK,red‖0,K + ‖f − fh‖0,K , we have

h2
K

h2
K + t2

‖ − t2∆uh + uh −∇p∗h − f‖20,K

≤ C{‖u− uh‖2t,h + |||p− p∗h|||2t,h +
h2

K

h2
K + t2

‖f − fh‖20,K}.

For the second part of the elementwise estimator the result holds trivially, thus
we proceed to the edgewise estimators. Since for the exact solution [[p]] = 0, and
[[u]] = 0 on the element edges, we have

hK

h2
K + t2

‖[[p∗h]]‖20,E =
hK

h2
K + t2

‖[[p− p∗h]]‖20,E ≤ |||p− p∗h|||2t,h,

t2

hK
‖[[uh]]‖20,E =

t2

hK
‖[[u− uh]]‖20,E ≤ ‖u− uh‖2t,h.

Finally, we must bound the normal jumps of the �ux in the estimator. We
use the cut-o� function ΨE and the extension χ to de�ne w = ΨEχ[[t2 ∂uh

∂n ]].
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Lemma 5.2 and integration by parts yield

‖[[t2 ∂uh

∂n
]]‖20,E ≤ C‖Ψ1/2

E [[t2
∂uh

∂n
]]‖20,E = C〈[[t2 ∂uh

∂n
]],w〉E

= C{t2(∆uh,w)ωE
+ t2(∇uh,∇ w)ωE

}
= C{t2(∆uh,w)ωE

+ t2(∇u,∇ w)ωE
+ t2(∇(uh − u),∇ w)ωE

}
= C{(RK ,w)ωE

+ (u− uh,w)ωE
− (∇(p− p∗h),w)ωE

+ t2(∇(uh − u),∇ w)ωE
}

≤ C‖[[t2 ∂uh

∂n
]]‖0,E{t2h−1/2

K ‖∇(uh − u)‖0,ωE
+ h

1/2
K ‖uh − u‖0,ωE

+ h
1/2
K ‖∇(p− p∗h)‖0,ωE

+ h
1/2
K ‖f − fh‖0,ωE

}.
This gives

hK

h2
K + t2

‖[[t2 ∂uh

∂n
]]‖20,E

≤ C{‖u− uh‖2t,h + |||p− p∗h|||2t,h +
h2

K

h2
K + t2

‖f − fh‖20,K}.

Combining all of the above estimates proves the claim.

Thus for the displacement uh and the postprocessed pressure p∗h we have
by Theorems 5.1 and 5.3 a reliable and e�cient indicator for all values of the
parameter t.

6 Conclusions

We have shown that Nitsche's method can be successfully applied to H(div)-
conforming elements as a non-conforming approximation for the Brinkman prob-
lem. The method is stable for all values of the viscosity parameter t. It was also
shown that via postprocessing one achieves optimal convergence rate for both
of the variables. Furthermore, we introduced a residual-based a posteriori error
indicator with parameter-independent optimal convergence properties. The nu-
merical performance of the method along with the usefulness of the estimator
in adaptive procedures will be studied in a separate paper.
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