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Stability of a spatial polling system

with greedy myopic service

Lasse Leskelä∗ Falk Unger†

September 11, 2009

Abstract

This paper studies a spatial queueing system on a circle, polled at
random locations by a myopic server that can only observe customers
in a bounded neighborhood. The server operates according to a greedy
policy, always serving the nearest customer in its neighborhood, and
leaving the system unchanged at polling instants where the neighbor-
hood is empty. This system is modeled as a measure-valued random
process, which is shown to be positive recurrent under a natural stabil-
ity condition that does not depend on the server’s scan radius. When
the interpolling times are light-tailed, the stable system is shown to
be geometrically ergodic. We also briefly discuss how the stationary
mean number of customers behaves in light and heavy traffic.

Keywords: spatial queueing system, dynamic traveling repairman, quadratic
Lyapunov functional, spatial–temporal point process, spatial birth-and-death
process

AMS 2000 Subject Classification: 60K25

1 Introduction

This paper studies a spatial queueing system where customers arrive to
random locations in space that are a priori unknown to the server. The
server operates sequentially in time by scanning a bounded neighborhood of
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a randomly chosen location, and serving the nearest customer it observes.
After a service completion or an unsuccessful scan, a new scan is performed.
This kind of models may be encountered in applications, such as disk storage
or wireless sensor networks, where the time required for the server to find a
customer has a major impact on the customer’s sojourn time in the system.

To simplify the analysis, we assume that the service times are negligible
compared to the scanning times. Observe that in the opposite case where
the service times dominate, the number of customers in the system behaves
like the standard single-server queue. A further simplification is to assume
that the customers arriving during a scanning period are ignored from the
ongoing scan. We expect that this assumption is valid when the scan radius
is small. The resulting system can be rephrased as follows: A server polls
the system sequentially at random locations, and either serves the nearest
observed customer immediately, or leaves the system unchanged if there are
no customers within the scan radius. Instead of a single polling server, we
may alternatively think that there is an infinite stream of servers, each of
which can only perform one scan during its operational lifetime.

The service policy is greedy in the sense that the server always aims to
serve the nearest customer. We call this model greedy polling server, to dis-
tinguish it from spatial queueing systems where the server travels in space
towards a nearest customer (greedy traveling server). Although a natural
choice for many applications, the greedy policy is hard to analyze mathemat-
ically, as confirmed by earlier studies on traveling servers [1, 2, 4, 8, 12, 13].
Coffman and Gilbert [4] conjectured that the greedy traveling server on a
circle is stable when the traffic intensity is less than one, regardless of the
server’s traveling speed. Kroese and Schmidt [12] proved this statement for
several nongreedy policies, Altman and Levy [1] proved it for a so-called
gated-greedy policy, and Foss and Last [8] proved it for greedy traveling
servers on a finite space, see also Meester and Quant [16]. Despite these
affirmative results for closely related systems, the stability of the greedy
traveling server on a circle still remains an open problem. Analytical re-
sults on the distribution of customers related to greedy traveling servers are
scarce. Coffman and Gilbert [4] showed that the greedy traveling server on
a circle closely resembles a cyclic policy in heavy traffic (see also Litvak and
Adan [15] for a similar result). Bertsimas and van Ryzin [2] found two lower
bounds for the mean sojourn time in the system, which are valid for all travel
policies. Kroese and Schmidt [13] derived second-order approximations for
the number of customers and workload in light traffic.

The analytical challenges related to greedy traveling servers suggest that
greedy polling servers may be difficult to analyze as well. This is why we set
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a modest research goal for this paper, namely, to characterize the stability
of the system. This problem may be viewed as determining the system’s
throughput capacity, defined as the maximal sustainable arrival rate for
which the number of customers in the system remains stable (stochastically
bounded). Foss [7] recently presented an open problem, attributing it to
V. Anantharam, conjecturing that the greedy polling server on a circle is
stable if the arrival rate is less than the polling rate, regardless of the server’s
scan radius.

In this paper we prove Anantharam’s conjecture [7, Section 3.2] by show-
ing that the greedy polling server on a circle is stable if and only if the polling
rate exceeds the arrival rate. The proof is based on presenting the system
as a measure-valued Markov process, and developing a novel quadratic Lya-
punov functional on the space of finite counting measures for which the
measure-valued process has negative mean drift for large customer config-
urations. Besides incrementing the collection of known provable facts on
spatial queueing systems with greedy service, our analytical results may be
interesting in other application areas. For instance, the greedy polling server
can be viewed as a spatial birth-and-death process. Spatial birth-and-death
processes have usually been studied in the case where all individuals have a
constant death rate, see for example Ferrari, Fernández, and Garcia [6]; and
Garcia and Kurtz [9], who give sufficient conditions for stability in terms
of the birth rates. The greedy polling server differs from the above birth-
and-death processes in that the death rates of individuals are governed by
the Voronoi tessellation generated by the customer locations. Borovkov and
Odell [3] have recently studied a class of spatial–temporal point processes
based on Voronoi cells, where the number of individuals is assumed constant
over time. We expect that the quadratic Lyapunov functional presented in
this paper may turn out useful in studying the ergodicity of more general
spatial birth-and-death processes.

During the final writing stage of this article, we came across an inter-
esting recent work of Robert [18], who considers the same problem from a
different point of view. Using entirely different techniques (a stochastically
monotone construction of a stationary solution), he proves a weaker form of
stability, stating that the system has a limiting distribution for which the
number of customers is finite almost surely. Our results based on Foster–
Lyapunov drift criteria allow to prove stronger forms of stability, such as
positive Harris recurrence and geometric ergodicity, depending on the tail
behavior of the interpolling time distribution.

The rest of the paper is organized as follows. In Section 2 we describe
the system as a measure-valued Markov process and derive formulas for its
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transition operators. Section 3 shows the positive recurrence of the system,
and Section 4 is devoted to geometric ergodicity. In Section 5 we illustrate
the system dynamics with numerical simulations complemented with heuris-
tical ideas on the behavior of the system in light traffic and heavy traffic.
Section 6 concludes the paper.

2 System description

2.1 Notation

The server operates on the circle S = {(x1, x2) ∈ R2 : x2
1 + x2

2 = ℓ2} of
circumference ℓ > 0, where the distance d(x, y) between points x and y is
defined as the length of the shortest arc connecting them. The state space of
the system is the set M+(S) of finite counting measures ζ on S, so that ζ(B)
denotes the number of customers located at B ⊂ S. The elements of M+(S)
will also be called configurations, and the zero counting measure is called
the empty configuration. The total number of customers in configuration
ζ is denoted by ||ζ||v = ζ(S); this quantity also equals the total variation
of ζ. We equip the space M+(S) with the sigma-algebra generated by the
maps ζ 7→ ζ(B), with B being a Borel set in S. For real functions f on S
we denote ∫

S
f(x) ζ(dx) =

∑
x∈ζ

f(x) ζ({x}),

where x ∈ ζ is shorthand for ζ({x}) > 0. For more background, see for
instance Daley and Vere-Jones [5].

2.2 Population process in continuous time

Customers arrive to the circle S at uniformly distributed random locations.
Assuming that the arrival locations and interarrival times are independent,
the spatial–temporal arrival process can be described as a Poisson random
measure on R+ × S with intensity measure λdt m(dx), where λ > 0 de-
notes the mean arrival rate, dt the Lebesgue measure on R+, and m(dx)
the uniform distribution (Haar measure) on S. The server polls the circle
sequentially in time by scanning a neighborhood of radius r > 0 of a ran-
domly chosen location, and either serving the nearest observed customer
immediately, or leaving the system unchanged if the scanned neighborhood
is empty. Hence the probability that a customer located at x ∈ ζ is served
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during a polling event is equal to

m(Br ∩ Γζ(x)),

where Br(x) denotes the open r-ball centered at x, and

Γζ(x) =
{
y ∈ S : d(x, y) < d(x′, y) ∀x′ ∈ ζ

}
denotes the Voronoi cell of a point x with respect to configuration ζ. (If
there are many customers located at x, each of them is served with equal
probability.) Assuming that the interpolling times are independent and
exponential, say with parameter µ, and independent of the arrival process,
the customer population in the system is described by a Markovian spatial
birth-and-death process [9] with generator

Af(ζ) = λ

∫
S
(f(ζ + δx)− f(ζ))m(dx)

+ µ

∫
S
(f(ζ − δx)− f(ζ))m(Br(x) ∩ Γζ(x)) ζ(dx),

where δx denotes the Dirac measure at x.

2.3 Population process at polling instants

The stability regions of many ordinary queueing systems are insensitive to
the shape of the service time distribution. We will show in Section 3 that
analogously, the shape of the interpolling distribution does not affect the
stability of our model. To show this claim, we will from now on assume
that the interpolling times follow a general distribution G on R+. To keep
the presentation concise, we will restrict the study into the discrete-time
population process W obtained by sampling the system at polling instants,
so that Wt(B) denotes the number of customers in B ⊂ S just after the t-th
polling instant, t ∈ Z+ (we assume that also the initial state W0 is observed
just after a polling instant). We expect that the stability results for the
discrete-time process extend to continuous time following similar techniques
as in Kroese and Schmidt [12].

The population process W is a discrete-time Markov process on M+(S).
Given an initial state ζ ∈ M+(S), we denote the one-step transition operator
of W by

Af(ζ) = Eζ f(W1) = E (f(W1) |W0 = ζ) ,
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where f is a bounded or positive measurable function on M+(S). The
associated probability kernel will be denoted by

P (ζ,B) = A1B(ζ) = Pζ(W1 ∈ B), B ⊂ M+(S).

Because the polling locations are independent of the arrivals, we can
decompose the transition operator according to

A = Aa ◦ Ap,

where the arrival operator Aa and the polling operator Ap are defined as
follows. The operator Aa acts on bounded or positive measurable functions
by

Aaf(ζ) =
∑
n≥0

An
0f(ζ)Gλ(n), (2.1)

where
A0f(ζ) =

∫
S

f(ζ + δx)m(dx)

corresponds to adding one new customer to a uniform random location, and

Gλ(n) =
∫

R+

e−λs (λs)n

n!
G(ds)

is the probability that n customers arrive during an interpolling time. The
operator Ap is defined by

Apf(ζ) = f(x)(1− kr(ζ)) +
∑
x∈ζ

f(ζ − δx)m(Br(x) ∩ Γζ(x)), (2.2)

where
kr(ζ) = m(∪x∈ζBr(x)) (2.3)

is the probability that the server finds a customer during a scan targeted
into configuration ζ.

2.4 Irreducibility and aperiodicity

The following result shows that the Markov process W describing the cus-
tomer population in the system may become empty with probabilities uni-
formly bounded away from zero. As a consequence, the process satisfies the
irreducibility and aperiodicity properties summarized below (see Meyn and
Tweedie [17] for details).
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Lemma 2.1. The Markov process W is φ-irreducible and strongly aperiodic,
where φ is the Dirac measure on M+(S) assigning unit mass to the zero
counting measure on S. Moreover, the level sets of the form Cn = {ζ ∈
M+(S) : ||ζ||v ≤ n}, n ≥ 0, are small for W .

Proof. Consider an initial configuration ζ with ||ζ||v = k ≤ n customers.
Then the probability that the system is empty after n polling instants is
greater than the probability that no customers arrive during the first n
interpolling times and the server finds a customer at each of the k first
polling events. Because the probability of finding a customer in a nonempty
system is at least m(Br), it follows that

Pn(ζ, {ζ0}) ≥ ǫnm(Br)k ≥ ǫnm(Br)n,

where ζ0 denotes the empty configuration and ǫ =
∫

R+
e−λs G(ds) is the

probability that no customers arrive during an interpolling time. Denoting
µ = ǫnm(Br)nφ, we may thus conclude that

inf
ζ∈Cn

Pn(ζ,B) ≥ µ(B)

for all measurable B ⊂ M+(S). Thus the level set Cn is small [17, Section
5.2]. Further, the inequality P (ζ0, {ζ0}) ≥ ǫ implies that W is strongly
aperiodic [17, Section 5.4].

3 Positive recurrence

This section is devoted to deriving the main stability results (Theorems 3.8
and 3.11), which together imply that the system is positive recurrent if and
only if the arrival rate of customers is strictly less than the polling rate,
regardless of the server’s scan radius. We start in Section 3.1 by discussing
why it is not sufficient to analyze the mean drift of the population size,
and introduce in Section 3.2 a quadratic functional for which the mean
drift analysis works. Section 3.3 discusses a key interpolation inequality
that is applied in Section 3.4 to show that the mean drift with respect to
the quadratic functional is negative for large configurations. Section 3.5
summarizes the behavior of the unstable system.

3.1 Mean drift with respect to population size

A common method to prove the stochastic stability of a queueing system
is show that the mean drift of the system with respect to the number of
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customers is strictly negative for large configurations. To see why this ap-
proach is not sufficient for the greedy polling system in this paper, denote
the number of customers in configuration ζ by h(ζ) = ||ζ||v, and recall that
the mean drift of the system with respect to h is defined by

Dh(ζ) = Ah(ζ)− h(ζ),

where A is the one-step transition operator of the system. Recall the de-
composition of A = Aa ◦ Ap in Section 2.3, and observe that

Aah(ζ) = h(ζ) + λs1,

where s1 =
∫

s G(ds) is the mean interpolling time, and

Aph(ζ) = h(ζ)− kr(ζ),

where kr is the probability of a successful scan defined by (2.3). As a con-
sequence,

Dh(ζ) = λs1 −Aakr(ζ).

Consider a configuration ζ = nδx, where n customers are located in a
single point x ∈ S. Then kr(ζ) = m(Br), so by conditioning on whether
customers arrive or not during a polling instant, we find that

Aakr(ζ) ≤ kr(ζ)Gλ(0) + (1−Gλ(0))
= 1−Gλ(0)(1 −m(Br)),

where Gλ(0) =
∫

e−λs G(ds). Hence

Dh(ζ) ≥ λs1 − 1 + Gλ(0)(1 −m(Br)).

Because the right side above does not depend on n, we see that Dh(ζ) can
be strictly positive for arbitrarily large configurations, if λs1 > 1−Gλ(0)(1−
m(Br)). Hence the mean drift with respect population size cannot be used
to show that the system is stable whenever λs1 < 1.

3.2 Quadratic energy functional

Let M(S) be the space of signed counting measures on S, that is, measures
of the form ζ =

∑n
i=1 ziδxi , where zi ∈ Z and xi ∈ S. The space M(S) is

a normed vector space with the total variation norm ||ζ||v =
∑

i |zi|, and
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the subspace of finite positive counting measures M+(S) is a convex cone in
M(S).

Given 0 < a ≤ ℓ/2, define for ζ, η ∈ M(S),

〈ζ, η〉a =
∫

S

∫
S
(a− d(x, y))+ ζ(dx) η(dy),

and denote
||ζ||a =

√
〈ζ, ζ〉a.

Lemma 3.1. The map (ζ, η) 7→ 〈ζ, η〉a is symmetric, bilinear, and positive
semidefinite. The map ζ 7→ ||ζ||a is a seminorm on M(S) satisfying

||ζ||a ≤ ||ζ||v (3.1)

for all ζ ∈ M(S).

Proof. Clearly, 〈ζ, η〉a is bilinear and symmetric, so we only need to show
positive semidefiniteness. We shall prove this using a probabilistic argu-
ment, representing the bilinear functional as an expectation of a random
quantity. Observe that (a − d(x, y))+ = m(Ba/2(x) ∩ Ba/2(y)), where m
denotes the uniform probability distribution on S. Hence by changing the
order of integration we see that

〈ζ, η〉a =
∫

S

∫
S

m(Ba/2(x) ∩Ba/2(y)) ζ(dx) η(dy)

=
∫

S

∫
S

∫
S

1(x ∈ Ba/2(z))1(y ∈ Ba/2(z))m(dz) ζ(dx) η(dy)

=
∫

S

∫
S

∫
S

1(z ∈ Ba/2(x))1(z ∈ Ba/2(y)) ζ(dx) η(dy)m(dz).

Hence
〈ζ, η〉a = E ζ(Ba/2(U))η(Ba/2(U)),

where is U is a random variable uniformly distributed on S. Especially,

〈ζ, ζ〉a = E ζ(Ba/2(U))2, (3.2)

which shows that 〈ζ, ζ〉a ≥ 0 for all ζ ∈ M(S). As a consequence, ζ 7→ ||ζ||a
is a seminorm (see for example Rudin [19, 4.2]). The representation (3.2)
further shows the validity of (3.1).

Remark 3.2. When a is chosen so that ℓ/a is not an integer, one could
perhaps strengthen the statement of Lemma 3.1 by showing that 〈ζ, η〉a is
an inner product on M(S). However, in the sequel we will only need the
fact that ||ζ||a is a seminorm.
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Lemma 3.3. For any integer n and any configuration ζ ∈ M+(S), there
exists a closed ball B in S with diameter n−1 such that

ζ(B) ≥ n−1||ζ||v. (3.3)

Proof. Given an integer n, cover the unit circle with closed balls B1, . . . , Bn,
each having diameter n−1. Then

||ζ||v ≤
n∑

i=1

ζ(Bi) ≤ n max
i

ζ(Bi),

which shows that maxi ζ(Bi) ≥ n−1||ζ||v.
Lemma 3.4. For any a > 0 for all ζ ∈ M+(S),√

a/2
1 + 2/a

||ζ||v ≤ ||ζ||a ≤
√

a||ζ||v. (3.4)

Proof. The upper bound in (3.4) follows directly by observing that (a −
d(x, y))+ ≤ a for all x and y. To prove the corresponding lower bound,
let n be an integer such that 2/a ≤ n ≤ 2/a + 1, and use Lemma 3.3 to
choose a closed ball B with diameter n−1 such that (3.3) holds. Because
(a− d(x, y))+ ≥ a− n−1 ≥ a/2 for all x, y ∈ B, it follows that

||ζ||2a ≥
∫

B

∫
B

(a− d(x, y))+ ζ(dx) ζ(dy) ≥ a

2
ζ(B)2.

Because n ≤ 2/a + 1, the lower bound now follows using (3.3).

3.3 Interpolation inequality

This section is devoted to proving a key inequality (Lemma 3.7), which
is needed for analyzing the mean drift of the system with respect to the
seminorm ||ζ||a. For a point x on the circle S and a positive real number a,
we denote by x + a the point on the circle obtained by traveling distance a
from x anticlockwise on the circle, and x−a the corresponding point obtained
by traveling in the clockwise direction. Moreover, we denote by [u, v] the
closed arc formed by drawing a line from u to v moving anticlockwise on the
circle, and by (u, v) the interior of [u, v].

Lemma 3.5. Let 0 < a ≤ ℓ/2. Then for all x ∈ S and for all ζ ∈ M+(S)
having atoms at x− a, x, and x + a,∑

y∈ζ

(a− d(x, y))+m(Γζ(y)) = a2. (3.5)
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Remark 3.6. Equation (3.5) may interpreted in terms nearest-neighbor
interpolation as follows. Given a bounded measurable function f on S,
define its nearest-neighbor interpolant (with respect to configuration ζ) by

Iζf(z) =
∑
y∈ζ

f(y)1(z ∈ Γζ(y)).

Then ∫
S

Iζf(z)m(dz) =
∑
y∈ζ

f(y)m(Γζ(y)).

Given ζ and x as in Lemma 3.5, define f(z) = (a − d(x, z))+. Then the
left side in (3.5) equals

∫
S Iζf(z)m(dz), and a short calculation shows that∫

S f(z)m(dz) = a2. Hence (3.5) can be rewritten as∫
S

Iζf(z)m(dz) =
∫

S
f(z)m(dz),

stating that the interpolation error made in replacing f by Iζf is zero (see
Figure 1).

Γζ(y)

a− d(y, x)

b b b b b b

x− a x x + a

y

a

Figure 1: Nearest-neighbor interpolation of z 7→ (a− d(x, z))+.

Proof of Lemma 3.5. Assume first that x is the only atom of ζ in (x−a, x+
a). Then

m(Γζ(x)) = m([x− a/2, x + a/2]) = a,
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which implies (3.5).
Assume next that (3.5) holds for some configuration ζ having atoms at

x − a, x, and x + a. We shall show that the same is true also for ζ ′ =
ζ + δz, where z ∈ S is arbitrary. We only need to consider the case where
z ∈ (x − a, x + a) such that z /∈ ζ, because otherwise the sum on the left
side of (3.5) remains unaffected. Assume without loss of generality that
z ∈ (x− a, x), the other case being symmetric, and let y1, y2 ∈ [x− a, x] be
the points of ζ lying nearest to z in the anticlockwise and clockwise direction,
respectively. Then

m(Γζ′(z)) =
1
2
(d(y1, z) + d(z, y2)),

m(Γζ′(y1)) = m(Γζ(y1))− 1
2
d(z, y2),

m(Γζ′(y2)) = m(Γζ(y2))− 1
2
d(y1, z).

Denote by g(x, ζ) the left side of (3.5). Because the other atoms of ζ
remain unchanged, it follows that

g(x, ζ ′)− g(x, ζ) =
1
2
(a− d(z, x))(d(y1, z) + d(z, y2))

− 1
2
(a− d(y1, x))d(z, y2)− 1

2
(a− d(y2, x))d(y1, z).

Because d(y1, x) = d(y1, z) + d(z, x) and d(y2, x) = d(z, x) − d(y2, z), the
terms on the right side of the above equation cancel out each other, so we
may conclude that g(x, ζ ′) = g(x, ζ). Hence (3.5) holds also for ζ ′ = ζ + δz,
and the proof is complete by induction.

Lemma 3.7. Assume that 0 < a ≤ min(ℓ/2, 2r). Then for all ζ ∈ M+(S)
and for all x ∈ ζ,∑

y∈ζ

(a− d(x, y))+m(Br(y) ∩ Γζ(y)) ≥ a2. (3.6)

Proof. Denote the left side of (3.6) by g(x, ζ). Because a ≤ ℓ
2 , the sum on

the left of (3.6) runs over the locations y ∈ ζ such that y ∈ [x− a, x + a].
Let ζ ′ = ζ + δx−a + δx+a. We shall first show that

g(x, ζ) ≥ g(x, ζ ′). (3.7)
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Denote by yl and yr the atoms of ζ in [x − a, x + a] located nearest to
x − a and x + a, respectively. Then (see Figure 2) Γζ′(y) = Γζ(y) for all
y ∈ ζ ∩ (yl, yr), and moreover,

Γζ′(yl) ⊂ Γζ(yl) and Γζ′(yr) ⊂ Γζ(yr).

Because the points y = x− a and y = x + a contribute nothing to the sum
on the left side of (3.6), we may conclude that (3.7) holds.

Further, because a ≤ 2r, it follows that Γζ′(y) ∩ Br(y) = Γζ′(y) for all
y ∈ ζ ′ ∩ (x− a, x + a). Hence Lemma 3.5 shows that

g(x, ζ ′) =
∑
y∈ζ′

(a− d(x, y))+m(Γζ(y)) = a2.

In light of (3.7), this implies the claim.

| | |b bb b b b b b b

x− a yl x yr x + a

Γζ(yl) Γζ(yr)

Figure 2: Voronoi cells of yl and yr.

3.4 Positive Harris recurrence

The following result shows that the system is stable under the natural condi-
tion λs1 < 1. Recall that s1 and s2 denote the first and the second moments
of the interpolling time distribution, respectively. For a converse to Theo-
rem 3.8, see Theorem 3.11 in Section 3.5.

Theorem 3.8. Assume λs1 < 1 and s2 < ∞. Then for all values of the
scan radius r > 0 and the circle circumference ℓ > 0, the population process
W is positive Harris recurrent with stationary distribution π such that∫

||ζ||v π(dζ) < ∞.

Moreover, for all initial states ζ ∈ M+(S),

sup
g:|g|≤1+||·||v

∣∣∣∣Eζ g(Wt)−
∫

g dπ

∣∣∣∣ → 0 as t →∞.
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Remark 3.9. Meyn and Tweedie call such a process f -ergodic with f(ζ) =
1 + ||ζ||v.

The proof of Theorem 3.8 is based on the following Foster–Lyapunov
bound on the mean drift of the system with respect to the functional h(ζ) =
〈ζ, ζ〉a.
Lemma 3.10. Assume that s1, s2 < ∞, and let 0 < a ≤ min(ℓ/2, 2r). Then
the mean drift of the system with respect to h(ζ) = 〈ζ, ζ〉a satisfies

Dh(ζ) ≤ −c1||ζ||v + c2

for all ζ ∈ M+(S), where

c1 = 2a2(1− λs1),

c2 = a(1 + λs1) + a2(λ2s2 − 2λs1).

Proof. Recall that Dh(ζ) = Ah(ζ) − h(ζ), where A = Aa ◦ Ap, and the
transition operators Aa and Ap are defined by (2.1) and (2.2). Observe that
the transition operator corresponding to n arrivals satisfies

An
0h(ζ) = Eh(ζ +

n∑
i=1

δXi)

= h(ζ) + 2E〈ζ,
n∑

i=1

δXi〉a + E〈
n∑

i=1

δXi ,
n∑

j=1

δXj 〉a

= h(ζ) + 2n E〈ζ, δX1〉a + n E〈δX1 , δX1〉a + (n2 − n) E〈δX1 , δX2〉a,

where Xi are independent and uniformly distributed on S. Because the
uniform distribution m on S is shift-invariant,∫

S
(a− d(x, y))+ m(dy) = a2

for all x ∈ S, so that

E〈ζ, δX1〉a =
∫

S

∑
y∈ζ

(a− d(x, y))+ζ({y})m(dx) = a2||ζ||v,

and
E〈δX1 , δX2〉a =

∫
S

∫
S
(a− d(x, y))+ m(dx)m(dy) = a2.

14



Hence
An

0h(ζ) = h(ζ) + 2na2||ζ||v + na + (n2 − n)a2.

Because ∫
R+

∑
n≥0

(n2 − n) e−λs (λs)n

n!
G(ds) = λ2

∫
s2 G(ds),

we find using (2.1) that

Aah(ζ) = h(ζ) + 2λs1a
2||ζ||v + λs1a + λ2s2a

2,

where sk =
∫

sk G(ds) denotes the k-th moment of the interpolling distri-
bution.

To calculate Aph, observe that

h(ζ − δx)− h(ζ) = −2〈ζ, δx〉a + a,

which shows that

Aph(ζ) = h(ζ) + akr(ζ)− 2
∑
x∈ζ

〈ζ, δx〉a m(Br(x) ∩ Γζ(x)),

where kr(ζ) is the probability of a successful scan, defined by (2.3). Lemma 3.7
implies that for all ζ ∈ M+(S) and all x ∈ ζ,∑

y∈ζ

(a− d(x, y))+ m(Br(y) ∩ Γζ(y)) ≥ a2,

so especially, ∑
y∈ζ

〈ζ, δy〉a m(Br(y) ∩ Γζ(y)) ≥ a2||ζ||v.

Hence
Aph(ζ) ≤ h(ζ) + a− 2a2||ζ||v.

Because
Aah(ζ) = h(ζ) + 2λs1a

2||ζ||v + λs1a + λ2s2a
2

and
Aa(|| · ||v)(ζ) = ||ζ||v + λs1,

we find that

Ah(ζ) ≤ h(ζ) + 2λs1a
2||ζ||v + λs1a + λ2s2a

2 + a− 2a2(λs1 + ||ζ||v).

15



Proof of Theorem 3.8. By Lemma 3.10, the mean drift of the system with
respect to v(ζ) = ||ζ||2a for 0 < a ≤ min(ℓ/2, 2r) satisfies

Dv(ζ) ≤ −c1||ζ||v + c2,

for c1 > 0 and c2. Define f(ζ) = 1 + c||ζ||v where c = c1/2, and let n be an
integer such that n ≥ (1 + c2)/(c1/2). Then

Dv(ζ) ≤ −f(ζ)

for all ζ ∈ M+(S) such that ||ζ||v > n. Moreover,

Dv(ζ) + f(ζ) ≤ 1 + c2

for all ζ ∈ M+(S). Lemma 2.1 shows that the system is φ-irreducible and
aperiodic, and the level set Cn = {ζ ∈ M+(S) : ||ζ||v ≤ n} is small and
thus petite. Hence the f -norm ergodic theorem of Meyn and Tweedie [17,
Theorem 14.0.1] shows the claim.

3.5 Instability

Theorem 3.11. If λs1 ≥ 1, then the system is not positive recurrent, and if
λs1 > 1, then ||Wt||v →∞ almost surely as t →∞, regardless of the initial
state.

Proof. Denote the population process of the system by W , and let W ′ be
the population process of a modified system with scan radius r′ = ℓ/2,
so that the server finds a customer at polling events whenever the system
is nonempty. Then ||W ′||v equals the number of customers in a standard
single-server queue with rate-λ Poisson arrivals and service times distributed
according to G, observed just after service completions. It is not hard to see
that there exists a coupling of W and W ′ so that ||Wt||v ≥ ||W ′

t ||v for all t ∈
Z+ almost surely, whenever ||W0||v ≥ ||W ′

0||v (see for instance Leskelä [14,
Theorem 4.8]). When λs1 ≥ 1, it is well-known that the mean return time
to zero of ||W ′||v is infinite [11]. The coupling then implies that the same is
true for the process ||W ||v, which shows that W ′ is not positive recurrent.
The second claim follows using the same coupling, because ||W ′

t ||v → ∞
almost surely when λs1 > 1.

4 Geometric ergodicity

The standard single-server M/G/1 queue is known to be geometrically er-
godic, when the tail of the service time distribution is light enough [10,
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Theorem 3.2]. An analogous result is true for the population process W , as
the next result shows.

Theorem 4.1. Assume that λs1 < 1 and the interpolling time distribution
satisfies

∫
eθsG(ds) < ∞ for some θ > 0. Then the system is geometrically

ergodic in the sense that there exist constants α > 0, β > 0, and c < ∞ such
that ∞∑

t=0

eαt sup
g:|g|≤eβ||·||a

∣∣∣∣Eζ g(Wt)−
∫

g dπ

∣∣∣∣ ≤ ceβ||ζ||a

for all initial states ζ ∈ M+(S).

Before proceeding with the proof of Theorem 4.1, we will show that the
seminorm ||ζ||a satisfies a similar Foster–Lyapunov bound (Lemma 4.3) as
the function 〈ζ, ζ〉a = ||ζ||2a in Lemma 3.10. Using the Foster–Lyapunov
bound for ||ζ||a, we will then proceed along similar lines as in the proof
of [17, Theorem 16.3.1] to bound the mean drift of the system with respect
to the function eβ||ζ||a for some β > 0 (Lemma 4.4), which is key to proving
Theorem 4.1.

Lemma 4.2. The function x 7→ √
1− x satisfies

√
1− x = 1− 1

2
x + R(x),

where |R(x)| ≤ 2−3/2x2 for all x ∈ [−1
2 , 1

2 ].

Proof. Taylor’s first order approximation shows that for all x ∈ [−1
2 , 1

2 ],
there exists s ∈ [0, 1] such that

R(x) =
1
8
(1− sx)−3/2x2.

Because (1− sx)−3/2 ≤ 23/2 for all |x| ≤ 1
2 and s ∈ [0, 1], the claim follows.

Lemma 4.3. Assume that λs1 < 1 and s2 < ∞, and let 0 < a ≤ min(ℓ/2, 2r).
Then there exist α > 0, b > 0, and an integer n such that the mean drift of
the system with respect to the seminorm v(ζ) = ||ζ||a satisfies

Dv(ζ) ≤ −α (4.1)

for all ζ ∈ M+(S) such that ||ζ||v > n, and

Dv(ζ) ≤ b (4.2)

for all ζ ∈ M+(S) such that ||ζ||v ≤ n.
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Proof. Jensen’s inequality shows that Av ≤ (Av2)1/2 holds pointwise on
M+(S), so the mean drift with respect to v is bounded by

Dv ≤ (Av2)1/2 − v = (v2 + Dv2)1/2 − v. (4.3)

Because λs1 < 1, we see using Lemma 3.10 that there exist c > 0 such that
Dv2(ζ) ≤ −c||ζ||v whenever ||ζ||v is large enough. Because ||ζ||a ≤ ||ζ||v
(Lemma 3.1), we see that

Dv ≤ (v2 − cv)1/2 − v = v
(
(1− cv−1)1/2 − 1

)
for all ||ζ||v large enough. Lemma 3.4 shows that v(ζ) →∞ as ||ζ||v →∞ in
M+(S). Thus, for all ζ ∈ M+(S) such that ||ζ||v is large enough, cv−1 ≤ 1

2 ,
and using Lemma 4.2 we see that

Dv ≤ v

(
−1

2
cv−1 + R(cv−1)

)
≤ v

(
−1

2
cv−1 + 2−3/2c2v−2

)
= −1

2
c + 2−3/2c2v−1.

This shows the validity of (4.1) for a suitable chosen n.
Lemma 3.10 also shows that Dv2 ≤ c2 for all ζ ∈ M+(S). Because

v(ζ) ≤ ||ζ||v (Lemma 3.1), inequality (4.3) shows that (4.2) holds with
b = (n2 + c2)1/2.

Lemma 4.4. Assume that λs1 < 1 and
∫

R+
eθs G(ds) < ∞ for some θ > 0,

and let 0 < a ≤ min(ℓ/2, 2r). Then there exist α > 0, β > 0, b > 0,
and an integer n such that the mean drift of the system with respect to
vβ(ζ) = exp(β||ζ||a) satisfies

Dvβ(ζ) ≤ −αvβ(ζ) (4.4)

for all ζ ∈ M+(S) such that ||ζ||v > n, and

Dvβ(ζ) + αvβ(ζ) ≤ b (4.5)

for all ζ ∈ M+(S) such that ||ζ||v ≤ n.

Proof. Define vβ(ζ) = eβ||ζ||a for some β > 0, to be chosen later. Then the
mean drift with respect to vβ equals

Dvβ(ζ) = vβ(ζ) Eζ

{
eβ(||W1||a−||W0||a) − 1

}
.
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Using a first order Taylor series approximation we see that

eβt = 1 + βt + R(t),

where the error term is bounded by |R(t)| ≤ 1
2β2t2eβ|t| for all t ∈ R. Because

1
2 t2 ≤ s−2es|t| for all t and all s > 0, it follows by setting s = β1/3 that

|R(t)| ≤ β4/3e(β+β1/3)|t|.

This bound implies that

vβ(ζ)−1Dvβ(ζ) ≤ βDv(ζ) + β4/3 Eζ e(β+β1/3)| ||W1||a−||W0)||a|,

where we denote v(ζ) = ||ζ||a.
Let us next bound the exponential term. Because ||ζ||a is a seminorm

in the space of signed counting measures on S (Lemma 3.1), the triangle
inequality shows that

| ||W1||a − ||W0||a| ≤ ||W1 −W0||a.

Let us write
W1 −W0 = ηa − ηp,

where ηa is a random counting measure describing the arrivals during an
interpolling time, and ηp is a random counting measure describing the num-
ber of served customers during the first polling instant (ηp = 0 if the server
sees no customers and ηp = δx for some x ∈ W0 + ηa otherwise). Because
|| · ||a ≤ || · ||v and ||ηp||v ≤ 1, we find that

||W1 −W0||a ≤ ||ηa||v + 1.

Observe next that

Eζ e(β+β1/3)||ηa||v =
∫

R+

∞∑
n=0

e(β+β1/3)n e−λs (λs)n

n!
G(ds)

=
∫

R+

eλ(e(β+β1/3)−1)s G(ds).

Choose now β small enough such that λ(e(β+β1/3) − 1) ≤ θ and eβ+β1/3 ≤ 2.
Then

vβ(ζ)−1Dvβ(ζ) ≤ βDv(ζ) + 2β4/3Ĝ(θ), (4.6)
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where Ĝ(θ) =
∫

eθs G(ds). By Lemma 4.3, Dv(ζ) is strictly negative for
||ζ||v large enough. Hence there exist α > 0, β > 0 and n such that (4.4)
holds for ||ζ||v > n.

Inequality (4.6) further shows that

Dvβ(ζ) + αvβ(ζ) ≤
(
βDv(ζ) + 2β4/3Ĝ(θ) + α

)
vβ(ζ).

for all ζ ∈ M+(S). Because ||ζ||a ≤ ||ζ||v by Lemma 3.1, we have the
bound vβ(ζ) ≤ eβn for ||ζ||v ≤ n. Inequality (4.2) in Lemma 4.3 thus shows
that (4.5) holds for some b large enough.

Proof of Theorem 4.1. By Lemma 2.1, the system is φ-irreducible and ape-
riodic. By Lemma 4.4, the geometric drift condition is satisfied for the level
set Cn = {ζ ∈ M+(S) : ||ζ||v ≤ n} for some n large enough. The set Cn

is small and thus petite by Lemma 2.1. Hence the claim follows by the
geometric ergodic theorem of Meyn and Tweedie [17, Theorem 15.0.1]

5 Population size in steady state

Having seen that the population process W is positive recurrent for λs1 < 1
and s2 < ∞, it would be interesting to find out an explicit expression for
the stationary distribution of W , or at least for the stationary distribution
of the number of customers in the system. Following [12], we could try the
Laplace functional approach. Denote the stationary distribution of W by π,
and denote the Laplace function of the stationary number of customers by

L(θ) =
∫

e−θ||ζ||v π(dζ), θ > 0.

Then a straightforward calculation shows that

L(θ) = Ĝ(λ(1− e−θ))
∫

e−θ||ζ||v(1 + (eθ − 1)kr(ζ))π(ζ),

where Ĝ denotes the Laplace transform of G, and kr(ζ) is defined by (2.3).
However, solving L(θ) from the above equation appears intractable due to
the nonlinearity of kr.

To gain insight on the behavior of the number of customers in the sys-
tem, we have numerically simulated the system for a choice of parameter
combinations with exponential interpolling times. Figure 3 displays simu-
lated paths of the population size for λ = 0.1 (left) and λ = 0.9 (right),
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Figure 3: Population size as a function of time in light traffic (λ = 0.1, left)
and heavy traffic (λ = 0.9, right).

where s1 = 1, r = 0.1, and ℓ = 1. The simulations suggest that the system
in light traffic is empty a large proportion of time, whereas even for mod-
erately heavy traffic (λs1 = 0.9), the empty system appears to be a rare
event.

In light traffic, we can heuristically argue as follows. Assuming there is
one customer present in the system, and no new customers arrive, finding
the customer requires a geometrically distributed number of polling instants
with parameter m(Br). Hence, assuming that no new customers arrive, the
time required to serve the single customer has mean s1/m(Br). Thus we
might expect that the mean number of customers is roughly similar to the
stationary probability that a renewal on/off process with mean on-time 1/λ
and mean off-time s1/m(Br) is in on-state, so that

E ||W ||v ≈ s1/m(Br)
1/λ + s1/m(Br)

≈ λs1

m(Br)
. (5.1)

In heavy traffic, many customers arrive during each interpolling time.
Because the customers arrive to independent uniform locations, we can
heuristically argue that with high probability there will be lots of customers
relatively uniformly spread over the circle, so that the probability of finding
a customer during a scan is close to one. Hence we might expect that in
heavy traffic, the mean number of customers is not too far from the number
of customers in a standard M/G/1 queue, so that

E ||W ||v ≈ λ +
λ2s2

2(1 − λ)
, λs1 ≈ 1. (5.2)
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Figure 4: Stationary mean population size as a function of r for λ = 0.1
(left) and λ = 0.9 (right).

To study the accuracy of the above heuristics, Figure 4 shows numerically
simulated values for the stationary mean population size for varying scan
radius r. The solid line on the left is the light-traffic approximation (5.1);
the solid line on the right is the heavy-traffic approximation (5.2). The plots
suggest that the light-traffic approximation is relatively accurate. On the
other hand, the heavy-traffic approximation, being insensitive to the value
of the scan radius r, appears quite rough.

6 Conclusions

This paper studied a spatial queueing system on a circle, polled at random
locations by a myopic server that can only observe customers in a bounded
neighborhood. Using a novel quadratic Lyapunov functional of the measure-
valued population process, we showed that the system is positive recurrent
under a natural stability condition, and proved the geometric ergodicity of
the system for light-tailed interpolling times. The behavior of the station-
ary system was discussed in terms of light-traffic and heavy-traffic heuristics,
complemented with numerical simulations. The quadratic Lyapunov func-
tional studied in this paper appears a promising tool for the analysis of more
general spatial birth-and-death processes.
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